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Abstract

The oscillatory squeeze film problem is solved for the simple fluid in the sense
of Noll. It is shown that dynamic properties of polymeric liquids can be
measured on the plastometer in the oscillatory mode. This should be useful
to food and other technologists who have to deal with awkward, highly viscous
materials.

1. Introduction

The flow behaviour of a thin film of liquid squeezed between two circular flat
plates is of continual interest to many groups of workers. Rheologists are con-
cerned with this problem since it is the basic geometry of the popular plastometer
method of determining Theological behaviour of highly viscous materials.

For the past two decades or so, there has been a controversy concerning the
possible effects of lubricant viscoelasticity. The analyses of Tanner [6] and
Kramer [3] predict that the elasticity of a liquid decreases its load-bearing capacity.
On the other hand, Parlato [5] shows that viscoelastic liquids are better lubricants
than Newtonian liquids of the same viscosity, by appealing to the "extensional
primary field" approximation of Metzner [4]. This approximation may be
criticized for a number of theoretical reasons [7]. The problem is mathematically
intractable even'for Newtonian fluids for a simple reason that the flow field is a
mixture of shear and elongation flows. Recent progress has been summarized in
Brindley et ah [1].

In this communication, we do not attempt to dwell with the complicated steady
squeeze film problem mentioned above; instead, a mathematically tractable
aspect of the squeeze film flow is presented: the oscillatory squeeze film of an
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incompressible simple fluid in the sense of Noll (see Huilgol [2]). It is believed
that this geometry is fairly simple to make experiments with, and consequently is
worth exploring theoretically.

2. Problem formulation

We consider the basic squeeze film geometry which consists of two circular flat
plates of radius a oscillating along the z axis, see Fig. 1. Half of the gap width
is denoted by h:

h(t)=ho(l+ee>°"), / = - l , (1)

where 6 is a small parameter such that terms of order O(e2) and higher can be
neglected; a reference gap width is h0. In normal commercial plastometers, the
ratio ho/a is kept small.

Fig. 1. Squeeze film geometry.

The total stress in an incompressible simple fluid can be shown to be (see [2])

(2)

where P is the indeterminate hydrostatic pressure and Stiff^0(Jlt(s)) *s a functional
of a strain history B,(s) = Ct(s)—I, where C,(s) is the Cauchy-Green tensor.

In this particular problem, the strain field is of the order O(e), the velocity field
is of the order O(cos). By expanding (2) about a rest history (see [2]), the most
general constitutive relation can be expressed as

i= -PI+2 G(s)D(f-s)rfs+ (3)
J = O
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where the error term R?=0(B,(s)) is of the order O(e2) and will be neglected.
Equation (3) then becomes the general linear viscoelastic constitutive relation,
with G(s) being the relaxation modulus of the liquid and D the symmetric part of
the velocity gradient tensor:

(4)

Similarly, up to an error term of order O(e2), the equation of motion reduces to

V-T = VP+p —, (5)

where p is the fluid density, u, the velocity, and T, the extra stress:

T = 2 \ G(s)D(t-s)ds. (6)
J o

From (5) and (6), and using the incompressibility constraint V-u =0 , it is easy
to see that

f
J o

G(s) V4 u(f - s) ds = p - V2 u. (7)
i o dt

To complete the problem the following boundary conditions are applied at z = h:

M = 0 and v = h=j(osh0e
Ja"> (8)

where u and v are the radial and vertical velocity of the fluid, respectively. Note
also that symmetry requires that u be an even and v be an odd function of z.

3. Method of solution

To satisfy continuity identically, it is convenient to work with the stream
function xj/ denned by

U = J J , v = . (9)
dz r dr

Using (9) in (7) one can show that the stream function satisfies the following
equation,

p | - D2 ij, = f " G{s) D* W - s) ds,
ot Jo

(10)
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where D2 is a differential operator defined by

dz2 drrdr

The general solution of (10) is

where ^ and ^2 satisfy the following:

£>Vi=0 and p ^ * = | G(s)D2\l/2(t-s)ds. (12)
3f Jo

The form of the boundary conditions suggests that

ij/1=reJa"Cll and <l/2=reJmCl2,

where CiltSl2
 a r e functions of z and satisfy

^ k = 0 and ^ - ^ n 2 = 0 , (13)

where rj*(co) is the complex viscosity of the hquid defined by

n*((o) = f" G(s) e-Jas ds. (14)

J o
Together with the symmetry requirement, it can be seen that

il/=reJ°"(Az+Bsinh*z), (15)

where A and B are integration constants and a2 =ja>p/ri*.
The boundary conditions (8) can be used to evaluate A and B, from which the

velocity field can be expressed as

, ,„, cosh ah—cosh CLZ f1~
u=jweho<xreJ°" , — - (16)

2(sinh a«—ah cosh an)
and

. . . .„. sinhaz—az cosh an ,.~
v = 2jcoeho e

3 . (17)
2(sinh an—ah cosh an)

Up to now, we have not made use of the fact that h/a<^l, and (16) and (17) are
the general solution of any viscoelastic fluid to the oscillatory squeeze film problem
including inertial effects.
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One can now expand (16) and (17) with hja small and obtain, up to an error of
order O(h*/a%

3. , _lath
2-z2

4 h3

(18)
4 n \ tr j

and

2

3h\

(19)

which is simply the Newtonian velocity field. Strictly speaking, all the h's in (18)
and (19) should be replaced by h0, since we have thrown out terms of order 0(e2)
at the outset. However, we continue to write in the manner indicated in (18) and
(19) for ease of comparison with the corresponding Newtonian solution.

Knowing the velocity field, the pressure field can be calculated, and hence the
squeezing force is given by

F=— n\ r2( TZZ) dr
Jo \dr dr J\z=h

= - - ™ V - - (20)
8 f t

Since almost all polymeric liquids are shear-thinning in oscillatory shear flow,
this study agrees with Tanner's remark [6] that, given the same squeezing rate, the
squeezing force for a viscoelastic liquid tends to be smaller initially than that of a
Newtonian liquid having the same zero-shear-rate viscosity. Furthermore, inertial
effects do not seem to influence the result (20) and can be understood in the light
of creeping flow near the surface of the plate where the integral over the pressure
is performed.

However, away from the plate surface, the pressure field is influenced by inertia
and can be shown to be

p 3 if. 2 2 s | " P ft' (i Z-

4 \JiQ 2rj* ho\ hoj

where the pressure at the rim, r = a, is put to zero as a boundary condition.
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Equation (20) shows that dynamic properties of polymeric liquids can be
measured on the plastometer in oscillatory mode. This may be useful to food and
other technologists who have to deal with awkward, highly viscous, non-
Newtonian pastes which suffer structural breakdown when subject to steady
shearing.

References

[1] G. Brindley, J. M. Davies and K. Walters, "Elastico-viscous squeeze films. Part 1; Part 2:
Superimposed rotation; Part 3: The torsional-balance rheometer", / . Non-Newt. Fluid
Mech. 1 (1976), 19-37, 259-275, 277-286.

[2] R. R. Huilgol, Continuum mechanics of viscoelastic liquids (Hindustan Publ. Corp., Delhi,
and Halsted Press, New York, 1975).

[3] J. M. Kramer, "Large deformations of viscoelastic squeeze films", Appl. Sci. Res. 30 (1974),
1-16.

[4] A. B. Metzner, "Extensional primary field approximations for viscoelastic media", Rheol.
Ada 10 (1971), 434-444.

[5] P. Parlato, MSc Thesis, Univ. Delaware (1969).
[6] R. I. Tanner, "Some illustrative problems in the flow of viscoelastic non-Newtonian

lubricants", Amer. Soc. Lub. Eng. Trans. 8 (1965), 179-183.
[7] G. Williams and R. I. Tanner, "Effects of combined shearing and stretching in viscoelastic

lubrication", / . Lub. Tech. 92 (1970), 216-219.

Department of Mechanical Engineering
University of Newcastle
Newcastle
New South Wales 2308

https://doi.org/10.1017/S0334270000002514 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002514

