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A short proof of the Hilton–Milner Theorem

Denys Bulavka and Russ Woodroofe

Abstract. We give a short and relatively elementary proof of the Hilton–Milner Theorem.

The Hilton–Milner Theorem gives the maximum size of a uniform pairwise-
intersecting family of sets that do not share a common element.

Theorem 1 (Hilton and Milner 1967 [9]) Let k ≤ n/2. If F is a family of pairwise-
intersecting k-element subsets of [n], where⋂F∈F F = ∅, then ∣F∣ ≤ (n−1

k−1) − (
n−1−k

k−1 ) + 1.

In the current article, we will show Theorem 1 to follow quickly from the following
theorem, which we believe to be of some independent interest. Two set systemsA and
B are cross-intersecting if for every A ∈ A, B ∈ B, the intersection A∩ B is nonempty.
The shadow ∂B of a k-element set B consists of all the (k − 1)-element subsets of B;
the shadow of a uniform set family is the union of the shadows of its constituent sets,
thus consists of all (k − 1)-element subsets of constituent sets.

Theorem 2 Let 2k − 1 ≤ n, let A be a family of (k − 1)-element subsets of [n], and
let B be a family of k-element subsets of [n]. If A and B are cross-intersecting, B is
nonempty, and ∂B ⊆ A, then

∣A∣ + ∣B∣ ≤ ( n
k − 1
) − (n − k

k − 1
) + 1.

Note that the bound of Theorem 1 is attained with a single k-element set B that
does not contain 1, together with all the k-element sets that contain 1 and intersect B;
the bound of Theorem 2 is attained with a single k-element set and all (k − 1)-element
sets that intersect it.

Our proof of Theorem 1 may be viewed as injective. Other recent proofs of
Theorem 1 were given in [4, 10], but instead of relying on a simple cross-intersecting
type theorem, both of these proofs rely on a certain “partial complement” operation.
In somewhat older work [6] (see also [3]), Frankl and Tokushige gave a proof of
Hilton–Milner from a different cross-intersection theorem, but the proof is less
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elementary than that of Theorem 2, requiring the Schützenberger–Kruskal–Katona
Theorem. A recent preprint of Wu, Li, Feng, Liu, and Yu [12] gives a proof based on
still another cross-intersecting theorem, but the existing proofs of this underlying
result also seem to be somewhat more difficult than our approach.

1 Shifting

We recall that a system F of subsets of [n] is shifted if for each i < j, whenever
F ∈ F, j ∈ F, and i ∉ F, then also (F/ j) ∪ i ∈ F. Here, we abuse notation to identify i , j
with the singleton subsets {i}, { j}, where it causes no confusion. The (combinatorial)
shifting operation Shifti← j is defined as

Shifti← j F ={F ∈ F ∶ j ∉ F or i ∈ F or (F/ j) ∪ i ∈ F}
∪ {(F/ j) ∪ i ∶ F ∈ F is such that j ∈ F , i ∉ F}.

It is well-known that repeated applications of Shifti← j over i < j will eventually
reduce an arbitrary set system to a shifted set system, that the operation preserves the
cross-intersecting property, and that ∂ Shifti← j F ⊆ Shifti← j ∂F [1, 2, 7, 8].

2 Proof of Theorem 2

We carry out a straightforward induction on n.

Proof If n = 2k − 1, then the upper bound is ( n
k−1), and the result follows by

noticing that if a (k − 1)-element set is in A, then its complement cannot be in B

(and vice-versa).
For the inductive step, we may assume that A and B are shifted; otherwise, shift.

Let A(¬n) and B(¬n) consist of the subsets in A and B (respectively) that do not
contain n. It is immediate that A(¬n) and B(¬n) are shifted, cross-intersecting, and
satisfy the shadow condition. Let A(n) and B(n) be obtained by taking the families
consisting of the subsets in A and B that contain n, then deleting n from each subset.
It follows quickly from definitions thatA(n) andB(n) are shifted, cross-intersecting,
and satisfy the shadow condition.

As A and B are shifted, so A(¬n) and B(¬n) are nonempty, and hence by
induction

∣A(¬n)∣ + ∣B(¬n)∣ ≤ (n − 1
k − 1
) − (n − 1 − k

k − 1
) + 1.(1)

For A(n),B(n), there are a few easy cases:
If A(n) is empty, then (by the shadow condition) also B(n) is empty.
If B(n) is empty, then since B is nonempty and shifted, we have {1, . . . , k} ∈ B.

Since every set in A(n) intersects with {1, . . . , k}, we get ∣A(n)∣ + ∣B(n)∣ = ∣A(n)∣ ≤
(n−1

k−2) − (
n−1−k

k−2 ).
If B(n) is nonempty, then by induction it holds that

∣A(n)∣ + ∣B(n)∣ ≤ (n − 1
k − 2
) − (n − 1 − (k − 1)

k − 2
) + 1

≤ (n − 1
k − 2
) − (n − 1 − k

k − 2
).(2)
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The result now follows from (1), the bound on ∣A(n)∣ + ∣B(n)∣, and Pascal’s Triangle
identity. ∎

3 Proof of Theorem 1

We will use the following lemma of Frankl and Füredi.

Lemma 3 (Essentially Frankl and Füredi [5]) If F is a pairwise-intersecting family of
k-element subsets of [n]with⋂F∈F F = ∅, then there is a shifted family F′ satisfying the
same properties and with ∣F′∣ ≥ ∣F∣.

Proof Given the lemma, the proof of Theorem 1 is nearly immediate. Let F be
a shifted family satisfying the conditions of the theorem. Define

A = {F/1 ∶ F ∈ F with 1 ∈ F}
B = {F ∶ F ∈ F with 1 ∉ F}.

Since F is shifted, if F ∈ F does not have 1, then (F/i) ∪ 1 ∈ F for each i ∈ F. It follows
that ∂B ⊆ A. Since F is intersecting, also A,B are cross-intersecting systems of
subsets of {2, . . . , n}. Since F has empty intersection, both of A and B are nonempty.
The desired bound is now immediate from Theorem 2. ∎

Remark 4 This proof requires only the special case of Theorem 2 where the set
systems are shifted.

4 Proof of Lemma 3

For completeness, we also prove the lemma.

Proof Given F as in Theorem 1, apply shifting operations Shifti← j . Each such
operation preserves the pairwise-intersecting property and cardinality, but may or
may not result in a system with a common element of intersection.

If a sequence of shifting operations ends in a shifted system with empty intersec-
tion, then we are certainly done.

Otherwise, some Shifti0← j0 results in a system where every set contains i0. Thus,
before this step, we have a system F where every set contains either i0 or j0. Relabel
i0 to 1 and j0 to 2, and continue applying Shifti← j operations over all 3 ≤ i < j. Thus,
after these additional shift operations, we have {1, 3, . . . , k + 1} and {2, 3, . . . , k + 1}
in the system. Without loss of generality (since every set in F contains 1 or 2), we
also have all k-element subsets containing {1, 2}; otherwise, add them. Thus, we
have ∂ {1, . . . , k + 1} contained in our system. As ∂ {1, . . . , k + 1} has empty inter-
section and is preserved under all further shift operations (over 1 ≤ i < j), the result
follows. ∎
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5 Discussion

In addition to being short and direct, our proof is relatively elementary, using only
shifting theory. Indeed, we recover a completely elementary proof of the restriction
of the Hilton–Milner Theorem to shifted systems.

A main difficulty in proofs of Hilton–Milner and/or Erdős–Ko–Rado type results
is relating systems of (k − 1)-element subsets to systems of k-element subsets. Our
approach handles this with the shadow containment condition of Theorem 2.

Our motivation here comes partly from combinatorial algebraic topology. In
particular, the simplicial complex generated by a shifted family of k-element sets
has homology with generators in B (using notation as in the proof of Theorem 1).
Thus, Lemma 3 transforms the combinatorial property of empty intersection into a
homological property. Kalai comments on similar connections between intersection
theorems and homology in [11, Section 6.4].

The approach also gives a unified proof of the well-known Erdős–Ko–Rado
Theorem. More concretely, if we relax the hypothesis of Theorem 2 to allow B to
be empty, then the corresponding bound is ∣A∣ + ∣B∣ ≤ (n−1

k−1). Erdős–Ko–Rado now
follows from replacing Theorem 2 with the relaxed cross-intersection theorem in the
proof of Theorem 1. The proof is similar to (and only slightly more complicated than)
the standard inductive proof of Erdős–Ko–Rado for shifted systems.

The approach also recovers uniqueness of the largest family for Theorem 1 when
n/2 > k ≥ 4. Here, we strengthen the hypothesis of Theorem 2 to require B to have at
least two elements. We discuss the details in the following section.

6 Uniqueness of the Hilton–Milner family

As mentioned in the discussion, the same techniques give uniqueness of the maxi-
mum family in Theorem 1. We prove the following.

Theorem 5 In the situation of Theorem 1, if 4 ≤ k < n/2 and ∣F∣ achieves the upper
bound, then there is some k-set B and i ∉ B so that F consists of B together with all
k-sets that both contain i and intersect B.

We require k ≥ 4 in order to avoid some technicalities. In particular, there is
another family achieving the bound for k = 3. See [10] for more details and a different
argument.

As in the proof of Theorem 1, we reduce to a shifted family, and prove for a shifted
family.

The proof for a shifted family requires a completely straightforward modification of
Theorem 2. We obviously require k ≥ 4. We also strengthen the hypothesis to require
∣B∣ ≥ 2, replacing the condition that ∣B∣ ≥ 1; with the strengthened hypothesis, the
inequality is strict. Then in the proof, we may have ∣B(n)∣ empty or nonempty. If
empty, then since B has at least two elements, so A(n) is strictly smaller than the
given bound. If nonempty, then the bound in (2) is already strict so long as k ≥ 4.
In either case, the induction step yields a strict inequality.
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Theorem 5 follows for shifted families by applying the variant of Theorem 2 with
∣B∣ ≥ 2 to the same families as in the proof of Theorem 1.

It remains only to reduce to shifted families. This reduction requires a bit of care.
We did not find the following lemma in the literature, although we believe it to be
known to experts in the field.

Lemma 6 Let F be a family of pairwise-intersecting k-element subsets of [n] with the
additional property that for any F0 ∈ F, the intersection⋂F/{F0} F is empty. Then there
is a shifted family F′ satisfying the same properties and with ∣F′∣ ≥ ∣F∣.

Proof. By the standard family, we mean the shifted family with A = {2, . . . , k + 1},
A′ = {2, . . . , k, k + 2}, and all k-element sets that both contain 1 and intersect A
and A′. It is obvious that the standard family is at least as large as any family where all
but two sets contain 1.

GivenF, we perform a sequence of shifts. If these terminate in a shifted family with
the desired properties, then we are done. Otherwise, an operation results in a family
without the additional property. Stopping just before this operation and relabeling
elements, we have a family containing sets with 1 and not 2, with 2 and not 1, with
both 1 and 2, and possibly the set B = {3, . . . , k + 2}.

We may assume without loss of generality that we have all sets containing both 1
and 2 and intersecting with B. Since these sets do not have any common intersection
other than 1 and 2, the operations Shifti← j over all 3 ≤ i < j preserve the additional
property.

After shifting over 3 ≤ i < j, if we have only one set with 1 and not 2, or only one
set with 2 and not 1, then we replace with the standard family. Otherwise, we have
in the family {a, 3, . . . , k + 1} and {a, 3, . . . , k, k + 2} for a = 1, 2, along with all sets
containing {1, 2} and intersecting B. In particular, the family contains as subfamilies
both ∂ {1, . . . , k + 1} and ∂ {1, . . . , k, k + 2}. Both subfamilies have empty intersection
and are preserved under all shift operations, so we can now shift until the system
stabilizes. ∎
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