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Abstract

Sufficient conditions for the controllability of nonlinear neutral Volterra integrodifferential
systems with implicit derivative are established. The results are a generalisation of the
previous results, through the notions of condensing map and measure of noncompactness
of a set.

1. Introduction

Compartmental models are frequently used in theoretical epidemiology, physiolo-
gy, and population dynamics to describe the evolution of systems which can be
divided into separate compartments, marking the pathways of material flow between
compartments and the possible outflow into the inflow from the environment of the
system. Generally, the time required for the material flow between compartments
cannot be neglected. A model for such system can be visualised as one in which
compartments are connected by pipes which material passes through in definite time.
Because of the time lags caused by pipes, the model equations for such systems are
differential equations with deviating arguments, as opposed to the classical case where
model equations are ordinary differential equations. For more details, we refer the
reader to [1, 17,21].

A concrete example is the radiocardiogram, where the two compartments corres-
pond to the left and right ventricles of the heart, and the pipes between them represent
the pulmonary and systematic circulation. Pipes coming out from and returning into
the same compartment may represent shunts and the coronary circulation [see 16]. A
more simplified equation representing this model is a nonlinear neutral Volterra in-
tegrodifferential equation as in [18]. The aim of this paper is to study the controllability
problem for such systems.
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Several authors [11, 14, 19, 25] have studied the theory of functional differential
equations. The problem of controllability of linear neutral systems has been invest-
igated in [7, 20]. Motivation for physical control systems and its importance in other
fields can be found in [19, 22]. Angell [2] and Chukwu [9] discussed the functional
controllability of nonlinear neutral systems and Underwood and Chukwu [26] studied
the null controllability for such systems. Further, Chukwu [10] considered the Euc-
lidean controllability of a neutral system with nonlinear base. Onwuatu [23] discussed
the problem for nonlinear systems of neutral functional differential equations with lim-
ited controls. Gahl [15] derived a set of sufficient conditions for the controllability of
nonlinear neutral systems through the fixed point method developed by Dauer [13].

However Dacka [12] introduced a new fixed-point method of analysis to study the
controllability of nonlinear systems with implicit derivative based on the measure of
noncompactness of a set and Darbo's theorem. This method has been extended to a
larger class of dynamical systems by Balachandran [4, 5]. Anichini etal. [3] studied
the problem through the notions of condensing map and measure of noncompactness
of a set. They used the fixed-point theorem due to Sadovskii. In this paper, we
shall study the controllability of nonlinear neutral Volterra integrodifferential systems
with implicit derivative, by suitably adopting the technique of Anichini et al. [3].
The results generalise those results obtained by Balachandran [6] where the nonlinear
function / is independent of x.

2. Mathematical preliminaries

We first summarise some facts concerning condensing maps; for definitions and
results about the measure of noncompactness and related topics, the reader can refer
to the paper of Dacka [12].

Let X be a subset of a Banach space. An operator T : X —• X is called condensing
if, for any bounded subset E in X with /x(£) ^ 0, we have IA(T(E)) < /x(E), where
lx(E) denotes the measure of noncompactness of the set E.

We observe that, as a consequence of the properties of /x, if an operator T is the sum
of a compact operator and condensing operator, then T itself is a condensing operator.
Further, if the operator P : X - • X satisfies the condition \Px — Py\ < k\x — y\
for x, y € X, with 0 < k < 1, then the operator P is a fi - contractive operator with
constant k: that is, /x(T(£)) < kfi(E) for any bounded set E in X. In this case, P has
a fixed-point property (Sadovskii [24]). However, the condition | Px — Py \ < \x — y \
(x, y e X) is insufficient to ensure that P is a condensing map or that P will admit
a fixed point (Browder [8]). The fixed-point property holds in the condensing case
(Sadovskii [24]).

Let Cn(I) denote the space of continuous /?"-valued functions on the interval / .
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For x <= Cn(I) and h > 0, let

6(x,h) = sup{\x(t) -x(s)\ :t,s € / with \t - s\ <h),

and write 6(E,h) = supxe£ 9(x, h), so that 6(E, .) is the modulus of continuity of a
bounded set E; and let £i be the set of functions co : R+ -> R+ that are right continuous
and nondecreasing such that co(r) < r, for r > 0. Let / = [t0, tt].

LEMMA 1. [24] Let X c Cn(I) and let fl and y be functions defined on [0, tx — to]
such that lim^o P(s) = lim^o Y(s) = 0- Ifa mapping T : X -> Cn(/) is given such
that it maps bounded sets into bounded sets, and is such that

9(T(x),h) <a>(e(x,P(h))) + y(h) for all h e [0,h -to]andx eX

with co G fi, then T is a condensing mapping.

LEMMA 2. [3, 24] Let X c Cn(J), let J=[0,l], and let S C X be a bounded closed
convex set. Let H : J x S —> X be a continuous operator such that, for any a e / ,
the map //(or, •) : S —> X is condensing -. If x ^ H(a, x) for any a e / and any
x 6 35 (the boundary of S), then / / ( I , . ) has a fixed point. Finally it is possible to
show that, for any bounded and equicontinuous set E in C\ (/) , the following relation
holds:

fiq(E) = ME) = n(DE) = Hc.{DE),

where DE = {x : x € E).

3. Main result

Consider the nonlinear neutral Volterra integrodifferential system

j t \xit) - j C(t- s)x(s)ds - g(t)]

f Git-
Jo

= Ax(t)+ / G(t-s)x(s)ds + B(t)u(t) + f(t,x(t),x(t),u(t)), (1)
Jo

where x e R", u e Rm, C(t) is an n x n continuously differentiable matrix valued
function, G(t) is an n x n continuous matrix, and B(t) is a continuous n x m matrix
valued function, A a constant n x n matrix and / and g are respectively continu-
ous and continuously differentiable vector functions. Here the control functions are
continuous.

https://doi.org/10.1017/S0334270000010274 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010274


110 K. Balachandran and P. Balasubramaniam [4]

The solution of the system (1) can be written as [27]:

x{t) = Z(t) [x(0) - g(0)] + g(t) + f Z(t- s)g(s)ds
Jo

Z(t - s)[B(s)u(s) + f(s,x(s),x(s),u(s)))ds,+ f
Jo

where Z(t) is an n x n continuously differentiable matrix satisfying

^ I Z(r) - f C(t- s)Z(s)ds\ = AZ(t) + f G(t- s)Z(s)ds (2)

with Z(0) = identity matrix.
We say that system (1) is controllable if, for every x(0), X\ e R", there exists

a control function u defined on / = [0, tt] such that the solution of (1) satisfies
x(ti) = X\. Define the controllability matrix

W(fl, h)= [' Z(r, - s)B(s)B*(s)Z*(tl - s)ds,
Jo

where the star denotes the matrix transpose.

THEOREM. Suppose that the continuity condition on the matrices G, B, f and the
continuous differentiability of C, g are satisfied for the system with the following
additional conditions:

(i)

\f(t,x,y,u)\
hm sup — = 0;

IxKoo r he

(ii) there exists a continuous nondecreasing function co : R+ -> R+,withco(r) < r,
such that

\f(t,x,y,u)-f(t,x,z,u)\ <co(\y-z\) for all (t,x,y,u) e / x R2" x Rm;

(iii) the symmetric matrix W(0, t]) is nonsingular for some t\ > 0.

Then the system (I) is controllable on I.

PROOF. Define the nonlinear transformation

by
T(u, x)(f) = (y,(M, x){f), T2(u,
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where the pair of operators T\ and T2 is defined by

= B*{t)Z*(tx - / ) r ' ( 0 , ( , )

J ' s)g(s)dsx \xx - Z(r,)(*(0) - g(0)) - g(h) - J ' Z(f, -

- [ Z(t1-s)f(s,x(s),x(s),u(s))ds\,

T2(u, x)(t) = Z(/)(*(0) - S(0)) + g(tt) + [ Z(t- s)g(s)ds
Jo

I Z^-
Jo

+ f(s,x(s),x(s),Tl(u,x)(s))]ds.

Since all the functions involved in the definition of the operator T are continuous, T
is continuous. Let

and consider the equation rf = rj — aT(rj), where a e [0,1]. This equation can be
written equivalently as

u = u° + aT1(u,x), (3)

x=x° + aT2(u,x). (4)

From condition (i), for any s > 0 there exists R > 0 such that if |JC| > R then
\f(t, x, y, u)\ < e\x\. Then (3) gives

(5)

and from (4), by applying Gronwall's inequality, we have

1*1 < [l*°l +O2l*(0)-s(0)| +a5+
la3sti \x\) axa2ti] exp(a2eti), (6)

where

fl,=sup|B(OI, fl2 = sup|Z(OI, a3 = |W-1(0,r,)|,

a4 = sup|Z(r)|, as = sup\g(t)\

and
k{ = ata2a3[\xi | + a2\x(0) - g(0)\ +as+
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Also put a6 - sup|g(/)|.
Note that

j t \T2(U, x)(t) ~Jc(t- s)T2(u, x)(s)ds - g(t)]

= AT2(u, x)(t) + G(t- s)T2(u, x)(s)ds

+ B(tm(u, x)(t) + f(t, x(t), x(t), r,(«,

By applying Gronwall's inequality, we have

\T2(u,x)\< [ax\Tx{u,x)\tx +stx\x\+a5]exp(A0), (7)

where

ds.f " f "
o = / A + C(t — s) + I G(r) — s)drj

Jo Jo
Taking the derivative with respect to t, we obtain from (4)

dx° d
x = — +a — (T2(u,x)(t))

dt dt

and using Leibnitz's rule that gives

\x\ < \x°\ + a\T2(u,x)\+ax\Tx(u,x)\+e\x\+a6,

where
a = \A\ + sup |G(/)| • h + |C(0)| + sup \C(t)\ • /,.

Thus from (7), we have

1*1 < l*°l + h + \x\ [a\alaT,£tx(ah exp(A0) + \) + ash exp(A0) + s], (8)

where
k2 = k{ [at (ati exp(/40) + 1)] + <*a5 exp(A0) + a6.

From (5), (6) and (8) we have respectively

[ ] < k3 + \x°\,

where
k3 = a2\x(0) - g(0)\ +a5+ a^a5tx + kxaxa2tx

and

1*1-1*1 \a\a\a^etx{ah exp(/40) + 1) + aeh exp(/lo) + e] < h + \x°\.
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Taking the sum of all the above quantities, we obtain

|u| - k\x\ + \x\ < \u°\ + |JC°| + | i° | + kx + k2 + k3,

where

k = a\al<iietx\\.+ axa2t\ + a,(ariexp(/40) + l)] + £ + aetx exp(/40) - exp(-a2£'i)-

Then, for suitable positive constants p, q and r, we can write

|«| - [ep - exp(-e$)]|jc| + \x\ < \u°\ + |*°| + | i° | + r.

So we divide by \u\ + \x\ + | i | and, from the arbitrariness of s, we get the existence
of a ball 5 in Cm{I) x C\ (/) sufficiently large such that

\r)-aT(rj)\>0 for r\ = (u, x) e 95.

We want to show that T is a condensing map. To this aim, we note that Tx : Cm(I) —>•
Cm(/) is a compact operator and then, if £ is a bounded set, /x(7i(£)) = 0. Then it
will be enough to show that T2 is a condensing operator. For that, let us consider the
modulus of continuity of DT2(u, .*)(.). Now, for t,s G / , we have

\DT2{u,x){t) - DT2{u,x){s)\

<\AT2(u,x)(.t)-AT2(u,x){s)\

I G{t - a)T2(u, x)(o)do - I G{s - a)T2(u, x)(a)da
Jo Jo

\f(t, x(f), x(t), r,(ii, jc)(r)) - f(s, x(s),x(s),

\C(0)T2(u,x)(t)-C(0)T2(u,x)(s)\

C(t - a)T2(u, x)(a)da - C(s - a)T2(u, x)(p)da
o Jo

\g{t) - g(s)\. (9)

For the first and last three terms of the right side of (9) we may give the upper
estimate as y30(|f - s\); and the fourth term by co(\x(t) - x(s)\) + fix(\t - s\), with
lim^oPi(h) = 0. Hence

0(DT2(u, x), h) < co($(DE, h)) + p(h),

where 0 = 0O + ^. Therefore, by Lemma 1, we get 90(DT2(E)) < 90(DE). Hence,
from

= 2fi(DT2(E)) = 00(DT2(E)) < 60(DE) = 2/x(DE) =

https://doi.org/10.1017/S0334270000010274 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010274


114 K. Balachandran and P. Balasubramaniam [8]

it follows that ixi(T2(E)) < (X\(E). Then the existence of the operator T follows
from Lemma 2; that is, there exist functions u G Cm(I) and x e Cl

n(I) such that
T(u, x) = (M, X) that is

u(t) = Ti(u,x)(t), x(t) = T2(u,x)(t).

These functions are the required solutions. Further, it is easy to verify that the function
JC(-) given above of the system (1) satisfies x(t\) = X\ for every x(0) € R". Hence
the system (1) is controllable.

REMARK 1. If we assume that the nonlinear function in (1) also satisfies the Lipschitz
condition with respect to the state variable, then we can obtain the unique response
determined by any control.

REMARK 2. The result of Theorem 1 still holds if we replace (i) by

where a and fi are continuous functions.

EXAMPLE. In the nonlinear neutral Vblterra integrodifferential system (1), take

s) = e-(-s), g(t) = e~', A = l, G(t - s) = -e^"^,

B(0 = e~2' and / = ° g * + aictgx.
1 + 2V1 + u2

It is easy to see that Z(r) = 2e' — 1 satisfies (2) and

'•">=/"

Jo
W(0, r,) = / Z{h - s)B(s)B*(s)Z*(tl - s)ds

ds= f ' e~4s [4e2i"~s) - 4e<"-s) + l ]
Jo
2 4 1 7

= -e2'1 e'1 -\ e"4" > 0 for some ti > 0.
3 5 4 60

Furthermore

\f(t, x, y, u) - f(t, x, z, u)\ = \aictgy - wctgz\
<aictg\y — z\ if y ^ z

and

so the hypotheses of Theorem 1 are satisfied. Hence the system is controllable.
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