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THE P-HARMONIC BOUNDARY AND
ENERGY-FINITE SOLUTIONS OF 4u = Pu

Y.K. KWON, L. SARIO, AND J. SCHIFF

The P-harmonic boundary 4, and the P-singular point s of a Riemann-
ian manifold R have been shown to play an important role in the study
of bounded energy-finite solutions of 4u = Pu (Nakai-Sario [7], Kwon-Sario
[4], Kwon-Sario-Schiff [5]). The objective of the present paper is to establish,
in terms of 4, and s, properties: of unbounded energy-finite solutions (PE-
functions) and of limits of decreasing sequences of positive PE-functions (ISE-
functions). Also, PE- and PE-minimal functions will be discussed.

For the convenience of the reader we shall briefly review, in 1, some
preliminaries (for details see Kwon-Sario-Schiff [5]).

1. On a connected, separable, oriented, smooth Riemannian manifold
of dimension N, consider the P-algebra Mp(R) of bounded Tonelli functions
f with finite energy integrals

Exlf) = Dilf) + | Prrav <.

Here D;(f) = ng fAxdf is the Dirichlet integral of f over R, P(%0) a given
nonnegative continuous function on.R, and 4V = x1 the volume element of
R. Tt is known that the P-algebra Mp(R) is closed under the lattice opera-
tions fUg= max(f,g) and fNg= min(f,g), and that it is complete in the
BE-topology: if {f.} is a uniformly bounded sequence in M;(R), converges
to f uniformly on compact subsets of R, and Eg(f, — fn) =0 as n,m—>co,
then feMp(R).

By means of the P-algebra Mp(R) one constructs the P-compactification
R% of R, defined by the following properties: R} is a compact Hausdorff
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space and contains R as an open dense subset; every feMp(R) has a con-
tinuous extension to R¥; and Mp(R) separates the points of R3.

A point seR} is called a P-singular point if f(s)= 0 for all feMp(R);
it exists, and is unique, if and only if SRPdV= co  (Nakai-Sario [7]). It is

known that peR} is P-singular if and only if SRnUPdeoo for every neigh-
borhood U of p in R} (Kwon-Sario [4]). Points of R} which are not P-
singular are called P-regular.

Let Mp4R) be the family of BE-limits of functions of Mp(R) with com-
pact supports. The set

dp = {z=R¥| f(x) = 0 for all feMy,(R)}

is called the P-harmonic boundary and contains the P-singular point s if the
latter exists.

2. Consider the family Mp(R) of Tonelli functions on R with finite
energy integrals. It is easily seen that Mp(R)CMy(R) and every fe& Mp(R)
has a continuous extension to K.

We write f = CE-lim,f, on R if {f,} converges to f uniformly on
compact subsets of R, and Ex(f — f.)—0 as n—>oc. The family My(R) is
complete with respect to the CE-topology. In fact, let {f,} be a CE-Cauchy
sequence in Mp(R). In view of the CD-completeness of Nakai’s lattice M(R)
(cf. Sario-Nakai [9], Kwon-Sario [2]), f = CD-lim,f, exists on R and
SRP(f—f,.t)de%O as i — oo for some sequence {n;}. Since {f,} is CE-Cauchy,
we conclude that f = CE-lim,f, on R (cf. Kwon-Sario-Schiff [5]).

Let MpsR) be the subfamily of Mp(R) which consists of the CE-limits
of functions in Mp(R) with compact supports.

We close this number with the important decomposition theorem (cf.
Nakai-Sario [7]): every f Mp(R) has the unique decomposition f=u+g9, usPE(R),
9EMp(R). If f=0, then u=0, and u< f for a P-superharmonic f.

The function # is called the P-harmonic projection of f, denoted by u=x(f).

For the proof take a regular exhaustion {R,} of R, and construct con-

tinuous functions u; (resp. u;) on R such that u}= f* (resp. uz= f) on
R — R, and u}ieP(R,) (resp. uzeP(R,)). Then Eg(u;)< Ex(f*)< Egx(f) and
Ex(uz) < Ex(f7) < Egl(f).

Since by Fatou’s lemma
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S Plim (u3PdV < lim Ex(u}) < Ex(f) < oo,

n—>co N—CO
we may assume that

u* = C-limul, u~ = C-lim u;

Hn—ro0 n—00

exist on R. Clearly #* u~ are solutions of 4u = Pu.
By virtue of the energy principle (cf. Royden [8])

Ex(u, — uzip) = Eg(uz) — Eg(thnip) =0

and hence d = lim, ,.Er(u;) exists. On letting p = c we obtain
Ep(us —ut) << Ep(ul) —d-—>0 as n—>oco,

Thus #* = CE-lim,u; on R and u#*<PE(R). Similarly »~ = CE-lim,u; on R
and #~=PE(R).

Set u=u*—uPER) and g= f—u on R. Since g= CE-lim,g, on R
where g, = f — (u5 —uz) = 0 on R— R,, we have the desired decomposition.
The uniqueness follows immediately from the energy principle.

The rest of the proof is obvious.

3. As an application of the above orthogonal decomposition theorem
we shall prove

THEOREM. Every (bounded or unbounded) energy-finite P-harmonic function u
on R takes the maximum of its absolute value on the P-harmonic boundary :

|#] << max |u].
4r
Proof. Let M= max,,|u|. If M= co, there is nothing to prove; we
suppose in the sequel that M < co. If supglu] <oo, then M+ u is a P-

superharmonic function on R, bounded from below and nonnegative on 4.
Therefore

Mtzuz=0

as desired (cf. Kwon-Sario-Schiff [5]). It remains to show that # is bounded.
Suppose supg|#| = co. Without loss of generality we may assume that
supgu = co. Since u* = U0 Mp(R), the orthogonal decomposition yields

ut=v+g

https://doi.org/10.1017/50027763000014215 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014215

34 Y.K. KWON, L. SARIO, AND ]. SCHIFF

with v€PE(R) and g MpsR). Moreover, v=u*=0 by virtue of the P-
subharmonicity of #*. Thus

supv=sup u* = oo,
R R

On the other hand v=u*< |u| <M< oo on 4dp.
For w > M, vnuneMp(R), and we have

VAN =W+ On

with wePBE(R) and g, MpsR). Note that w is independent of = for
n > M=max,v. It follows that

Eglv—w)= Ezglv—vNn+ g,

(
ER(’U - vﬂﬂ) + ZER(U —vNn, gn) + ER(gn)
ER(Z) - vﬂn) + ZER('U — W — Gny gn) + ER<gn)
Exlv—vNn)— Ex(g,) < Ezlv —vNn)—0,

I

1l

and v =wePBE(R). This contradicts supzv = oo.
As a consequence we have the Virtanen identity for P-harmonic func-
tions:

CoRrROLLARY. Opg= Opgg.

Proof. Since PBE c PE, we only have to prove that Opg D Opgg.
Suppose R€Oppe. Then 4p —s= ¢ (cf. Kwon-Sario-Schiff [6]). If 4,=¢,
the Royden harmonic boundary 4, is void and R€0s;COpz. In the case

p=1{s} the above theorem yields |#| < max,,|u|=0 for all uePE(R). Thus
ReOpg as desired.

4. For a fixed xR, let g= p, be the P-harmonic measure on 4,
with center x,, and K(x,¢) the P-harmonic kernel on Rx 4, with K(x,, t)=1:

=) = | PO (@, )

P

for all f in the family By(4») of bounded continuous functions on 4, which
vanish at the P-singular point s (Kwon-Sario-Schiff [5]). In view of z(f)=f
on 4, for feMp(R) we deduce from the above integral representation that
the space PBE(R) is in one-to-one correspondence with Mp(R)|4, and there-
fore forms a vector lattice (loc. cit.).
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In the case of unbounded energy-finite P-harmonic functions we state
(cf. Sario-Nakai [9]):

TuEOREM. Every PE-function uw on R has the integral representation along the
P-harmonic boundary

w(z) = SAPu(t)K(x, 1)d ().

Proof. Since every PE-function « is a difference of positive PE-functions,
# = a(unU0) —=((— #)U0), it suffices to consider positive PE-functions.

The function #N#n is P-superharmonic and belongs to the class Mp(R).
Therefore

S,, (N n) (K (x, )dp(t) = (unn) (&) < (wnn) () < u(z) < oo.
Set u, = r(lunNn)ePBE(R). For n=m
tn(z) = () = | (w0 — wnom) (DK (@, Oidp(t) = 0.

Consequently there exists a P-harmonic function v on R such that v=C-limuu,
on R.

On the other hand, since #,— u, is the P-harmonic projection of
unNn — unNme Mp(R),

Eg(thy — ) < Eg(unn —unm)—>0 as n,m— o,

Thus v = CE-lim,u, on R, v€PE(R), and v=u on d4,. It follows that

(@) = v(z) = lim S, (wnn) (8K (x, )dp(2)

= K@, tape)
4p
on R as asserted.

CororrARY. Let u,vePE(R). The least P-harmonic majorant u \/ v and the
greatest P-harmonic minorant u A\ v belong to the space PE(R) and have the following
integral representations along the P-harmonic boundary :

(Vo) @)= | @uo) K=, Ddps),

(u Av) (@)=, (uno) (K (e, Odu).
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5. Let # be a positive PE-function on R. We shall call # a PE-minimal
Sunction if for every vePE(R) with 0=<v=u there corresponds a constant c,
such that v = ¢, on R.

As is to be expected, the P-singular point enters in the topological char-
acterization of the existence of PE-minimal functions (for HD-minimal
functions cf. Sario-Nakai [9]):

THEOREM. There is a one-to-one correspondence between the PE-minimal jfunc-
tions on R and those isolated points of the P-harmonic boundary 4p which are different
Jrom the P-singular point s.

Proof. Suppose that there exists a PE-minimal function # on R. In
view of the maximum principle the P-harmonic boundary 4, contains a
point p for which #u(p) >0. Clearly p s s since u(s)= 0.

We claim that such a point p is unique. On the contrary suppose that
u(g) >0 for some g4, —s. Choose a function f&Mp(R) such that 0=<f=<1
on R, f(p)=1, and f(g)=0. Then v==rz(fNu)ePBE(R), and #=v=0 on
dp. Again by the maximum principle, # =v=0 on R and v = ¢,# on R for
some constant c,.

On the other hand v(g) = f(g) = 0 and v(g) = c,u(q) >0, a contradiction.
Thus #=0 on 4, —p and p is an isolated point of 4, by the continuity of
u.

Conversely let p be an isolated point of 4, such that ped, —s. Then
there exists a function feMp(R) such that 0<<f=<1 on R, f(p)=1, and
fldp —p=0. Let u=ax(f)ePBE(R). If vePE(R) such that 0<v=<u on
R, v=0 on 4dp—p and 0=<v(p)=<1. Thus there exists a constant c.,=v(p)/u(p)
such that v = ¢,# on 4,. By means of the maximum principle we conclude
that v = ¢,# on R and # is PE-minimal.

From the proof we also deduce:

Cororrary. Every PE-minimal function s bounded.

6. In analogy with HD-functions we introduce: a nonnegative P-harmon-

ic function # on R is called a PE-function if

u(z) = inf {v(z)|vePE(R), v=u on R}
for all x=R.

To study PE-functions we consider the class U (4p) of nonnegative func-
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tions f on 4, such that

F(t) = info(t)

vEF,

on 4p, where F; = {vEPE(R)|lv=f on 4p}. Clearly every f€U(4p) is upper
semicontinuous, g-integrable, and vanishes at the P-singular point s.
We state:

Lemma.  The class U(dp) has the following properties:

(1) of E is a compact subset of dp which does not contain the P-singular point
s, then s characteristic function Xz belongs to U(dp),

(1) if feU(dp), then fnacU(dp) for all a >0,

(1i1)  the class U(dp) forms a lattice under the pointwise maximum and minimum

operations.

Proof. Let g=By(4p) be such that g=f =Xz on 4,. For each n=1
choose an open neighborhood U, of E in R} such that g+ 1/# >1 on U,.
Then there exists a function 4, Mp(R) such that 0<<%,<1 on R,h,|E=1,
and %,|R—U,=0 (Kwon-Sario-Schiff [5]). Clearly f<h,<g-+ 1/n on 4p.

Set u, = n(h,)EPBE(R). In view of f<u,<g+ 1/n for all =,

F(t) <infu(?) < lim ()<< 9(t)

ueFy n—00

for all te4,. Since f is upper semicontinuous on dp,
f(t) = inf {g(¢)| g€ By(dp), 9= f} 232£M(f)2f(t)

on 4dp as asserted. This completes the proof of (i).

Contrary to assertion (ii) suppose that fNa&U(dp). Then there exist
pedp and € >0 such that

(fna)(p)< inf o(p) —e.

V€ g

Since feU(4p), there exists a sequence of functions v, F, with f(p)=1lim,v.(p).
Clearly z(v,Na)eF;n, and therefore

inf o(p)<lim z(v.Na) (p) = (fNa)(p).

vEFyqy n—00

Thus we have (fne) ()< (fNa)(p) —e, a contradiction.
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Statement (iii) follows immediately from the lattice property of the space
PE(R) and the definition of the class U(4j).

7. We are ready to express PE-functions as integrals of functions in
U(4p) along the P-harmonic boundary (cf. Sario-Nakai [9]):

TueoreEM. A function u belongs to the class 1/;115(1?) if and only if it has the
integral representation along the P-harmonic boundary

u(w) =, fOK (@, Ddp(t)

4p
Jor some feU(dp).
Proof. Let u be defined by the above integral for some feU(4p).

Choose a nonincreasing sequence {v,} of functions v,=F, such that f=1limv,
on 4p. Clearly # = lim,v, on R. Therefore for any veF,

u(x) = SAPf(t)K (, t)dﬂ(t)és (K (=, t)dp(t) = v(x)

v
4p
and we conclude that

u(x) = vlé’l;;v(x).

Since
u(z) < inf {v(z)|lve PE(R), v=u}<inf{v(z)|veF,} = u(x),
the function # belongs to the class 1’;}/E(R) as desired.
Conversely let #=PE(R). Then there exists a nonincreasing sequence

{u,} of positive PE-functions on R such that u(x) = lim,u,(x) on R.
Set f(t) = limyu,(t) for tedp. Clearly feU(4r) and we have

u(o) = lim | un(t)K (2, Odp(t) = SAPf(t)K(x, 1)dp(t)

n—>00 P
for each z=R.
LemmA. Let E be a compact set in the complement of the P-singular point s

with respect to the P-harmonic boundary Adp. Then the function w(x):S K(x, t)dp(t)
E
has the properties 0w(x)=<1 on R and limuep () = 0 for all ted, — E.

Proof. Let ge4p, — E. Choose a neighborhood U of E with ¢e&U and
a function feM;(R) such that 0<<f<1 on R, fl[E=1, and f|[R—U=0.
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Since f=2z on 4p,

0=u(e)={, AOK(@, Odu(t)= (7))

P
and therefore

0= lim w®)< lim =(f)(x)= f(g) = 0.

TE R, x—>q 2E R, 19

By means of the above lemma we shall establish a relation between a

PE-function « and the corresponding feU(dp) (cf. Sario-Nakai [9]):

THEOREM. Let uEIS\E/(R) have the integral representation along the P-harmonic
boundary

ulz)= | FOK (@, dplt)

with f€U(dp). Then the function #(t) = lim SUPser oett(®), tEdp satisfies 6 < f
with equality p-a.e. on dp.

Proof. In view of u<v for veF, and f=inf,rp, the inequality is

obvious.

For the proof of the latter assertion first assume that f is bounded. Let
€ >0 and suppose that #< f—e¢ on a compact subset E of 4, —s. If
#(E) >0, then the function

w(z) = sSEK(x, Hdp(t)

is P-harmonic and 0< w(x)<¢ on R. By the above lemma

lim [u(x) + w(x)] = a(t) < (1)

2E R, x—t

for all fe4p, — E. Hence for each veF,

lim [v(x) — u(x) — w(x)] =0

ze R, x>t

on 4p. Since v —u# —w is bounded from below, v=u + w on R (see Kwon-
Sario-Schiff [5]). On taking the infimum over F;, we obtain u=u + w.
In particular

For the P-singular point s, 0=<d(s)< f(s)= 0. Thus #=f p-a.e. on 4p.
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For an unbounded f, set u,(x)= Sd (fn n)(t)K(x,t)dp(t)eﬁE(R). Since

#=1i,= fNn wp-a.e. on 4p for all n=1, we have the desired conclusion.

8. A function #=PE(R) is said to be PE-minimal if # >0 on R and
for every vePE(R) with u=v there exists a constant ¢, such that v = c,u
on R.

We maintain (for %-functions cf. Sario-Nakai [9]):

THEOREM. If a function u is PE-minimal, then there exists a point p on the
P-harmonic boundary, different from the P-singular point s and with a positive p-
measure. In this case u(x) = wu(x)K(x,p). Conversely if psdp — s has a positive

p-measure, then K(x,p) is PE-minimal.
Proof. Let u be PE-minimal. Then

w(zw) = SdpmnK(m, t)d p(t)

on R. Set E,={tedpliu(t)=1/n}. Clearly E, is a compact subset of
4p — s, and therefore xz €U(dp). Since

uw)= | a(OK (@, 0dpt)= |, 10K (@, )dp(t)=PER)

n

there exists a constant c¢,, 0=<c,=<1, such that

SE K(x, $)dp(t) = cou(x)

on R. For large n, #(E,)>0 and ¢, >0. Thus # is bounded by Lemma
7. Set E=E,, and

w(z) = SEK(x, Hdp(t).

Then w=cyu and @ =1 p-a.e. on E. In view of c,suppu=1, w= cu
where ¢ = 1/supzp#. Thus ci = Xz p-a.e. on 4dp.

Let A be a compact subset of E with #(E — A)>0. If #(A4)>0, then

SAK(x, t)dp(t)=cu(x) as above and cz=0 p-a.e. on 4,—A. Since p(E—A)>0

and ci=1 p-a.e. on E, this is a contradiction. Consequently p(A)= 0.
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On the other hand E is compact and g#(E)>0. Therefore there exists
a point peE such that z(ENU) >0 for all neighborhoods U of p. Suppose
#(p) = 0. Then there exists a sequence {U,} of neighborhoods U, of p with
0< p(ENU,)<1/n. If p(E-U,)>0, then for any compact K,,cU,, p#(E—K,)>0
and p(ENK,)=0 as above. The regularity of ¢ then implies ©(ENU,)= 0,
a contradiction. Thus #(E —U,) = 0 for all ». Hence

0< p(E) = {ENU,) <

for all », a contradiction, and we conclude that p#(p) > 0 and cu(x)=K(x, p)x(p).

Since K(%o, D) =1, cu(x,) = p(p) and therefore u(x) = u(x,)K(x,p) as asserted.
Conversely let p be a point in 4, — s such that p(p)>0. Then

K(w,p) = — o || 10K (@, 0d ()

isa I?E-function. If K(x, p) = v(x) =0 for some ve%(R), then K(¢, p) =9(¢)=0
and #(¢) = 0 p-a.e. on 4, —p. Thus

ow) = | (K@ dp(t) = 3(p)p)K (2, p)
on R and K(x,p) is I/;E-minimal.
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