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TRANSLATIONS AS GAUGE TRANSFORMATIONS
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Abstract

A local description of space and time in which translations are included in
the group of gauge transformations is studied using the formalism of fibre
bundles. It is shown that the flat Minkowski space-time may be obtained
from a non-flat connection in a de Sitter structured fibre bundle by choosing
at least two different cross-sections. The interaction terms in the covariant
derivative of a Dirac wave function that correspond to translations may be
interpreted as the mass term of the Dirac equation, and then the two cross-
sections (gauges) correspond to the description of a fermion and antifermion
respectively.

1. Introduction

In 1955 Utiyama [6] proposed an interpretation of the gravitational field as a gauge
field corresponding to the Lorentz group of transformations. In 1961 Kibble [1]
suggested that translations should be included in the gauge group. In the present
paper we shall analyse inclusion of translations in the gauge group using the
formalism of fibre bundles [2] which was found to fit the classical gauge field theory
so well [5], [3].

Structure of the space-time manifold of general relativity is contained in a
connection defined in the bundle of linear frames of the manifold. The connection
is reducible to the Lorentz group structure so that it determines a Lorentz type
metric in the manifold, but may include torsion as well. Physically, the connection
is investigated by constructing a smooth cross-section in the bundle of frames (that
is, assigning a basis of the tangent vector space for each point of a region of the
manifold), and then comparing it with the parallel displacements defined by the
connection. As we proceed along a curve in the space-time manifold (the base
manifold of the fibre bundle), the amount of Lorentz rotations the frames of the
cross-section undergo is judged by comparing two curves in the bundle of frames:
one following the cross-section, the other being the horizontal lift of the curve in the
space-time manifold. What we measure is thus a departure from parallelism. The
fundamental idea discussed in the present paper is that the translations, that is, any
physical change of the space-time coordinates, may themselves be just a manifesta-
tion of a departure from parallelism in a more general fibre bundle with an enlarged
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structure group. Thus the physical space-time measurements correspond to the
group operations in a fibre bundle with a 10-dimensional structure group (including
6-dimensional Lorentz group and 4-dimensional translations, but not necessarily
being the Poincare group). The base manifold of such a fibre bundle may be more
general than the space-time, perhaps having more than four dimensions. The
main difference between the two descriptions shows up when the flat Minkowski
space-time is discussed. In the classical Lorentz structure approach the flat space-
time corresponds to the most trivial case of a flat connection, in which case a
horizontal cross-section in the bundle of frames exists. When translations are
included in the vertical structure, the most trivial case of a flat connection with a
horizontal cross-section corresponds to a case where no space-time intervals can be
detected, while the flat space-time is described by a non-trivial case.

In Section 2 the classical gauge field theory is briefly reviewed, while Section 3
gives an exact mathematical formulation to the above discussion concerning
translations. In Section 4 description of the flat space-time is considered, as well as
the covariant derivative of a Dirac wave function.

It should be mentioned that no global properties are investigated in the present
paper, and that the word "cross-section" always means only a local cross-section
defined in a neighbourhood of a point.

2. Classical Gauge field theory

Let P(M,G) be a principal fibre bundle with the base manifold M and the
structure group G, and E{M, F, G, P) be a fibre bundle associated with P. Notation
is as in [2], F denoting the standard fibre of E. Thus a point in E is a class of pairs
(w, i),ueP, £eF, under the equivalence relation

A cross-section in E is thus represented by a pair of functions: u: M->P and
$: M^-F. The equivalence is

(u(x), $(x)) = (u(x)g(x),g-\x)i(x)),

and the action of g(x) on u(x) and £(x) is called gauge transformation. In physics £
has the meaning of a wave function with F being a vector space chosen according
to the type of the particle to be described.

A connection in P(M, G) describes a gauge field, and the usual covariant derivat-
ive Vx of cross-sections in E (defined in [2]) leads naturally to a covariant derivative
V x of the wave function £:

If X expressed in a local system of coordinates is d/dx? then the covariant
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derivative may be written more explicitly as

^ ^ , (l)

where u> is the connection form of the connection in P, and X is a tangent vector at
u(x) eP, that is tangent to the cross-section u and projects to d/dx? by the canonical
projection rr of P(M, G): TT(XJ) = d/dx?. aiX^ is then an x-dependent element of
ths Lis algebra G of the group G, expressed iu the appropriate representation
according to the action of G on F. In the equation of motion of the particle the
term containing a>(X^) describes the interaction of the particle with the gauge
field.

The field of gravitation is described when Mis the space-time manifold, P{M, G)
the bundle of linear frames of M, with G in general GL(4, R). The connection in
P{M, G) must be, however, reducible to the Lorentz structure.

There exists an alternative description of gravitation that begins with an abstract
principal fibre bundle Q(M, L), where M is a 4-dimensional manifold and L is the
Lorentz group. An embedding of Q into the bundle of linear frames of the space-
time manifold is then necessary to make such an approach equivalent to the
classical one. Such an embedding may be determined by a specific Revalued 1-form
defined on Q [5]. Identification of this 1-form with the canonical form of the bundle
of frames provides the embedding. We shall see in the next section that such a 1-form
is naturally present in the theory with translations included in the structure group.

3. Gauge translations

Let P{M, G) be a principal fibre bundle with a 10-dimensional structure group G,
which has the following properties:
(i) The Lie algebra G of G has a form of a direct sumf

G = L©T,

where L is the Lorentz Lie algebra and T is a 4-dimensional subspace of G.
(ii) The adjoint map adg, gsL, acts on T as the 4-dimensional representation of

the Lorentz group L.
If M is 4-dimensional, the following construction is possible. Let w be a connec-

tion form on P(M, G) that decomposes into a>L and coT according to the property
(i) above. Further let y: M->P be a cross-section in P(M,G), and construct a
subbundle Q(M,L) by considering y(x)L as the fibre of Q above xeM. Due to the
property (ii) Q(M,L) may be considered as a subbundle of the bundle of linear
frames of M with cuT identified as the canonical form. aiL then defines a connection
in the bundle of frames, obviously reducible to the Lorentz structure.

t Referring to the vector space structure of G.
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Even if M has more than four dimensions, it may happen that CJT(X) =£ 0
defines an involutive 4-dimensional distribution on M, hence a 4-dimensional
submanifold N of M, and then Q(N,L) can be embedded into the bundle of linear
frames of N. What we observe is just the 4-dimensional manifold N, as the extra
dimensions "escape our notice", because for such vectors a)T(X) is zero and we do
not measure any translation in that direction.

This is all in line with the general philosophy outlined in Section 1. The Lorentz
algebra valued connection form <oL(X) has the meaning of the 'infinitesimal'
Lorentz transformation we are about to make if we proceed in the direction
indicated by X. Similarly, the canonical form of a bundle of frames has the
meaning of the 'infinitesimal' translation we make when we proceed in the
X-direction. Thus the identification of the canonical form with the T-component of
OJ is just a mathematical expression for "translations being measured by a de-
parture from parallelism".

While we are putting translations in the same category as the Lorentz trans-
formations (or the electromagnetic gauge transformations), we should also point
out the differences. While the choice of a Lorentz gauge is free at least theoretically,
the translational gauge must be regarded as fixed as soon as we start talking about a
space-time, because it is needed in the actual construction of the space-time. It can
be argued that the physical process of measuring space-time allows only a change of
the Lorentz gauge, but not the part connected with translations. After all, there are
physical limitations even in constructions of certain Lorentz gauges, especially
where the frames involve high velocities. Perhaps, the translational gauge freedom
shows up in full only in the interior of the elementary particles, where measurements
of distances and time intervals with sticks and clocks are unthinkable. In such a
case, what evidence can we find of the presence of translations in the gauge group ?
A possible answer is in the covariant derivative.

4. Interaction terms corresponding to translations

The interaction term in the covariant derivative (1) is in general different from
zero, unless either the chosen cross-section (gauge) is horizontal, or the type of the
particle is such that the gauge group acts on the standard fibre via the trivial
representation in which all its elements are mapped to the identity element (the
particle is then 'neutral' with respect to the field concerned, as, for example,
electro-magnetically neutral particles described by real wave functions with the
gauge group i/(l) acting as the identity on R).

In our case, the cross-section certainly must not be horizontal if it is to determine
the canonical form and define a space-time manifold. Hence it is possible that at
least some particles have the interaction terms corresponding to translations
present in their equations of motion, and they should be there even in the flat

https://doi.org/10.1017/S0334270000001430 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001430


42 P. K. Smrz [5]

space-time. The mass term in the Dirac equation can be interpreted as such an
interaction term. In fact, it is enough that the covariant derivative has a form

d ^ i , (2)

where yk, k = 0,1,2,3, are the Dirac matrices, and h*(x) are the 'tetrads' determin-
ing a relation

between the Lorentz orthonormal frames {Xk, k = 0,1,2,3} and the natural frames
{dldx?, fi = 0,1,2,3} of the general coordinate system.

At the same time, h*(x) are also the coordinates of the canonical form on the
specific cross-section in the bundle of frames, and the term ioT(Xp) is, therefore,
expected to have a form

where Pk, k = 0,1,2,3, are the Lie algebra elements forming T. The covariant
derivative (2) is then of the form (1) if T is spanned by the elements

pk = ml^yk. (3)

An important point is that the Pks defined in (3) do not commute. In fact,
together with the generators of the Lorentz group

they form a de Sitter group, the (3+2) de Sitter group in this particular choice of Pk.
Alternatively, the generators of T could be chosen as \myky5, y5 = y^y^y*,
leading to the alternative form of the Dirac equation with mass m. The structure
group is the (4 +1) de Sitter group in the latter case.

It is important to realize that, even with a de Sitter group as the structure group,
the connection in the space-time manifold constructed according to Section 3 may
be flat. Such a situation is illustrated by an example of a principal fibre bundle
K(K/S, S), where K is the group SU(2,2), S is a de Sitter group. K/S is a 5-
dimensional base manifold, but the unique invariant connection together with a
specific cross-section (that happens to be a subgroup of K) defines a 4-dimensional
manifold with a flat linear connection. More detailed description of this example
may be found in [4]. Here we shall discuss the situation in more general terms.

Let y be a cross-section in P(M, G), G being a de Sitter group. Further, let there
be a connection in P(M, G). If a flat space-time is to be defined, the tangent vector

https://doi.org/10.1017/S0334270000001430 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001430


[6] Translations as gauge transformations 43

space of the submanifold y(M) of P must decompose at each point into a non-
horizontal 4-dimensional subspace Nylx) and a horizontal subspace filling the
remaining dimensions. Moreover, vertical parts of vectors in Nyix) must be the
fundamental vector fields generated by elements of T only, and finally there must
exist four commuting vector fields belonging to Nylx) that determine a local co-
ordinate system in the 4-dimensional submanifold of y(M), which is then identified
as the flat space-time. Let X, Y be two such vector fields: X(y(x)), Y((y(x)) e Nylx),
and [X, Y] = 0. If we decompose both X and Y into the horizontal and vertical
components, we have

x=xh+xv, y=yft+ye,
where Xv and Yv are fundamental vector fields generated by elements of T. Now
[X, Y] = 0 implies

[Xh, Yh] + [Xh, Yv] + [Xv, Yh] + [Xv, Yv] = 0. (4)

When the horizontal and vertical components of (4) are considered separately we
have

[XA,Yh]v+[Xv)Yv] = 0
and

= n[Xh+Xv,Yh+Yv]

= [n(Xh

where tt denotes the canonical projection in P(M, G). In this way we have the
conditions

Yv] = 0, (5a)

h] = 0. (5b)

As [Xv, Yv] is a fundamental vector field generated by an element of L, condition
(5a) may be satisfied only if [Xh, Yh]v is of the same type, in other words the
curvature form of the connection in P(M, G) should be L-valued. This condition is
satisfied in the example of [4] by the invariant connection in K(K/S, S). It is clear
that a flat connection could never satisfy (5a).

Equations (5a) and (5b) are invariant with respect to the change Xv-*— Xv,
Yv->—Yv. It implies that if there is one cross-section y that defines a flat space-time
then there is at least a second cross-section obtained by the reversal of the vertical
components of the tangent vectors, and this second cross-section also defines a
flat space-time. In the covariant derivative the two cross-sections lead to the two
opposite signs of the mass term, corresponding to a description of a fermion-
antifermion pair. Such a pair can thus be considered as one particle described in
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two different gauges, both deriving a flat Minkowski space-time from a given non-
flat connection in the original de Sitter structured fibre bundle. Links to the
space-time reversal are also apparent.

5. Concluding remarks

An interesting point that invites attention is the role of the de Sitter group.
Normally, whenever a de Sitter group is used in physics, the "radius of translations"
R is very large, so that the de Sitter group is close to its contraction limit to which it
passes when R-+co, namely the Poincare group. Here, R is in fact equal to 1/m,
where m is the mass of a fundamental fermion. This is a very short distance
comparable with the dimensions of the particle. If the structure group is the (4+1)
de Sitter group, then the small range of the spatial "translations" may actually
correspond to the small dimensions of the elementary particles. The following
speculative consideration is presented just as a matter for thought. The macroscopic
measurement of distances is done by following a fixed cross-section and comparing
it continuously with the horizontal direction (see Sections 1 and 3). In this way the
compact de Sitter transformations "unwind" and the result is interpreted as a
measurement of a distance that may be many times larger than the range of the
parameters in the de Sitter spatial "translations".

If, however, we could also follow the horizontal direction all the way (that is, not
making any translation) then the 'distance' between the two points measured by the
amount of the translational parameters needed to get from the end-point of the
horizontal path to the end-point of the path following the cross-section could never
be more than 2ITR, the range of the spatial translational parameters. Thus if the
interior of elementary particles is that region in which macroscopic space measure-
ments are not possible and no cross-section is fixed, then the distance between any
two points within the region could be expected to be of the order of R = 1/m. On
the other hand, as the time translations are non-compact in the (4+1) de Sitter
group, the time extent of such a region could be infinite, providing for the existence
of stable particles. Thus the experimental fact of the small spatial extent and an
infinite time extent of fundamental fermions supports the choice of the (4+1)
de Sitter group for the role of the structure group.
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