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A LASSO AND A REGRESSION TREE MIXED-EFFECT MODEL WITH RANDOM
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Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal
data. To use such data for predicting feelings, beliefs, and behavior, recent methodological work suggested
combinations of the longitudinal mixed-effect model with Lasso regression or with regression trees. The
present article adds to this literature by suggesting an extension of these models that—in addition to
a random effect for the mean level—also includes a random effect for the within-subject variance and
a random effect for the autocorrelation. After introducing the extended mixed-effect location scale (E-
MELS), the extended mixed-effect location-scale Lasso model (Lasso E-MELS), and the extended mixed-
effect location-scale tree model (E-MELS trees), we show how its parameters can be estimated using a
marginal maximum likelihood approach. Using real and simulated example data, we illustrate how to use
E-MELS, Lasso E-MELS, and E-MELS trees for building prediction models to forecast individuals’ daily
nervousness. The article is accompanied by an R package (called mels) and functions that support users
in the application of the suggested models.
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trees.

The digitalization of almost all areas of human life has led to the availability of awide range of
longitudinal data formany individuals (seeHarlow&Oswald, 2016). In order to test psychological
hypotheses or to forecast the behavior or the emotions of individuals with intensive longitudinal
data, standard machine-learning methods such as regularized regression models (Hastie et al.,
2009; McNeish, 2015), support vector machines (Schölkopf & Smola, 2002), boosting (James
et al., 2013), random forests (Kuhn & Johnson, 2013; Strobel et al., 2009), and neural networks
(Goodfellow et al., 2016) are often used. However, a problemwithmost of thesemachine-learning
approaches is that they were developed for cross-sectional data and not for longitudinal data that
are nested in individuals.

In recent years, extensions of these classical methods that consider the hierarchical structure
of longitudinal data have thereby been proposed. These extensions are based on longitudinal
mixed-effect models that have been, for example, combined with Lasso regression (e.g., Groll &
Tutz, 2014; Li et al., 2018; Pan & Huang, 2014; Schelldorfer et al., 2011) or regression trees (e.g.,
Hajjem et al., 2011; Sela & Simonoff, 2012; Stegmann et al., 2018). In contrast to the classical
machine-learning methods, these extensions allow for between-person differences in mean levels
and therefore have a higher predictive power (see, e.g., the simulation in Sela & Simonoff, 2012).
However, psychological research shows that individuals differ in how much they fluctuate around
their personal mean (within-person variability, see, e.g., Baird et al., 2006; 2017; Geukes et al.,
2017) and in the extent to which the actual value of the person is predicted by the person’s previous
value (autocorrelation, e.g., Jahng et al., 2008; Wang et al., 2012), these extensions therefore also
share a crucial limitation, because they do not account for such between-person differences in the
Level 1 residual variance and the autocorrelation. There are extensions of the mixed-effect model
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that can be applied to examine interindividual differences in the levels, within-person variability,
and autocorrelation (e.g., Gasimova et al., 2014; Hamaker et al., 2018; Hedeker et al., 2008;
Nestler, 2020), but these models have not yet been combined with Lasso regression or regression
trees. This is surprising because, by additionally considering the between-person differences in
the Level 1 residual variance and in the autocorrelation, the predictive performance of the Lasso
mixed-effect model or the tree longitudinal mixed-effect model might be improved. For example,
allowing for such between-person differences should lead to more accurate forecasts (in terms
of mean squared error, for example) when we use the model to predict the outcome value on a
new day for a person that was used to estimate a model’s parameters (i.e., forecasting within a
person across time). Furthermore, the forecast might also be more accurate for persons that were
not used for parameter estimation (i.e., forecasting across persons).

The aim of our article is therefore to introduce combinations of (a) Lasso regression and
(b) regression trees with an extension of the longitudinal mixed-effect model that—in addition
to varying in the intercept (individuals differ in their “level” of the outcome variable)—allows
individuals to differ in the within-person variance and the autocorrelation. To this end, we first
describe the illustrative example that we use throughout the article.We continue with a description
of the longitudinal mixed-effect model, and then explain the factors that affect the forecasting
behavior of this model. Thereafter, we explain why the aforementioned extensions are better
suited for tackling the different forecasting problems that can occur with longitudinal data. We
then present the two combinations, and show how the two models’ parameters can be estimated
with a maximum likelihood (ML) approach. Finally, we illustrate all models using a real and a
simulated data example.

1. Illustrative example

Throughout the following section, we use data from a study called FLIP (i.e., Fluctuations In
Personality,Hofmann&Nestler, 2019) to illustrate the differentmodels. FLIP is a daily diary study
forwhich about 100 individualswere asked to fill out statemeasures of personality, affective states,
and motivational states. Prior to and after the state assessments, they also answered questionnaires
about different personality traits, took intelligence tests, provided demographic information, etc.
In the following illustration and explanations, we focus on participants’ daily assessments of the
item “I was nervous” (rated on a scale ranging from 1 = not at all to 6 = very), which was used
to measure individuals’ nervousness.

The data from the nervousness item can be employed to examine a number of different
research questions. For instance, we could investigate whether subjects’ average nervousness
ratings differ across persons and whether these between-person differences in the mean level
are related to certain personality traits such as neuroticism or extraversion (Baird et al., 2017;
Geukes et al., 2017). Here, we take a more predictive stance and use the data to design a statistical
model that can be employed to forecast a person’s nervousness on a new day. If we were dealing
with cross-sectional data, we could use a number of different machine-learning methods for this,
such as linear regression, regularized regression models (Hastie et al., 2009; McNeish, 2015),
support vector machines (Schölkopf & Smola, 2002), boosting (James et al., 2013), random
forests (Kuhn & Johnson, 2013; Strobel et al., 2009), and neural networks (Goodfellow et al.,
2016). However, these models are not suitable for longitudinal data, because they assume that
the data is independently and identically distributed and this assumption is violated when time
points are nested within individuals. Instead, a more appropriate approach is to use extensions of
the mixed-effect model for longitudinal data.
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2. Mixed-effect models for longitudinal data

In the case of longitudinal data, the predictors1 can be variables that are constant across
time (e.g., a person’s gender), or variables that vary with time. The time-varying variables can
comprise contemporaneous variables (e.g., a person’s anxiety value at time point t) and/or lagged
variables (e.g., the anxiety value at time point t − 1). One can also include time-varying variables
that code time (e.g., a linear time variable) or seasonal variables (e.g., weekday). We use the
T = T1 + · · · + TI data points of the I individuals to determine the prediction model and
therefore refer to these data as the training sample.

The general mixed-effect model for the Ti repeated observations yi of person i (called lon-
gitudinal mixed-effect model throughout this article) is given by:

yi = X iβ + Zi bi + εi . (1)

In our example, yi contains all nervousness values of person i . Xi is a Ti x (p + 1) vector of
predictor values of person i (including a column of 1s for the intercept) and β is a (p + 1) x 1
vector containing regression weights. The entries of β are also called fixed effects. Zi is a Ti x
k design matrix for the random effects that are contained in the k x 1 vector bi . We assume that
bi follows a multivariate normal distribution with an expectation of zero and a k x k covariance
matrix �. Finally, εi is a Ti x 1 vector of residual terms that is also assumed to be normally
distributed with expectation of zero and covariance matrix � of size Ti x Ti .

A special case of the longitudinalmixed-effectmodel that is often used is the random-intercept
model:

yi = X iβ + 1Ti τi + εi . (2)

It is a special case of Eq. (1) where Zi is a column vector of 1s (hence k = 1), bi is a single number,
τi , and � contains only one element, φ2

τ . In this case, τi is person i’s deviation from the intercept
across the sample. When no predictors are included in the model, the intercept reflects the mean
of all outcome values across the persons in the training sample, and τi is the deviation of person i
from this average y value, also called a person’s level. φ2

τ is a measure of the extent to which the
persons differ in τi . Furthermore, because intensive longitudinal data is collected a few minutes,
hours, or days apart, it is reasonable to assume that the error terms are autocorrelated ( cf. Verbeke
& Molenberghs, 2009). Whereas different types of autocorrelated error structures are possible
(see Hedeker & Gibbons, 2006, Chapter 7, for an overview), for the purposes of demonstration
in this paper, we focus on a lag-1 autoregressive error process that models the covariance matrix
of εi as

� = σ 2
ε

1 − ρ2

⎛
⎜⎜⎜⎜⎝

1 ρ ρ2 ... ρTi

ρ 1 ρ ... ρTi−1

ρ2 ρ 1 ... ...

... ... ... ... ρ

ρTi ... ... ρ 1

⎞
⎟⎟⎟⎟⎠

. (3)

where σ 2
ε is the variance of the residual terms, and ρ is the autocorrelation. For both of these

parameters, the values are estimated to be the same for all individuals.

2.1. Predicting and Forecasting with Longitudinal Mixed-Effect Models

Having obtained the mixed-effect model estimates, we can use them to predict a person’s out-
come value. Following the mixed-effect prediction literature (see Afshartous & de Leeuw, 2005;

1We assume that the data was collected in a representative way, so that it covers a large range of (combinations of)
the predictor values that might occur in forecasting tasks.
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Chi & Reinsel, 1989; Sela & Simonoff, 2012; Skrondal & Rabe-Hesketh, 2009), we differentiate
between three types of prediction tasks: First, we could use the model to predict the outcome
of a person who was part of the training sample for H time steps in the future (Task 1). In our
example, we could forecast the nervousness of a person in the training sample on subsequent
days. When H = 1, the value at the next time step is predicted. This is called a one-step forecast.
Cases in which H > 1 are referred to as multiple-step forecasts (Hyndman & Athanasopoulos,
2018, Chapter 3). Task 1 predictions can be computed with2 (see Chi & Reinsel, 1989):

ŷi,Ti+H = X i,Ti+H β̂ + Zi,Ti+H b̂i + ρ̂H ε̂i,Ti (4)

where we assume that X i,Ti+H and Zi,Ti+H are known, β̂ and ρ̂ are the fixed effects and the
autocorrelation, respectively, estimated with the training data. b̂i is an estimate of person i’s
random effect terms obtained with the training data and ε̂i,Ti is an estimate of person i’s Level 1
residual at the Ti th time point.

Second, we could use the model to predict the values of a completely new person for whom
no past observations are available (Task 2). As an example, we could use the model to predict the
nervousness of a person who was not in the training sample and for whom no past observations
are available. In this case, no random effect estimate and no estimate of the Level 1 residual
are available, so that the H -step forecast is just ŷi,H = X i,H β̂. Finally, the model could also
be used to predict the values of a new person who was not part of the training sample, but for
whom past observations are available (Task 3). For example, we could predict the nervousness
on a subsequent day for a person that we did not use to determine the prediction model but for
whom past observations of nervousness are available. In this case, we would estimate the person’s
random effect b̂i and the residual ε̂i,Ti using the mixed-effect model estimates obtained with the
training sample. Then, we use Equation (4)—analogously to Task 1—to obtain a forecast for the
new person on a new day.

Note that Task 1 is the typical focus of prediction in the forecasting literature, because it
explicitly considers temporal information for the trained persons (e.g., the previous values of a
person or the autocorrelation, see Hyndman & Athanasopoulos, 2018). The other two prediction
tasks are typically not considered in the “conventional” forecasting literature because they do not
involve temporal information, as in Task 2, or because they are based on a very strict stationarity
assumption, as in Task 3. However, Tasks 2 and 3 are among the subjects of investigation in the
multilevel prediction literature, and we think that they are relevant for practical applications in
which nothing is known about individuals except that they belong to the same population as the
training sample (see Jiang, 2007). We therefore cover all three prediction tasks in this article and
examine how our model extensions can be used to approach these tasks. We will use the term
H -step forecasts to refer to predictions within Tasks 1, 2, and 3 (where Ti = 0 in Task 2, because
no previous information about the person is available).

Equation (4) shows that it is important to take the nested longitudinal data structure into
account when one is interested in accurate predictions for Task 1 and 3. For instance, in the case of
a random intercept model, a prediction that takes individual differences in the person’s intercept
b̂i into account (i.e., that uses information about whether a specific person has systematically
higher or lower values in y than others) should be better than a prediction based on the expected
value across all individuals. Thus, when level information is available, as in Task 1 and 3, it should
be considered in the prediction model, but this is not done in standard machine-learning models.

2In the mixed-effect model literature, this predictor is called the Best Linear Unbiased Predictor (BLUP) and its
derivation presumes that the variance components of the longitudinal mixed-effect model are known. In real-data contexts,
the maximum likelihood estimates, for example, can be used to compute the BLUP; the resulting prediction is called the
empirical BLUP (EBLUP, see Frees, 2004; Searle et al., 1992; Skrondal & Rabe-Hesketh, 2009).
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Furthermore, failing to consider the autocorrelation of the outcome values affects the quality of
the forecast, and this effect is larger, the closer the time point to be predicted is to the available
data about the person.

One limitation to using the longitudinal mixed-effect model for prediction is—similar to a
standard regression model—that it assumes the data can be well-described by a linear function of
the fixed effects and random effects. Hence, if the true data-generating process takes a nonlinear
form, future values will be poorly predicted; this applies to predictions for all three types of tasks.
Another problem relevant for all three prediction tasks is that X i can contain many predictors,
such as contemporaneous and lagged variables, variables coding time, seasonal variables (e.g.,
weekdays), or person-level variables. Hence, one has to select the best predictors to use in the
model (cf., Hyndman & Athanasopoulos, 2018, Chapter 5). This also reduces the probability of
overfitting, which would occur if the model predicts the outcome values in the training sample
almost perfectly but only poorly predicts new values (see McNeish, 2015, for an introduction).
This occurs because the model partly captures irrelevant random deviations in the training data
(i.e., noise), with the consequence that the model does not generalize to new data. The next
two sections discuss how these problems have been addressed in the literature on mixed-effect
modeling.

2.2. A Lasso Mixed-Effect Model

As a solution to the overfitting problem, several researchers have suggested that longitudinal
mixed-effect models be combined with Lasso regression (e.g., Fan & Li, 2012; Li et al., 2018;
Schelldorfer et al., 2011; Pan & Huang, 2014; Groll & Tutz, 2014; Schelldorfer et al., 2014).
Similar to the standard Lasso model (Hastie et al., 2009; McNeish, 2015), the basic idea is to
apply a penalty function P to the fixed-effect coefficients during estimation that shrinks small
coefficients to exactly zero. This is achieved by setting a constraint on the sum of the absolute
values of the coefficients P(β) = λ

∑p
j=1 |β j |, where λ ≥ 0 is the regularization parameter. This

penalty term for the fixed effects is subtracted from the log-likelihood function of the longitudinal
mixed-effect model, that is then used to obtain the maximum likelihood parameters (see Hedeker
&Gibbons, 2006, for thematrix formula of the log-likelihood function of themixed-effectmodel):

logLλ,MEM = logLMEM − λ

p∑
j=1

|β j |. (5)

The regularization parameter λ controls the amount of shrinkage. When λ is zero, the Lasso
coefficients are identical to the fixed effects obtained in a standard longitudinal mixed-effect
model. By contrast, the higher λ is, the larger is the number of fixed effects that are set to zero.
Thus, Lasso results in a “sparse” fixed-effect vector β where some, or even the majority of
coefficients, are zero, depending on the choice of λ. It is this removal of negligible predictors that
helps to avoid overfitting.

2.3. A Mixed-Effect Model Tree

To allow that the data can be modeled as a nonlinear function of the fixed effects and random
effects, researchers have suggested using a combination of a cross-sectional regression tree and
the longitudinal mixed-effect model (see, e.g., Fu & Simonoff, 2015; Hajjem et al., 2011; Sela &
Simonoff, 2012; Stegmann et al., 2018). A cross-sectional regression tree for a predictor matrix
X and outcome variable y (see Strobel et al., 2009; James et al., 2013, for introductions) divides
the space spanned by the predictors in X into G subsets or regions. To build a tree, one first
needs to define how the predicted value ŷ of a person should be computed. Typically, a person’s
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Figure 1.
A simple tree (see text for explanations). N = neuroticism, A = Agreeableness.

predicted value is the mean of the outcome values of the training sample individuals who fall into
a specific region G defined by the constellation of predictor values. Then an iterative process of
region building begins (called recursive partitioning) in which the first step is to select a single
predictor variable X j from X and a value s j that split the space spanned by X j into two regions
(X j < s j and X j ≥ s j ). The variable X j and the value s j are chosen such that in comparison
with all other predictors in X and split values, it is accompanied by the smallest prediction error
(i.e., the sum of the squared differences between the actual and predicted value). In our example
(see Figure 1), if dividing the space into the two neuroticism regions (“individuals with N < 3”
and “individuals with N ≥ 3”) resulted in the lowest prediction error, neuroticism together with
the value 3 would be selected as the first splitting variable. In the second step, the next predictor
Xk with a split value sk is selected in order to split the data further (e.g., agreeableness and the
value 2). This second step of splitting is done within the two regions that were identified for the
predictor selected in the first step. In our example, splitting with respect to agreeableness is thus
done within each of the two regions of neuroticism. This process is repeated until a minimum
number of persons (e.g., 20 persons) in each leaf of the tree is reached (other stopping criteria are
possible). A trained tree tends to over-fit the training data. Therefore, one often deletes nodes from
the fully grown tree and the resulting sub-tree is then used for prediction (this is called pruning,
see Hastie et al., 2009, Chapter 9).

The final regression tree consists ofG regions R1, R2, ..., RG . The predicted value of a person
is the mean of the y-values of the individuals in the training sample that fall into Rg because of
their predictor values contained in xi . As a consequence, the final tree can be displayed as a
regression model with G dummy variables:

yi =
G∑

g=1

1Rg (xi )μg + εi (6)

where 1Rg denotes the indicator function that takes a value of 1 when the argument xi lies in
region Rg and 0 otherwise. This is equivalent to saying that person i falls into Rg because of her
or his predictor values. μg is the mean of the y values in region Rg .

Now, when the aim is to estimate a longitudinal mixed-effect model tree, the algorithm iterates
between two steps: First, assuming that the random effects, b̂i , of the individuals are known, one
estimates a cross-sectional regression tree with the residuals that were freed from the random
effects (i.e., these are not the Level 1 residuals)

ε̂i = yi − Zi b̂i . (7)

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 08:37:06, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


512 PSYCHOMETRIKA

This is plausible because the residuals do not contain any information about between-person differ-
ences with regard to these random effects. Second, the tree from the previous step is incorporated
into the multilevel growth model using dummy variable regression model:

yi = yi =
G∑

g=1

1Rg (xi )μg + Zi bi + εi (8)

and the random effects and variance terms of the growth model are estimated using standard
multilevel software. The algorithm (called RE-EM tree, see Sela & Simonoff, 2012, but also
Hajjem et al., 2011) alternates between these two steps until it converges. As for cross-sectional
data, the result is a tree that divides the space spanned by the time-constant and time-varying
predictors into regions. Also, the average of the outcome values in a region is taken as the predicted
outcome value for new individuals. The only difference is that observations from different time
points for the same person can fall into different regions.

2.4. Between-Person Differences in the Level 1 Variance and the Autocorrelation

Simulation studies show that the Lasso mixed-effect model and the mixed-effect model tree
provide better predictions than the standard cross-sectional approaches ignoring the hierarchical
data structure and than the longitudinal mixed-effect model (see, e.g., Sela & Simonoff, 2012).
However, we believe that the predictive performance of the models can be further improved by
taking into account interindividual differences in the Level 1 residual variance, σ 2

ε , and in the
autocorrelation, ρ. Research shows that such differences exist and that they are systematically
associated with other variables (e.g., Baird et al., 2017; Geukes et al., 2017; 2017; Jahng et al.,
2008). Hence, considering them in the model should improve the accuracy and the precision of the
predictions.With regard to accuracy, Equation (4) clearly shows that considering a person-specific
autocorrelation should yield more precise forecasts. Furthermore, a person-specific autocorrela-
tion, but also a person-specific residual variance may affect forecast accuracy more indirectly,
because simulation results show that omitting both types of interindividual differences from the
mixed-effect model specification can lead to biases in the estimates of � (e.g., the intercept vari-
ance φ2

τ ; Leckie et al., 2014; Schuurman et al., 2016). This in turn should bias the random effect
estimates b̂i , because � is contained in the formula to compute them. An estimate of bi is given
by

b̂i = �Z′
iV

−1( yi − X i β̂) (9)

where V is the covariance matrix of y. However, Equation (4) shows that b̂i is important for
calculating the forecast, which implies that a more accurate estimate b̂i (i.e., the model is correctly
specified) should increase the precision of the forecast.

With regard to precision, interindividual differences in the Level 1 variance and autocor-
relation should also influence the forecast error variance. When we assume that the variance
components of the model are known, the variance of the forecast error in case of prediction Tasks
1 and 3 is (Frees, 2004, Chapter 4; Skrondal & Rabe-Hesketh, 2009):

var(ŷi,Ti+H − yi,Ti+H ) =
(
X ′
i,Ti+H − CV−1X i

)
cov(β̂)

(
X ′
i,Ti+H − CV−1X i

)′

+ Z′
i,Ti+H

(
� − �Z′

iV
−1Zi�

)
Zi,Ti+H + var(εi,Ti+H ) (10)
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where cov(β̂) is the covariance matrix of the fixed-effect estimates and

C = Z′
i,Ti+H�Z′

i + cov(εi,Ti+H , εi ) (11)

where cov(εi,Ti+H , εi ) = σ 2(ρTi+H−1, ρTi+H−2, · · · , ρH ) (and σ 2 = σ 2
ε /(1 − ρ2)). Conse-

quently, considering a person-specific residual variance or person-specific autocorrelation should
yield a smaller prediction error variance (i.e., the first term in Equation (10) should be smaller)
than if all persons’ predictions were based on the same value for the residual variance and/or
autocorrelation. A similar argument can be made for Task 2 predictions, because the variance for
the prediction errors is (Skrondal & Rabe-Hesketh, 2009)

var(ŷi,Ti+H − yi,Ti+H ) = X ′
i,Ti+H cov(β̂)X i,Ti+H + Z′

i,Ti+H�Zi,Ti+H + var(εi,Ti+H ). (12)

Hence, when failing to consider interindividual differences in the Level 1 variance and the auto-
correlation the estimate of the variance of their prediction errors should be less precise. The results
of a small simulation study support this conjecture (see “Appendix A”).

3. Extending the Longitudinal Mixed-Effect Model to Consider Between-Person Differences in
the Level 1 Variance and the Autocorrelation

In this section, we present an extended longitudinal mixed-effect model that incorporates
between-person differences in the residual Level 1 variance and the autocorrelation. To the best of
our knowledge, this combination has not yet been proposed in the literature. However, it includes
as a special case the mixed-effect location-scale model (MELS) that was suggested by Hedeker
and colleagues (e.g., Hedeker et al., 2008; Hedeker et al., 2009; 2009) and that allows to consider
between-person differences in the residual Level 1 variance, but not in the autocorrelation. It can
also be considered a special case of the recently introduced dynamic structural equation model
(Asparouhov et al., 2018;Hamaker et al., 2018). Due to this background, wewill call our extension
the extended mixed-effect location-scale model (E-MELS). After the description of the E-MELS,
we will show how it can be combined with Lasso regression and regression trees.

3.1. The Basic E-MELS

The E-MELS extends the longitudinal mixed-effect model (see Eq. 1) in that it allows the
residual variance and the autocorrelation to differ between individuals. Specifically, we assume
that the covariance matrix of the residual terms is person-specific:

�i = σ 2
εi

1 − ρ2
i

⎛
⎜⎜⎜⎜⎜⎝

1 ρi ρ2
i ... ρ

Ti
i

ρi 1 ρi ... ρ
Ti−1
i

ρ2
i ρi 1 ... ...

... ... ... ... ρi

ρ
Ti
i ... ... ρi 1

⎞
⎟⎟⎟⎟⎟⎠

, (13)

where σ 2
εi
is person i’s residual variance, and ρi is i’s autocorrelation. Both terms are defined as

σ 2
εi

= exp(s0 + ωi )

ρi = tanh(r0 + ιi ). (14)
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Here, s0 denotes the average of the logarithm of the Level 1 variance, and r0 is the average of the
inverse hyperbolic tangent of the autocorrelation across individuals. ωi and ιi are person-specific
random effects, reflecting the extent to which person i’s residual variance and autocorrelation
deviate from s0 and r0, respectively. We use the exp function to ensure that the residual variance
remains positive. Similarly, we use the tanh (i.e., hyperbolic tangent) function to ensure that the
autocorrelation remains in the interval from −1 to 1. Both functions are the default choices in the
literature to keep the model parameters within their defined value ranges (see, e.g., Goodfellow
et al., 2016; Hedeker et al., 2008).

In the following, we assume that vi = (bi , ωi , ιi ) contains the random effects of a person i
and that these terms are normally distributed with expectation zero and covariance matrix �:

� =
[

�b �b,(ω,ι)

�′
b,(ω,ι)

�(ω,ι)

]
. (15)

Here, �b is the k x k covariance matrix of bi (i.e., the random effects of the mean structure),
�b,(ω,ι) contains the covariance terms between the random effects in b and the random effect of
the residual variance ω or the autocorrelation ι, respectively. Finally, �(ω,ι) is a 2 x 2 matrix that
contains the (co-)variance terms of ωi and ιi , respectively. In case of a random-intercept model
(Equation (2)), for example, � is

� =
⎡
⎣

φ2
τ φτω φτι

φτω φ2
ω φωι

φτι φωι φ2
ι

⎤
⎦ . (16)

Here, φ2
τ reflects the intercept variance, φ2

ω indicates between-person differences in the residual
variance, and φ2

ι reflects the extent of the between-person differences in the autocorrelation. φτω,
φτι, and φωι are the covariances between these random effects. For example, φτω reflects the
relation between individuals’ mean levels and their residual variance.

Finally, we also assume that the distribution of the observed responses yi conditional on vi
is normal with expectation μ yi = X iβ + Zi bi and covariance matrix �i . This allows us to define
the marginal likelihood of person i :

Li (θ) = f ( yi |θ) =
∫

vi

f ( yi |μ yi ,�i , vi ) f (vi |�)dvi , (17)

and the marginal likelihood of the whole sample:

L(θ) =
I∏

i=1

Li (θ) (18)

where θ contains the parameters in β, s0, r0, and the parameters in �. Finally, the marginal
log-likelihood of the sample is

logLE−MELS(θ) =
I∑

i=1

logLi (θ) =
I∑

i=1

log

[∫
vi

f ( yi |μ yi ,�i , vi ) f (vi |�)dvi

]
. (19)
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The marginal log-likelihood is maximized to obtain the ML estimates of the parameters. No
analytical solution exists for this maximization problem because one cannot analytically solve the
integrals that appear in the log-likelihood function. Therefore, we suggest that researchers use an
iterative optimization algorithm that employs the analytical gradient of the log-likelihood function
and approximates the integrals in question by applying anAdaptiveGaussianQuadrature approach
(AGH, Tuerlinckx et al., 2006). We refer the reader to Nestler (2020) for more information about
the ML estimator, its derivation, and its algorithmic implementation.

3.2. Lasso E-MELS and E-MELS Trees

Similar to the longitudinal mixed-effect model, the E-MELS bears the risk of overfitting and
it assumes that the true data-generating process is linear. To address the overfitting problem, we
suggest that the model be combined with Lasso Regression by subtracting the Lasso penalty for
the fixed-effect vector β from the log-likelihood function of the E-MELS:

logLλ,E−MELS(θ) = logLE−MELS(θ) − λ

p∑
j=1

|β j |. (20)

Again, λ ≥ 0 is the regularization parameter. The goal is to estimate the fixed effects, β, s0, r0, and
the parameters in � while some of the fixed-effect coefficients are shrunken to exactly zero. Let
γ contain s0, r0 and the parameters in �. To optimize the log-likelihood function of the Lasso E-
MELS, we suggest that a block coordinate gradient descent method that is similar to an algorithm
used by Schelldorfer et al. (2014) be used to estimate the parameters of a generalized linear mixed
model that was combined with a Lasso penalty. The basis of the algorithm is to cycle through the
components of the full parameter vector θ = (β, γ ), and to maximize the log-likelihood function
of the E-MELS with respect to one parameter block at a time (i.e., β or γ ) while holding the other
parameter block fixed. The integrals in the log-likelihood function are thereby approximated by
the AGH approach mentioned above. A more detailed description of the algorithm can be found
in “Appendix B.”

Acritical step in performing theLassoE-MELS (andLassoRegression in general) is to choose
a value for λ. Two approaches may be employed for this: (a) an information criterion that takes
model complexity into account, such as the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC; see Hastie et al., 2009, for an introduction), or (b) cross-validation.
Here, we use the AIC and the BIC defined by

AICλ = −2 · logLλ,E−MELS(θ) + 2 · dfλ
BICλ = −2 · logLλ,E−MELS(θ) + log(n) · dfλ (21)

where n = ∑I
i=1 Ti . For dfλ, we suggest that dfλ = pβ �=0 + dim(�) be used. Here, pβ �=0 is the

number of nonzero fixed effects (see Hastie et al., 2009), and dim(�) is the number of estimated
covariance parameters (see Bates, 2010). Our use of the information criteria is based on findings
by Schelldorfer et al. 2014 that both performed well for the Lasso generalized linear mixedmodel.
They also perform well for the related model class of regularized structural equation models (see,
e.g., Scharf & Nestler, 2019).

To combine the E-MELS with regression trees, one can use an approach that is similar to
the one suggested for the mixed-effect model tree (see Sela & Simonoff, 2012). Specifically, the
algorithm iterates through two steps: First, given ν̂i for all individuals in the training sample, a
cross-sectional tree can befit for the residuals of theE-MELS (seeEquation (7)). Second, given that
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the tree is known, dummy variables can be used to represent the tree in the E-MELS, and the above
described E-MELS algorithm can be used to obtain an estimate of the elements in γ . These steps
can be iterated until the log-likelihood of the E-MELS has converged. Note that in principle, fitting
the tree in Step 1 of the algorithm can be achieved with any tree algorithm that has been proposed
(Kuhn & Johnson, 2013; Hastie et al., 2009). We use the CART (classification and regression
tree) algorithm as implemented in the R package rpart in our illustration, which selects split
variables and split points based on the sum of the squared prediction errors. An alternative would
be to employ conditional inference trees (Hothorn et al., 2006; Kuhn & Johnson, 2013) that use
significance tests (i.e., their p values) to select the split variables and split points. However, as we
do not know how this approach performs in the case of hierarchical data, we opt for the CART
algorithm (see the real-data example section for details on the implementation of the algorithm).

4. Illustration I: Real-data example

We will now demonstrate the models we suggested above with a first example that uses real
data from the FLIP study. FLIP is a daily diary study in which about 100 individuals were asked
to complete state measures of personality, affect, and motivation for 82 consecutive days. Prior
to the experience sampling part of the study, all participants filled out a number of additional
measures referring to affect, life satisfaction, personality, etc. The goal of the following analyses
is to use these measures to forecast a person’s nervousness on the next day.

4.1. Sample, Variables, and Data Preparation

We first describe the sample and the variables that we used in the different models. We also
briefly explain how we prepared the data.

Sample For this illustration, we used data from I = 85 participants whose average number of
completed state surveys was M = 76.9 (SD = 7.14, Min = 33, Max = 82). There is little guidance
on how to split the sample into a training and a test sample. Here, we split the sample into I1 = 64
individuals (about 75%) and I2 = 21 individuals. The observations of the first group of individuals
for all time points except the last were used as the training data for all models. All other data was
used as test data to evaluate predictive performance.

Variables and data preparation We used the nervousness ratings as the outcome variable.
For these ratings, participants were asked to retrospectively appraise their behavior each day
with regard to the item “I was nervous.” Ratings had to be made on a 6-point Likert-type scale
ranging from 1 (not at all) to 6 (very). We did not transform the data from this variable prior
to the computations. A number of time-varying and time-constant predictors were included in
the prediction models. Time-varying predictors were participants’ daily ratings of the adjectives
sociable, creative, friendly, organized, and self-esteem. These items were measured each day, and
the ratings had to be made on the same 6-point Likert-type scale as the nervousness ratings. In
addition, we included the day of the week (i.e., Monday, Tuesday, etc.), the temperature on a
specific day (in Celsius), and the amount of rainfall (in milliliters). We person-mean-centered the
ratings of the five adjectives prior to the analyses. The person means were included in the models
as time-constant predictors. We also included gender, age, trait measures of positive and negative
affect (measured with three and four items, respectively, see Watson et al., 1988), life satisfaction
(measured with five items, see Glaesmer et al., 2011), and participants’ values on the power
motive, achievement motive, affiliation motive, intimacy motive, and fear motive (each assessed
with three items, see Schönbrodt &Gerstenberg, 2012). For the Lasso mixed-effect model and the
Lasso E-MELS, we z-standardized the 23 predictors prior to computing the two models. In the
case of the time-varying variables, standardization was performed after we person-mean centered
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the variables. We used the standard deviation of each variable’s values across all participants for
standardization.

4.2. Models

In a first step, we fit the longitudinal mixed-effect model and the E-MELS to the data of the
whole sample. This shows us the results that would be obtained, regardless of any predictions, if
the covariance structure of the data is made more complex. For better comparability, we estimated
themixed-effectmodel with a first-order autocorrelation structure. Themodel was estimated using
the R package nlme and the lme function (Pinheiro et al., 2020). To ease comparisons with the
E-MELS, we used an ML approach (not the restricted maximum likelihood default) to obtain
the model parameters. The parameters of the E-MELS were obtained with an ML approach (see
above). The integrals were approximated by an AGH procedure using 10 quadrature points. An
R package (called mels) was programmed for the estimation. We provide the R codes in the
accompanying OSF project (https://osf.io/53scf/).

Six models were fit to the training data to build the prediction model. The first model was
a longitudinal mixed-effect model with a first-order autocorrelation structure, and the second
model was the E-MELS. Both were implemented as described above. The third model was a
longitudinal mixed-effect model with a Lasso penalty. This model was estimated with the package
glmmLasso and the function with the same name (Groll, 2017). We used the BIC to select the
optimal lambda value for this model, because using the BIC is recommended by the authors of the
package. Specifically, the model was fit to a grid of 50 lambda values ranging from 0 to 500, and
the lambda with the smallest BIC was selected as the optimal value. To accelerate convergence,
the resulting coefficients from the prior lambda value were used as starting values for the next run.
We note that glmmLasso does not allow an autocorrelation parameter to be incorporated into the
model and this may affect the selection of the regularization parameter. This should be considered
when interpreting the results of the model. To obtain the predicted values for the selected model,
we fitted a standard mixed-effect model including only the predictors with nonzero coefficients.
This procedure is recommended in the literature (see, e.g., Groll & Tutz, 2014; Schelldorfer et al.,
2011) as it provides more unbiased parameter estimates (especially for the variance components).

The fourth model was the Lasso E-MELS. The model was estimated using the ML algorithm
described in the introduction. It is yet unknown whether model selection based on the AIC versus
BIC performs better for determining the optimal lambda value, which is why we report the results
based on both criteria. We determined λ with the same procedure as described for the Lasso
mixed-effect model. The predicted values were also obtained in the same way as described for
the Lasso mixed-effect model, with the exception that we estimated an E-MELS instead of the
standard mixed-effect model. The fifth model was a RE-EM tree that we fit with the REEMtree
function from the REEMtree package (Sela& Simonoff, 2011). This function alternates between
estimating a tree and estimating a mixed-effect model until it converges. In REEMtree, the tree is
estimated using the rpart function that implements the CART algorithm (Therneau&Atkinson,
2019), and the growth model is estimated with the lme function. For the tree algorithm, we used
the default values of REEMtree, that is, the complexity parameter was defined to be at least
cp = 0.001, and the minimum number of observations that must exist within a node for a split
was set to at least 20. After the initial tree was formed, it was pruned by 10-fold cross-validation.
Finally, the sixth model was an E-MELS tree. To determine this model, we proceeded analogously
to theREEMtree functionwith the difference that the algorithmalternated between estimating the
tree and estimating the E-MELS instead of the longitudinal mixed-effect model. When estimating
the tree,we used the same default values as described for theRE-EM tree.Wehave not encountered
any convergence problems for any of the six models. All functions needed to compute the models
and the data are available in the accompanying OSF project (see https://osf.io/53scf/).
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4.3. Predictive Performance

Weused eachmodel’s result to forecast the individuals’ nervousness during their last available
observation (i.e., a one-step-ahead forecast). For the 64 individuals in the training sample, we used
Equation (4) to compute theTask1 forecast. In the case of theE-MELS,wefirst computed a person-
specific autocorrelation parameter using Equation (14) by employing the empirical Bayesian
estimate of ιi (seeHedeker&Nordgran, 2013; Skrondal&Rabe-Hesketh, 2009), for the formulas).
The second group of individuals was used to obtain forecasts for prediction Tasks 2 and 3. For Task
2, we used the fixed-effect estimates obtained in the training sample to forecast the last observation
for each of the 21 individuals. For Task 3, we used all observations of the 21 individuals except the
last alongwith themodel parameter to obtain the randomeffect estimates for these individuals. The
resulting values were then used with Eq. (4) and/or Eq. (14) (in the case of the E-MELS models)
to predict the last observation. We used the mean squared error (MSE) to compare the predictive
accuracy of the models. The MSE was obtained by computing the squared differences between
the observed values and the model’s predictions. Then, the mean of these squared residuals was
computed. As a measure of predictive precision, we also calculated the average standard deviation
of the forecast errors. To this end, we first used Eq. (10) or Eq. (12) to obtain a variance estimate
for the error of a specific forecast. After taking the root of the resulting value, we averaged these
standard deviations for eachmodel and prediction task.We do not report the forecast error standard
deviation for the mixed-effect model tree or the E-MELS tree, because Eqs. (10) and (12) cannot
be used for these two models and, to our knowledge, there is no established approach to obtain
the forecast error variance (or standard deviation) for trees in case of hierarchical data.

4.4. Results

Table 1 shows the parameter estimates of the standard longitudinal mixed-effect model and
the standard E-MELS. The table also contains the log-likelihood values, the AIC, and the BIC.
The fixed-effect coefficient estimates were very similar across the two models such that seven
predictors had weights that were significantly different from zero when we applied the conven-
tional significance value of .05. Comparing the longitudinal mixed-effect model with the E-MELS
showed that people differed in the amounts of within-person variance they had. The mean vari-
ance estimate was exp(0.06) = 1.07, and the variance of the within-person variance terms was
φ2

ω = 0.20. Interestingly, there were only minimal between-person differences with regard to the
autocorrelation parameter: The mean autocorrelation parameter was atanh(0.19) = 0.19, and the
variance was φ2

ι = 0.02. A likelihood-ratio test showed that the E-MELS fit the data better than
the standard longitudinal mixed-effect model, χ2 = 479.5, d f = 5, p < 0.01.

In the second step, we estimated the prediction models using the training data and then
evaluated the predictive performance of the models using the test data. Table 2 shows the MSE
and the average standard deviation of the forecast errors (called σ̂F ) for the sixmodels for the three
different prediction tasks. For all methods, the MSE was lowest when we used the model for the
task of predicting the nervousness of persons for whom past observations are available and these
persons were also used to determine the prediction model (i.e., Task 1). TheMSEwas comparable
for the two other two tasks (i.e., Task 2 and Task 3). The standard deviation of the forecast errors
was lower for the two tasks which used past observations of the persons to compute the forecast
(i.e., Task 1 and Task 3) compared to the prediction task which did not use prior observations (i.e.,
Task 2).

As can be seen in Table 2, the predictive accuracy (i.e., the MSE) of the mixed-effect model
hardly differed from the accuracy of the E-MELS. Thus, the additional consideration of interindi-
vidual differences in within-person variance and within-person autocorrelation did not seem to
improve the predictions when we compare these two models. Also, the predictive accuracy of
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the mixed-effect Lasso did not differ from the performance of the former two models. The regu-
larization parameter associated with this model was λ = 110. Furthermore, the weights of three
predictors were set to zero (see Table 2), the log-Likelihood was -7270.92, and the BIC was
14745.5. For the E-MELS Lasso, the regularization parameter was λ = 40 when we use the BIC
for model selection. When we used the AIC (see Fig. 2 for a plot of the BIC or the AIC, respec-
tively, against λ), the regularization parameter was also λ = 40. The selected model contained
twelve predictors (see Table 2). The log-Likelihood of this model was −7096.99, the AIC was
14235.9, and the BIC was 14372.2. With regard to the accuracy of the predictions, we found that
this model showed the worst performance for Task 1. For Tasks 2 and 3, the performance was
similar to the mixed-effect model, the E-MELS, and the mixed-effect Lasso. Finally, the results
concerning predictive precision showed that the average standard deviation of the forecast errors
was lower for both E-MELS models as compared to the two mixed-effect models.

With regard to the two models based on trees, we found that the mixed-effect model tree
resulted in 24 terminal nodes and a log-Likelihood value of −7222.28. For prediction Task 1,
the predictive performance in terms of accuracy of this tree was similar to the performance of
the other models. However, worse performance was obtained for the second and the third task
(see “Appendix C” for a plot of the estimated E-MELS tree). The log-Likelihood value of the
tree was −7032.93, it consisted of seventeen terminal nodes, and negative affect, self-esteem,
friendliness, creativeness, organized, and daily temperature were predictive of daily nervousness.
Finally, the predictive performance of the E-MELS tree was better than the performance of mixed-
effect model tree for all three types of prediction tasks. Compared with the remaining models, its
performance was worse for Task 2 but better for Task 3.

In summary, the standardmodels showed the best predictive performance in terms of accuracy
across all three tasks.Altogether, however, the predictive power of themodelswas low tomoderate,
whichmay indicate that the predictors used in this example were not sufficient to comprehensively
predict people’s daily nervousness. Another explanation could be that we used a single item
as the outcome variable, so that the low predictive performance might be due to measurement
error. However, an intra-class correlation coefficient of 0.27 suggests that at least some of the
between-person differences in nervousness are reliably measured with the item. The generally
low predictive accuracy could also explain why the consideration of interindividual differences
in the level-1 variance and in the autocorrelation did not lead to a stronger improvement in the
predictive performance. Another explanation could be that the individuals only slightly differed
with regard to their autocorrelation, which directly affects the forecast (see Eq.4). It is possible
that stronger effects on predictive accuracy would be observed in data with larger differences
between the subjects. Finally, we found—at least when we compared the standard models with
the Lasso models—that the consideration of interindividual differences in the autocorrelation and
in the Level 1 residual variance led to more precise forecasts.

5. Illustration II: Simulated-data example

In the real-data example, there were little differences in predictive performance between
the six approaches. We now report the results for a simulated-data example to provide a clearer
demonstration of the differences between the models.

5.1. Data and Sample

We simulated data including nine predictors. Three predictors were related to the outcome
variable and six predictors were not associated with the outcome. All predictors were drawn
as independent, uniformly distributed random variables on the interval [0, 10]. Using the three
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Table 1.
Results for the real-data example across four models.

Mixed-effect model E-MELS

Standard Lasso Standard Lasso

Predictors
Intercept 1.59 (0.71) 1.29 1.72 (0.68) 1.72
Age 0.01 (0.01) 0.02 0.01 (0.01) –
Sex 0.11 (0.16) 0.21 0.11 (0.15) –
Positive affect −0.24 (0.18) −0.43 −0.21 (0.16) 0.03
Negative affect 0.23 (0.08) 0.12 0.22 (0.08) 0.28
Life satisfaction 0.08 (0.06) 0.02 0.05 (0.06) −0.01
Power 0.03 (0.07) 0.05 0.03 (0.06) –
Achievement 0.07 (0.07) 0.17 0.03 (0.07) –
Affiliation 0.29 (0.27) 0.64 0.29 (0.26) –
Intimacy −0.03 (0.08) −0.09 0.01 (0.08) –
Fear −0.04 (0.07) −0.09 −0.05 (0.07) –
Sociable (PM) −0.23 (0.14) −0.27 −0.21 (0.14) –
Creative (PM) 0.36 (0.09) 0.40 0.32 (0.09) 0.31
Friendly (PM) 0.16 (0.17) 0.44 0.09 (0.17) –
Organized (PM) 0.00 (0.13) −0.17 0.02 (0.13) –
Self-esteem (PM) −0.46 (0.11) −0.53 −0.38 (0.10) −0.37
Sociable 0.03 (0.02) – 0.05 (0.01) 0.04
Creative 0.01 (0.02) −0.01 0.01 (0.01) –
Friendly −0.04 (0.02) −0.01 −0.03 (0.02) −0.02
Organized 0.05 (0.02) 0.05 0.05 (0.02) 0.06
Self-esteem −0.16 (0.02) −0.17 −0.15 (0.02) −0.16
Weekday −0.04 (0.01) −0.04 −0.04 (0.01) −0.03
Temperature 0.00 (0.01) – 0.01 (0.00) 0.01
Amount rainfall 0.01 (0.01) – 0.01 (0.00) 0.01
Intercept Variance 0.20 0.18 0.21 (0.04) 0.23
Residual Variance
Intercept 1.23 1.19 1.07 (1.05) 1.02
Variance – – 0.20 0.20
Autocorrelation –
Intercept 0.18 0.20 0.19 (0.02) 0.21
Variance – 0.02 0.02
log-Likelihood −9946.19 −7270.92 −9706.46 −7096.99
AIC 19946.40 14589.84 19476.92 14235.98
BIC 20129.58 14745.50 19694.02 14372.18

PM = Person mean. For the fixed-effect coefficients, values in parentheses denote standard errors and
coefficients in bold are significant (p < .05). Not shown are the covariance parameters between the random
effects. For the Lasso models, we show the parameters of the selected model for the training data. Note that
we do not report standard errors for these parameters as these are not trustworthy. For the Lasso mixed-effect
model, the regularization parameter was λ = 110 and for the Lasso E-MELS the parameter was λ = 40.
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Table 2.
Results concerning the mean squared error (MSE, standard errors in parentheses) and the standard deviation of the forecast
error (σ̂F ) of a one-step-ahead forecast across the six models for the real-data example.

Mixed-effect model E-MELS

Measure Task Standard Lasso Tree Standard Lasso Tree

MSE 1 0.84 (0.15) 0.85 (0.15) 0.82 (0.13) 0.89 (0.15) 0.94 (0.16) 0.90 (0.17)
2 1.37 (0.35) 1.41 (0.36) 2.61 (0.79) 1.40 (0.36) 1.42 (0.37) 1.60 (0.41)
3 1.41 (0.37) 1.41 (0.37) 2.20 (0.63) 1.37 (0.34) 1.40 (0.35) 1.16 (0.31)

σ̂F 1 1.08 1.08 – 1.04 1.04 –
2 1.18 1.18 – 1.13 1.13 –
3 1.08 1.09 – 1.04 1.03 –

Computation Time (in sec) 2.71 18.61 9.41 131.9 2926.5 1100.9

Task 1 refers to predictions for a new time point for persons that were used to build the prediction model.
Task 2 refers to predictions for new persons without considering prior data, and Task 3 refers to predictions
for new persons with considering prior data.

relevant predictors, we generated an outcome variable that conforms to a regression tree with
four leaves. We used the following rules to generate the tree (see Hajjem et al. 2011, for a similar
approach):

Leaf 1: If x1i t ≤ 5 and x2i t ≤ 5, then yit = 10 + τi + εi t

Leaf 2: If x1i t ≤ 5 and x2i t > 5, then yit = 11 + τi + εi t

Leaf 3: If x1i t > 5 and x3i t ≤ 5, then yit = 12 + τi + εi t

Leaf 4: If x1i t > 5 and x3i t > 5, then yit = 13 + τi + εi t (22)

where εi t is an element of person i’s Level 1 residual term vector εi . This vector was drawn from
a multivariate normal distribution (see Equations (13) and (14)) with s0 set to −0.67 and r0 set
to 0.26. Furthermore, the covariance matrix of the random effect terms, τi , ωi , and ιi was a 3 x 3
matrix with diagonal elements 1.0, 0.5, and 0.5. The off-diagonal elements were set to zero (i.e.,
the random effects were uncorrelated). Thus, in this example, persons differ in their levels, in the
within-person variance, and in the autocorrelation.

We generated data for I = 200 participants with Ti = 51 time points for all i . The first 50
measurements for the first 100 persons were used as the training sample. We used the remaining
time points and persons to measure the predictive performance of a one-step-ahead forecast for
the three prediction tasks in an analogous way as in the real-data example.

5.2. Results

We fitted the same six models with the same model specifications as in the real-data example.
For the mixed-effect model, the Lasso mixed-effect model, the E-MELS, and the E-MELS Lasso,
we not only included the nine predictor variables but also interaction terms between the first and
the second and the first and the third predictor variables, because these second-order terms are
represented in the tree. This allows us to examine whether the Lasso model selects the correct
variables.

Figure 3 shows that the E-MELS tree accurately detected the four terminal nodes and that it
selected the correct splitting variables and split points. The same result emerged for the mixed-
effect model tree. Table 3 presents the parameter estimates for the non-tree models. The E-MELS

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 08:37:06, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


522 PSYCHOMETRIKA

Lasso (using the AIC) and the mixed-effect Lasso kept the correct number of predictor variables.
With regard to predictive accuracy (see Table 4), we found that the MSE was lower for the E-
MELS approaches for prediction Tasks 1 and 3 but not for Task 2. However, and as expected,
the best performance was obtained by the E-MELS tree. Furthermore, we also found that the
average standard deviation of the forecast errors was lower for the standard E-MELS and the
Lasso E-MELS, as compared to the two respective mixed-effect models. Thus, accounting for
interindividual differences in the within-person variance and in the autocorrelation can indeed
significantly improve the quality of predictions.

6. Discussion

The increasing availability of intensive longitudinal data has led to a number of method-
ological articles in which the longitudinal mixed-effect model was combined with some classic
machine-learning approaches such as Lasso regression and regression trees (e.g., Fan & Li, 2012;
Hajjem et al., 2011; Li et al., 2018; Schelldorfer et al., 2011, Sela & Simonoff 2012). In the present
article, we extended these earlier approaches by suggesting a combination of the E-MELS (a vari-
ant of the mixed-effect location-scale model, e.g., Hedeker et al., 2008; Hedeker et al., 2009;
Nestler, 2020; 2021) with a Lasso penalty and a regression tree. In contrast to the earlier models,
in addition to the level, our extensions also allow individuals to have differences in the within-
person variance and the autocorrelation. Besides the description of the models, we also explained
how to estimate the models, we implemented all the algorithms in R, and we illustrated how to
use them by applying them to a real data and a simulated data set.

One motivation for combining the models was that by considering the three sources of
interindividual differences (i.e., the intercepts, the residual variance, and the autocorrelation),
the predictive performance would improve in comparison with the other models. This should
be especially true when predicting values for people for whom longitudinal data are available
and considered in the prediction (in contrast to individuals for whom no past observations are
available). The results of the simulated (and partly the real) data example and a further simulation
(see “Appendix A”) supported our assumption by showing that the E-MELS and its extension
had a better predictive performance than the other approaches that did not incorporate all three
sources of variance. One interesting observation in our illustrative data example was that the
between-person variance of the autocorrelation was very small compared to the residual variance.
We find this result very interesting from a psychological perspective because, in the more applied
literature, the variance and the autocorrelation are considered two important components of a
person’s stability (Jahng et al., 2008; Ram & Gerstorf, 2009). At present, however, it is unclear
whether the two components are equally important and how independent these two components
actually are.We believe that future research should investigate this question more closely by using
the E-MELS, as this model allows for estimating the amount of between-person differences in
the two stability components and their relationship (e.g., the covariance φωι).

This would also be interesting from a more predictive standpoint. In our data examples
(and the simulation), we examined whether considering between-person differences in both the
residual variance and the autocorrelation improves the accuracy and the precision of the forecasts.
An interesting question for future research is to find out which of the two types of individual
differences is more central to a forecast’s accuracy or precision. For example, Equation 4 shows
that the autocorrelation directly affects accuracy. However, person-specific variances may affect
forecast accuracy indirectly, because omitting interindividual differences in the residual variance
may lead to biases in the estimates of the elements in � which may in turn affect the estimates
of a person’s random effects. Future research should therefore look at whether accounting for
interindividual differences in autocorrelation always has stronger effects on forecasting accuracy
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Table 3.
Results for the simulated-data example across four models.

Mixed-effect model E-MELS

Standard Lasso Standard Lasso

Predictors
Intercept 9.11 9.07 9.18 9.18
x1 0.31 0.31 0.30 0.30
x2 0.21 0.21 0.19 0.19
x3 −0.04 −0.04 −0.04 −0.04
x4 −0.01 – −0.01 –
x5 0.01 – 0.01 –
x6 0.01 – 0.01 –
x7 0.01 – 0.01 –
x8 −0.01 – −0.01 –
x9 −0.01 – 0.01 –
x1x2 −0.04 −0.03 −0.02 −0.02
x1x3 0.02 0.02 0.02 0.03
Intercept variance 1.13 1.13 0.94 0.94
Residual variance
Intercept 1.70 1.70 1.08 1.08
Variance – – 0.20 0.20
Autocorrelation
Intercept 0.25 0.25 0.22 0.22
Variance – – 0.27 0.28

Not shown are the standard errors of the parameters and the covariance parameters between the random
effects. For the Lasso models, we show the parameters obtained with the final model in which the outcome
was fitted to the selected variables. For the Lasso mixed-effect model, the regularization parameter was λ =
320 and for the Lasso E-MELS the parameter was λ = 220.

Table 4.
Results concerning the mean squared error (MSE, standard errors in parentheses) and the standard deviation of the forecast
error (σ̂F ) of a one-step-ahead forecast across the six models for the simulated-data example.

Mixed-effect model E-MELS

Measure Task Standard Lasso Tree Standard Lasso Tree

MSE 1 1.44 (0.24) 1.45 (0.25) 1.01 (0.20) 1.21 (0.22) 1.20 (0.22) 0.81 (0.14)
2 2.61 (0.37) 2.59 (0.37) 2.21 (0.37) 2.62 (0.37) 2.61 (0.37) 2.22 (0.37)
3 1.54 (0.22) 1.56 (0.22) 1.15 (0.18) 1.20 (0.17) 1.21 (0.17) 0.67 (0.10)

σ̂F 1 1.28 1.29 – 1.09 1.09 –
2 1.65 1.66 – 1.43 1.42 –
3 1.29 1.29 – 1.09 1.08 –

Computation time (in sec) 0.89 8.34 1.82 85.3 519.4 101.1

Task 1 refers to predictions for a new time point for persons that were used to build the prediction model.
Task 2 refers to predictions for new persons without considering prior data, and Task 3 refers to predictions
for new persons with considering prior data.
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than accounting for interindividual differences in the residual variance (similarly, butwith reversed
roles, this could be examined for prediction precision). Our work also raises a number of other
interesting questions and topics for future methodological research. To begin with, simulation
research is needed to compare the predictive performance of the suggested models in different
situations. For instance, the influence of interindividual differences in the Level 1 variance and
the autocorrelation on predictive performance must be investigated using different combinations
of population parameters (e.g., different average autocorrelation values and different values of the
autocorrelation variance). Furthermore, although modern data collection procedures allow us to
measure a fair amount of longitudinal data for a large number of different individuals, we believe
that it is important to investigate how many participants and measurements within a participant
are necessary to make a good prediction. These simulations could also be used to investigate
whether and how the reliability of the predictors influences the quality of the predictions.

Furthermore, in our extensions, we assumed that the time intervals between themeasurements
were equally spaced. This assumption is justified inmany intensive longitudinal studies, including
our example with real data, but there are also studies in which the time intervals are not equally
spaced. It would be interesting to examine how such a misspecification affects the predictive
performance of the models introduced here, because it may lead, among other things, to a biased
estimate of the autocorrelation or the Level 1 residual variance parameter. One could also consider
alternative serial correlation structures—such as the exponential serial correlation function (Diggle
et al., 2002; Vansteelandt & Verbeke, 2016)—that do not rest on the assumption of equally spaced
time intervals in the combined E-MELS models. Finally, another assumption we made was that
X i,Ti+H is known to compute the H -step forecast. This assumption may be more or less justified
dependingon the type of predictors contained in X i,Ti+H . It is usually not problematic in the case of
time-constant variables that only need to be recorded once for each person and for variables coding
time or seasonal variables that consist of predefined values (e.g., weekdays). For time-varying
contemporaneous or lagged predictors, the assumption is more problematic, and if the values are
not available for time point Ti + H , one has to estimate them to calculate the forecast. Different
methods exist for this Hyndman & Athanasopoulos, 2018, and we think that it is interesting to
investigate the extent towhich they influence themagnitude of the prediction error in the E-MELS.

With regard to Lasso E-MELS, it would be interesting to combine it with other penalty terms
such as the ridge penalty or the elastic net penalty (James et al., 2013; Scharf & Nestler, 2019).
This might be especially interesting from a more explanatory perspective as both have been found
to perform well when the predictors are highly correlated, which in turn leads to untrustworthy
significance tests. Furthermore, in the suggested combinations, the penalty term referred to the
fixed effects only. Therefore, another interesting task for future research would be to extend
this to the random-effect covariance matrix. This extension will also be very interesting—and
challenging—from a computational perspective. Finally, in our illustrative example, Lasso E-
MELS was not sensitive to the information criterion used to select the regularization parameter
λ. However, we believe that it would be interesting to more thoroughly examine the performance
of the AIC and BIC for model selection and to further compare them to the performance of
cross-validation.

Regarding the E-MELS tree, another interesting extension would be to combine the E-MELS
with a random forest instead of a single regression tree (Kuhn & Johnson, 2013). Random forests
usually have a better predictive performance than single regression trees in the context of cross-
sectional data. We believe that it will be an interesting task for future research to examine whether
this generalizes to intensive longitudinal data and the E-MELS. Finally, it would also be of great
interest to compare the predictive performance of the Lasso E-MELS and the E-MELS tree to
other models such as the lagged dependent variable multilevel model (Asparouhov et al., 2018).

There are also a number of interesting research questions on the algorithmic level. In our
implementation, we used an AGH procedure to numerically approximate the integrals. How-
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Figure 2.
Results for the AIC/BIC of the E-MELS Lasso for the training data as a function of the regularization parameter λ.

Figure 3.
Estimated E-MELS tree for the simulated training data.

ever, the computation of this approximation can be slow, and we believe that future research
should examine other approximations (e.g., the Laplace approximations) or other algorithms
(e.g., a Monte Carlo EM algorithm, see Booth & Hobert, 1999, or variational approximations, see
Ormerod & Wand, 2010). Alternative algorithms have also been proposed for mixed models that
include a penalty term Groll & Tutz, 2014). Again, an interesting task for future research would
be to implement and compare these different approaches for the Lasso E-MELS. In the case of
the E-MELS tree, we used the CART algorithm to estimate the tree. However, CART suffers from
several problems, such as favoring predictors with more values, that is, variables that have more
distinct numerical values or variables with fewer missing values. Although this seems to be more
of a problem when one uses random forests (Kuhn & Johnson, 2013), we nevertheless believe
that future research should examine conditional inference trees as an alternative (Hothorn et al.,
2006).
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So far, all our research questions relate to themixed-effectmodel and our proposed extensions.
In our opinion, however, another important question for future research is to compare the predictive
performance of the mixed-effect models with other forecasting models, such a time series model
for a single individual. For instance, mixed-effect models may outperform individual time series
models in terms of prediction in some situations, because they can take the same time-varying
variables into account as a time series model (e.g., lagged variables), but in addition, they can also
use time-constant and/or person-level variables. The inclusion of such further variables should
improve the quality of predictions if the variables are indeed predictive of the outcome and if the
predictors were sampled representatively. Another potential advantage of mixed-effect models is
that they use information from all individuals to estimate the fixed effects of, for example, the time-
varying predictor variables. Thus, when the data collected for a specific person is rather sparse and
not representative of the person’s true stream of data, this person’s weight might still be estimated
with an acceptable accuracy. However, the relative performance of mixed-effect versus time series
models will depend on a number of issues (e.g., the number of time points). Nevertheless, in our
opinion it is interesting to compare the models in these different data situations (see Afshartous
& de Leeuw, 2005.)

To summarize, this paper proposed a combination of a regression tree and a Lasso regression
with an extended version of the MELS. We described the combinations, and we showed how
to estimate the model’s parameters. We believe that the described and proposed models will be
of interest to applied researchers. Furthermore, our presentations raise a number of interesting
research questions, the solutions of which promise further interesting model developments.
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Appendix A

We conducted a small simulation study to investigate whether an extension of the mixed-effect
model that considers between-person differences in the Level 1 variance and the autocorrelation
(i.e., the E-MELS) yields more precise forecasts than a standard longitudinal mixed-effect model.
To this end, we simulated data from a random-intercept E-MELS in which person i’s outcome
value at time point t are a function of the person’s value in a time-varying variable Xit , a time-
constant variable Wi , and their interaction. Specifically, the Level 1 and Level 2 equations are
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(see Afshartous & de Leeuw, 2005 for a similar approach):

L1: Yit = γ0i + γ1i Xit + εi t

L2: γ0i = β00 + β01Wi + τi

γ1i = β10 + β11Wi

σ 2
εi

= exp(s0 + ωi )

ρi = tanh(r0 + ιi ) (23)

where β00, β01, β10, and β11 were all set to 1. Both Xit andWi were simulated as standard normal
random variables. The covariance matrix of the random effect terms, τi , ωi , and ιi , was

� =
⎡
⎣
1.00 −0.20 0.20

0.50 0.10
0.50

⎤
⎦ . (24)

We set s0 (= -0.67) and r0 (= 0.26) in such a way that when we fit a standard mixed-effect model
to data generated from this population model, the (average) Level 1 residual variance is σ 2

ε = 1
and the (average) autocorrelation is ρ = 0.3. The ICC then approximately corresponds to 0.50,
which we consider to be a typical value for intensive longitudinal data (Snijders & Bosker, 2012).
The number of persons in the training sample was held constant at 100 subjects in a replication.
We varied the number of time points by drawing either 25 or 50 measurements per subject in the
training sample. The R package mvtnorm (Genz et al., 2019) was used to generate the population
and to draw 500 samples from the population in each of the two simulation conditions. Finally,
a standard longitudinal mixed-effect model with a AR1 structure and the E-MELS were used to
estimate the model parameters within a replication. We used the nlme package (Pinheiro et al.,
2020) for the longitudinal mixed-effect model.
We examined predictive performance for the three prediction tasksmentioned in themain text. For
prediction Task 1, we simulated another data point for each person in the training sample (i.e., a
26th or a 51stmeasurement). This true valuewas comparedwith a forecast thatwe calculated using
Eq. (4). In the case of the E-MELS, person-specific autocorrelation parameters were computed
with the empirical Bayesian estimates of a person’s random effect estimate for the autocorrelation
ι̂i (see Eq.14). For prediction Tasks 2 and 3, we generated 100 test persons in each replication with
26 or 51 measurements, respectively. For Task 2, we used the fixed-effect estimates to compute
the forecast for the 26th or 51st time point, respectively, for each of the 100 test persons (i.e., we
used the formula ŷi,H = X i,H β̂). For Task 3, the first 25 or 51 measurements, respectively, were
used to estimate the random effects and the Level 1 residuals for the 100 test persons given the
parameter estimates of the training sample. We then used Eq. (4) and/or Eq. (14) to compute the
forecast and Eq. (10) to compute the standard deviation of the forecast error (i.e., the square root
of a forecast error’s variance; Frees, 2004, Chapter 4).
For all three predictions tasks, 100 forecasts are available in each replication. We computed
the mean squared error (MSE) of these one-step-ahead forecasts to have a measure of prediction
accuracy. Specifically, theMSEwas computed by taking the squared difference of the forecast and
the true outcome value.We then computed the average of these values across all replications in the
respective simulation condition. As a measure of prediction precision, we used the average of the
forecast errors’ standard deviations across all replications in the respective simulation condition
(σ̂F ). Finally, we also computed the average parameter estimates across the 500 replications to
examine the performance of the E-MELS with regard to estimating the population parameters.
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Table 5.
Average parameter estimates depending on number of measurements (T ).

T β̄ φ2
τ φ2

ω φ2
ι s0 r0

25 0.999 0.981 0.497 0.493 −0.655 0.271
50 1.002 0.982 0.506 0.490 −0.654 0.265

β̄ is the average across all four fixed-effect coefficients (that were all set to 1).

Table 6.
Mean squared error (MSE) of prediction and standard deviation of the forecast error (σ̂F ) for a one-step forecast depending
on the model and the number of training time points (T ).

Mixed-Effect Model E-MELS

Measure T Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

MSE 25 1.123 2.526 1.183 0.840 2.521 0.871
50 1.139 2.407 1.176 0.805 2.403 0.832

σ̂F 25 1.099 1.561 1.101 1.019 1.250 1.016
50 1.102 1.554 1.107 1.020 1.249 1.023

Task 1 refers to predictions for persons that were used to build the prediction model, Task 2 refers to
predictions for new persons without considering prior data, and Task 3 refers to predictions for new persons
with considering their prior data.

Table 5 shows that the E-MELS estimates were very close to the true population parameters.
Table 6 reports the models’ MSE and σ̂F for the three prediction tasks. In both conditions, the
MSE for the E-MELS was lower than the MSE for the mixed-effect model for Task 1 and Task 3.
Almost no differences occurred for prediction Task 2. An explanation for the latter result is that
the fixed effects were also estimated in the standard model with little bias: The average estimate
was 0.999 in the case of 25 and 1.001 in the case of 50 measurements (true βs = 1). However, the
intercept variance was strongly biased in the standard model (true φ2

τ = 1). The average estimate
was 1.339 for 25 measurements and 1.218 for 50 measurements. With regard to σ̂F , the value was
close to the simulated (average) Level 1 residual variance in case of the E-MELS for Task 1 and
Task 3. For the mixed-effect model, this value was almost 0.10 units higher. A larger difference
was found for Task 2, which again could be explained by the biased estimation of the intercept
variance.

Appendix B

In this appendix, we briefly describe the algorithm for the Lasso E-MELS. Specifically, we used
an adapted version of an algorithm (called Approximate GLMMLasso) proposed by Schelldorfer
et al. 2014. To obtain the estimates of θ = (β, γ ), we minimize the following function:

QAGH
λ = −2logLE−MELS(θ) + λ

p∑
j=1

|β j | = f (θ) + λ

p∑
j=1

|β j |

where the superscript AGH indicates that the integrals in f are approximated byAGHquadrature.
Furthermore, let e j be the j th unit vector, s the sth iteration step, and θ (s) the parameters in this
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step. Furthermore, for the coefficients in β we use this notation:

β(s,s−1,βk ) = (β
(s)
1 , · · · , β

(s)
(k−1), βk, β

(s−1)
k+1 , · · · , β(s−1)

p )

β(s,s−1;k) = (β
(s)
1 , · · · , β

(s)
(k−1), β

(s−1)
k , β

(s−1)
k+1 , · · · , β(s−1)

p ).

The algorithm is given in Algorithm 1.

Algorithm 1: Lasso E-MELS algorithm

(0) Choose a starting value θ (0) = (β(0), γ (0))

repeat
(1) Estimate random effects v given θ (s−1) = (β(s−1), γ (s−1))

(2) Optimization of fixed-effects parameters β

for k = 1, ..., p do
(a) Calculate QAGH

λ (β(s,s−1;k), γ (s−1)|v̂)

(b) Quadratic approximation and inexact line search:

(i) Compute the second derivative h(s)
k

h(s)
k = ∂2

∂β2
k

f (β(s,s−1,βk ), γ (s−1)|v̂)|
βk=β

(s−1)
k

Check whether cmin ≤ h(s)
k ≤ cmax for cmin = 10−5 and cmax = 105, otherwise set

h(s)
k to cmin or cmax in order that the algorithm converges.

(ii) Calculate the descent direction d(s)
k

d(s)
k =

⎧⎪⎨
⎪⎩
median(

λ−∂ fβk /∂βk

h(s)
k

,−βk,
λ+∂ fβk /∂βk

h(s)
k

), if βk is penalized

−∂ fβk /∂βk

h(s)
k

, otherwise

where ∂ fβk/∂βk is the gradient of f (β(s,s−1,βk ), γ (s−1)|v̂)|
βk=β

(s−1)
k

.

(iii) Choose a step size α
(s)
k > 0 and set β(s,s−1;k+1) = β(s,s−1;k) + α

(s)
k d(s)

k ek such
that

QAGH
λ (β(s,s−1;k+1), γ (s−1)|v̂) ≤ QAGH

λ (β(s,s−1;k), γ (s−1)|v̂)

end
(3) Optimization of the remaining parameters γ . We use the gradient
f (β(s), γ (s−1)|v̂) and the R function nlminb for this.

until convergence
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Appendix C

See Fig. 4

Figure 4.
Estimated E-MELS tree for the training data with abbreviated variable names to improve readability (M = person mean,
GM = person mean centered). na = negative affect, se = self-esteem, creative = creativeness, friendly = friendliness,
organized = organized, temp = temperature.

References

Afshartous, D., & de Leeuw, J. (2005). Prediction in multilevel models prediction in multilevel models. Journal of
Educational and Behavioral Statistics, 30, 109–139. https://doi.org/10.3102/10769986030002109.

Asparouhov, T., Hamaker, E. L., &Muthén, B. O. (2018). Dynamic structural equationmodels dynamic structural equation
models. Structural EquationModeling: AMultidisciplinary Journal, 25, 359–388. https://doi.org/10.1080/10705511.
2017.1406803.

Baird, B. M., Le, K., & Lucas, R. E. (2006). On the nature of intraindividual personality variability: Reliability, validity,
and associations with well-being. Journal of Personality and Social Psychology, 90, 512–527. https://doi.org/10.
1037/0022-3514.90.3.512.

Baird, B. M., Lucas, R. E., & Donnellan, M. B. (2017). The role of response styles in the assessment of intraindividual
personality variability. Journal of Research in Personality, 69, 170–179. https://doi.org/10.1016/j.jrp.2016.06.015.

Bates, D. M. (2010). lme4: Mixed-effects modeling with R. http://lme4.r-forge.r-project.org/book/.
Booth, J. G., & Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte

Carlo EM algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61, 265–285. https://
doi.org/10.1111/1467-9868.00176.

Chi, E. M., & Reinsel, G. C. (1989). Models for longitudinal data with random effects and AR(1) errors. Journal of the
American Statistical Association, 84, 452–459. https://doi.org/10.2307/228992.

Diggle, P., Heagerty, P., Liang, K.-Y., & Zeger, S. (2002). Analysis of longitudinal data. Oxford: Oxford University Press.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 08:37:06, subject to the Cambridge Core terms of use.

https://doi.org/10.3102/10769986030002109
https://doi.org/10.1080/10705511.2017.1406803
https://doi.org/10.1080/10705511.2017.1406803
https://doi.org/10.1037/0022-3514.90.3.512
https://doi.org/10.1037/0022-3514.90.3.512
https://doi.org/10.1016/j.jrp.2016.06.015
http://lme4.r-forge.r-project.org/book/
https://doi.org/10.1111/1467-9868.00176
https://doi.org/10.1111/1467-9868.00176
https://doi.org/10.2307/228992
https://www.cambridge.org/core


S. NESTLER, S. HUMBERG 531

Fan, Y., & Li, R. (2012). Variable selection in linear mixed effects models. Annals of Statistics, 40, 2043–2068. https://
doi.org/10.1214/12-AOS1028.

Frees, E. W. (2004). Longitudinal and panel data. Cambridge: Cambridge University Press.
Fu, W., & Simonoff, J. S. (2015). Unbiased regression trees for longitudinal and clustered data. Computational Statistics

and Data Analysis, 88, 53–74. https://doi.org/10.1016/j.csda.2015.02.004.
Gasimova, F., Robitzsch, A., Wilhelm, O., & Hülür, G. (2014). A hierarchical Bayesian model with correlated residuals

for investigating stability and change in intensive longitudinal data settings. Methodology, 10, 126–137. https://doi.
org/10.1027/1614-2241/a000083.

Genz, A. , Bretz, F. , Miwa, T. , Mi, X. , Leisch, F. , Scheipl, F., & Hothorn, T. (2019). mvtnorm: Multivariate normal
and t distributions [Computer software manual]. https://CRAN.R-project.org/package=mvtnorm (R package version
1.0-11).

Geukes, K., Nestler, S., Hutteman, R., Dufner, M., Kuefner, A. C. P., Egloff, B., et al. (2017). Puffed up but shaky selves:
State self-esteem level and variability in narcissists. Journal of Personality and Social Psychology, 76, 662–676.
https://doi.org/10.1037/pspp0000093.

Geukes, K., Nestler, S., Hutteman, R., Kuefner, A. C. P., & Back, M. D. (2017). Trait personality and state variability:
Predicting individual differences in within-and cross-context fluctuations in affect, self-evaluations, and behavior in
everyday life. Journal of Research in Personality, 76, 662–676. https://doi.org/10.1016/j.jrp.2016.06.003.

Glaesmer, H., Grande, G., Braehler, E., & Roth,M. (2011). The German version of the satisfaction with life scale (SWLS).
European Journal of Psychological Assessment, 27, 127–132. https://doi.org/10.1027/1015-5759/a000058.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.
Groll, A. (2017). glmmLasso: Variable selection for generalized linear mixed models by L1-penalized estimation [Com-

puter software manual]. https://CRAN.R-project.org/package=glmmLasso R package version 1.5.1.
Groll, A., &Tutz, G. (2014). Variable selection for generalized linearmixedmodels by L1-penalized estimation. Statistical

Computing, 24, 137–154. https://doi.org/10.1007/s11222-012-9359-z.
Hajjem, A., Bellavance, F., & Larocque, D. (2011). Mixed effects regression trees for clustered data. Statistics and

Probability Letters, 81, 451–459. https://doi.org/10.1016/j.spl.2010.12.003.
Hamaker, E. L., Asparouhov, T., Brose, A., Schmiedek, F., & Muthén, B. (2018). At the frontiers of modeling intensive

longitudinal data: Dynamic structural equation models for the affective measurements from the COGITO study.
Multivariate Behavioral Research, 53, 820–841. https://doi.org/10.1080/00273171.2018.1446819.

Harlow, L. L., & Oswald, F. L. (2016). Big data in psychology: Introduction to the special issue. Psychological Methods,
21, 447–457. https://doi.org/10.1037/met0000120.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. New York: Springer.
Hedeker, D., Demirtas, H., & Mermelstein, R. J. (2009). A mixed ordinal location scale model for analysis of Ecological

Momentary Assessment (EMA) data. Statistics and Its Interface, 2, 391–401.
Hedeker, D., & Gibbons, R. D. (2006). Longitudinal data analysis. Hoboken: Wiley.
Hedeker, D., Mermelstein, R. J., Berbaum, M. L., & Campbell, R. T. (2009). Modeling mood variation associated with

smoking: An application of a heterogeneous mixed-effects model for analysis of ecological momentary assessment
(EMA) data. Addiction, 104, 297–307. https://doi.org/10.1111/j.1360-0443.2008.02435.x.

Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2008). An application of a mixed-effects location scale model for
analysis of ecological momentary assessment (EMA) data. Biometrics, 64, 627–634. https://doi.org/10.1111/j.1541-
0420.2007.00924.x.

Hedeker, D., & Nordgran, R. (2013). MIXREGLS: A program for mixed-effects location scale analysis. Journal of
Statistical Software, 52, 1–38. https://doi.org/10.18637/jss.v052.i12.

Hofmann, R., & Nestler, S. (2019). Fluctuations in personality: The FLIP and the FLUX study (Tech. Rep.). Münster
University of Münster.

Hothorn, T., Hornik, K.,&Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal
of Computational and Graphical Statistics, 15, 651–674. https://doi.org/10.1037/pspp0000015.

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice. New York: OTexts.
Jahng, S., Wood, P. K., & Trull, T. J. (2008). Analysis of affective instability in ecological momentary assessment: Indices

using successive difference and group comparison via multilevel modeling. Psychological Methods, 13, 354–375.
https://doi.org/10.1037/a0014173.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. New York: Springer.
Jiang, J. (2007). Linear and generalized linear mixed models and their applications. New York: Springer.
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York: Springer.
Leckie, G., French, R., Charlton, C., & Browne, W. (2014). Modeling heterogeneous variance-covariance compo-

nents in two-level models. Journal of Educational and Behavioral Statistics, 39, 307–332. https://doi.org/10.3102/
1076998614546494.

Li, Y., Wang, S., Song, P. X.-K., Wanf, N., Zhou, L., & Zhu, J. (2018). Doubly regularized estimation and selection in
linear mixed-effects models for high-dimensional longitudinal data. Statistical Interface, 11, 721–737. https://doi.
org/10.4310/SII.2018.v11.n4.a15.

McNeish, D. M. (2015). Using LASSO for predictor selection and to assuage overfitting: A method long overlooked
in behavioral sciences. Multivariate Behavioral Research, 50, 471–483. https://doi.org/10.1080/00273171.2015.
1036965.

Nestler, S. (2020). Modeling interindividual differences in latent within-person variation: The confirmatory factor level
variability model. British Journal of Mathematical and Statistical Psychology, 73, 452–473. https://doi.org/10.1111/
bmsp.12196.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 08:37:06, subject to the Cambridge Core terms of use.

https://doi.org/10.1214/12-AOS1028
https://doi.org/10.1214/12-AOS1028
https://doi.org/10.1016/j.csda.2015.02.004
https://doi.org/10.1027/1614-2241/a000083
https://doi.org/10.1027/1614-2241/a000083
https://CRAN.R-project.org/package=mvtnorm
https://doi.org/10.1037/pspp0000093
https://doi.org/10.1016/j.jrp.2016.06.003
https://doi.org/10.1027/1015-5759/a000058
https://CRAN.R-project.org/package=glmmLasso
https://doi.org/10.1007/s11222-012-9359-z
https://doi.org/10.1016/j.spl.2010.12.003
https://doi.org/10.1080/00273171.2018.1446819
https://doi.org/10.1037/met0000120
https://doi.org/10.1111/j.1360-0443.2008.02435.x
https://doi.org/10.1111/j.1541-0420.2007.00924.x
https://doi.org/10.1111/j.1541-0420.2007.00924.x
https://doi.org/10.18637/jss.v052.i12
https://doi.org/10.1037/pspp0000015
https://doi.org/10.1037/a0014173
https://doi.org/10.3102/1076998614546494
https://doi.org/10.3102/1076998614546494
https://doi.org/10.4310/SII.2018.v11.n4.a15
https://doi.org/10.4310/SII.2018.v11.n4.a15
https://doi.org/10.1080/00273171.2015.1036965
https://doi.org/10.1080/00273171.2015.1036965
https://doi.org/10.1111/bmsp.12196
https://doi.org/10.1111/bmsp.12196
https://www.cambridge.org/core


532 PSYCHOMETRIKA

Nestler, S. (2021). Modeling intraindividual variability in growth with measurement burst designs. Structural Equation
Modeling, 28, 28–39. https://doi.org/10.1080/10705511.2020.1757455.

Ormerod, J. T., & Wand, M. P. (2010). Explaining variational approximations. The American Statistician, 64, 140–153.
https://doi.org/10.1198/tast.2010.09058.

Pan, J., & Huang, C. (2014). Random effects selection in generalized linear mixed models via shrinkage penalty function
Random effects selection in generalized linear mixed models via shrinkage penalty function. Statistical Computing,
24, 725–738. https://doi.org/10.1007/s11222-013-9398-0.

Pinheiro, J. , Bates, D. , DebRoy, S. , Sarkar, D., & R Core Team. (2020). nlme: Linear and nonlinear mixed effects models
[Computer software manual]. https://CRAN.R-project.org/package=nlme R package version 3.1-148.

Ram, N., & Gerstorf, D. (2009). Timestructured and net intraindividual variability: Tools for examining the development
of dynamic characteristics and processes. Psychology and Aging, 24, 778–791. https://doi.org/10.1037/a0017915.

Scharf, F., & Nestler, S. (2019). Should regularization replace simple structure rotation in exploratory factor analysis?
Structural Equation Modeling: A Multidisciplinary Journal, 26, 576–590. https://doi.org/10.1080/10705511.2018.
1558060.

Schelldorfer, J., Bühlmann, P., & van de Geer, S. (2011). Estimation for high-dimensional linear mixed-effects models
using L1-penalization. Scandinavian Journal of Statistics, 38, 197–214. https://doi.org/10.1111/j.1467-9469.2011.
00740.x.

Schelldorfer, J., Meier, L., & Bühlmann, P. (2014). GLMMLasso: An algorithm for high-dimensional generalized linear
mixed-effects models using L1-penalization. Journal of Computational andGraphical Statistics, 23, 460–477. https://
doi.org/10.1080/10618600.2013.773239.

Schölkopf, B., & Smola, A. J. (2002). Learning with Kernels: Support vector machines, regularization, optimization, and
beyond. Cambridge: MIT Press.

Schönbrodt, F. D., & Gerstenberg, F. X. R. (2012). An IRT analysis of motive questionnaires: The unified motive scales.
Journal of Research in Personality, 46, 725–742. https://doi.org/10.1016/j.jrp.2012.08.010.

Schuurman, N. K., Grasman, R. P. P. P., & Hamaker, E. L. (2016). A comparison of inverse-Wishart prior specifications
for covariance matrices in multilevel autoregressive models.Multivariate Behavioral Research, 51, 185–206. https://
doi.org/10.1080/00273171.2015.1065398.

Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. New York: Wiley.
Sela, R. J., & Simonoff, J. S. (2011). REEMtree: Regression trees with random effects Computer softwaremanual]. https://

CRAN.R-project.org/package=REEMtree R package version 0.90.3.
Sela, R. J., & Simonoff, J. S. (2012). RE-EM trees: A data mining approach for longitudinal and clustered data.Machine

learning, 86, 169–207. https://doi.org/10.1080/00273171.2012.658328.
Skrondal, A., & Rabe-Hesketh, S. (2009). Prediction in multilevel generalized linear models. Journal of the Royal Statis-

tical Society: Series A (Statistics in Society), 172, 659–687. https://doi.org/10.1111/j.1467-985X.2009.00587.x.
Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis. Thousand Oaks: SAGE Publications.
Stegmann, G., Jacobucci, R., Serang, S., & Grimm, K. J. (2018). Recursive partitioning with nonlinear models of change.

Multivariate Behavioral Research, 53, 559–570. https://doi.org/10.1080/00273171.2018.1461602.
Strobel, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale, application and character-

istics of classification and regression trees, bagging and random forests. Psychological Methods, 14, 323–348. https://
doi.org/10.1037/a0016973.

Therneau, T. & Atkinson, B. (2019). rpart: Recursive partitioning and regression trees [Computer software manual].
https://CRAN.R-project.org/package=rpart R package version 4.1-15.

Tuerlinckx, F., Rijmen, F., Verbeke, G., & De Boeck, P. (2006). Statistical inference in generalized linear mixed models:
A review. British Journal of Mathematical and Statistical Psychology, 59, 225–255.

Vansteelandt, K., & Verbeke, G. (2016). A mixed model to disentangle variance and serial autocorrelation in affective
instability using ecological momentary assessment data.Multivariate Behavioral Research, 51, 446–465. https://doi.
org/10.1080/00273171.2016.1159177.

Verbeke, G., & Molenberghs, G. (2009). Linear mixed models for longitudinal data analysis. New York: Springer.
Wang, L. P., Bergeman, C. S., & Hamaker, E. (2012). Investigating inter-individual differences in short-term intra-

individual variability. Psychological Methods, 17, 567–581. https://doi.org/10.1037/a0029317.
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative

affect: The PANAS scales. Journal of Personality and Social Psychology, 54, 1063–1070. https://doi.org/10.1037/
0022-3514.54.6.1063.

Manuscript Received: 21 JUN 2020
Final Version Received: 28 MAY 2021
Accepted: 25 JUN 2021
Published Online Date: 14 AUG 2021

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 08:37:06, subject to the Cambridge Core terms of use.

https://doi.org/10.1080/10705511.2020.1757455
https://doi.org/10.1198/tast.2010.09058
https://doi.org/10.1007/s11222-013-9398-0
https://CRAN.R-project.org/package=nlme
https://doi.org/10.1037/a0017915
https://doi.org/10.1080/10705511.2018.1558060
https://doi.org/10.1080/10705511.2018.1558060
https://doi.org/10.1111/j.1467-9469.2011.00740.x
https://doi.org/10.1111/j.1467-9469.2011.00740.x
https://doi.org/10.1080/10618600.2013.773239
https://doi.org/10.1080/10618600.2013.773239
https://doi.org/10.1016/j.jrp.2012.08.010
https://doi.org/10.1080/00273171.2015.1065398
https://doi.org/10.1080/00273171.2015.1065398
https://CRAN.R-project.org/package=REEMtree
https://CRAN.R-project.org/package=REEMtree
https://doi.org/10.1080/00273171.2012.658328
https://doi.org/10.1111/j.1467-985X.2009.00587.x
https://doi.org/10.1080/00273171.2018.1461602
https://doi.org/10.1037/a0016973
https://doi.org/10.1037/a0016973
https://CRAN.R-project.org/package=rpart
https://doi.org/10.1080/00273171.2016.1159177
https://doi.org/10.1080/00273171.2016.1159177
https://doi.org/10.1037/a0029317
https://doi.org/10.1037/0022-3514.54.6.1063
https://doi.org/10.1037/0022-3514.54.6.1063
https://www.cambridge.org/core

	A Lasso and a Regression Tree Mixed-Effect Model with Random Effects for the Level, the Residual Variance, and the Autocorrelation
	Abstract
	1 Illustrative example
	2 Mixed-effect models for longitudinal data
	2.1 Predicting and Forecasting with Longitudinal Mixed-Effect Models
	2.2 A Lasso Mixed-Effect Model
	2.3 A Mixed-Effect Model Tree
	2.4 Between-Person Differences in the Level 1 Variance and the Autocorrelation

	3 Extending the Longitudinal Mixed-Effect Model to Consider Between-Person Differences in the Level 1 Variance and the Autocorrelation
	3.1 The Basic E-MELS
	3.2 Lasso E-MELS and E-MELS Trees

	4 Illustration I: Real-data example
	4.1 Sample, Variables, and Data Preparation
	4.2 Models
	4.3 Predictive Performance
	4.4 Results

	5 Illustration II: Simulated-data example
	5.1 Data and Sample
	5.2 Results

	6 Discussion
	Appendix A
	Appendix B
	Appendix C
	References




