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A short proof of the Hilton—Milner Theorem
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Abstract. We give a short and relatively elementary proof of the Hilton-Milner Theorem.

The Hilton-Milner Theorem gives the maximum size of a uniform pairwise-
intersecting family of sets that do not share a common element.

Theorem 1 (Hilton and Milner 1967 [9])  Let k < n/2. If F is a family of pairwise-
intersecting k-element subsets of [n], where Npeg F = @, then |F| < (}7)) - (";l:lk) +1.

In the current article, we will show Theorem 1 to follow quickly from the following
theorem, which we believe to be of some independent interest. Two set systems A and
B are cross-intersecting if for every A € A, B € B, the intersection A N B is nonempty.
The shadow 0B of a k-element set B consists of all the (k — 1)-element subsets of B;
the shadow of a uniform set family is the union of the shadows of its constituent sets,
thus consists of all (k — 1)-element subsets of constituent sets.

Theorem 2 Let 2k —1< n, let A be a family of (k —1)-element subsets of [n], and
let B be a family of k-element subsets of [n]. If A and B are cross-intersecting, B is
nonempty, and 0B C A, then

n n-k
|A|+|B‘S(k—1)_(k—1)+1'

Note that the bound of Theorem 1 is attained with a single k-element set B that
does not contain 1, together with all the k-element sets that contain 1 and intersect B;
the bound of Theorem 2 is attained with a single k-element set and all (k — 1)-element
sets that intersect it.

Our proof of Theorem 1 may be viewed as injective. Other recent proofs of
Theorem 1 were given in [4, 10], but instead of relying on a simple cross-intersecting
type theorem, both of these proofs rely on a certain “partial complement” operation.
In somewhat older work [6] (see also [3]), Frankl and Tokushige gave a proof of
Hilton-Milner from a different cross-intersection theorem, but the proof is less
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elementary than that of Theorem 2, requiring the Schiitzenberger-Kruskal-Katona
Theorem. A recent preprint of Wu, Li, Feng, Liu, and Yu [12] gives a proof based on
still another cross-intersecting theorem, but the existing proofs of this underlying
result also seem to be somewhat more difficult than our approach.

1 Shifting

We recall that a system J of subsets of [n] is shifted if for each i < j, whenever
FeJF,jeF,andi ¢ F,thenalso (F\j) Ui € F. Here, we abuse notation to identify i, j
with the singleton subsets {i}, {j}, where it causes no confusion. The (combinatorial)
shifting operation Shift;._; is defined as
Shift; jF={FeJF:j¢ForieFor (F\jluieJ}
U{(F\j)ui:FeJissuchthatjeF,i¢F}.

It is well-known that repeated applications of Shift;._; over i < j will eventually
reduce an arbitrary set system to a shifted set system, that the operation preserves the
cross-intersecting property, and that d Shift;_; I ¢ Shift;_; 9 [1, 2, 7, 8].

2 Proof of Theorem 2
We carry out a straightforward induction on #.

Proof If n=2k-1, then the upper bound is ( k'll), and the result follows by
noticing that if a (k —1)-element set is in A, then its complement cannot be in B
(and vice-versa).

For the inductive step, we may assume that A and B are shifted; otherwise, shift.
Let A(-n) and B(-n) consist of the subsets in A and B (respectively) that do not
contain n. It is immediate that A(-n) and B(-n) are shifted, cross-intersecting, and
satisfy the shadow condition. Let A(#) and B(n) be obtained by taking the families
consisting of the subsets in A and B that contain #, then deleting n from each subset.
It follows quickly from definitions that A (1) and B(n) are shifted, cross-intersecting,
and satisfy the shadow condition.

As A and B are shifted, so A(-n) and B(-n) are nonempty, and hence by
induction

n-1 n-1-k
) Gl el ()= (")

For A(n), B(n), there are a few easy cases:

If A(n) is empty, then (by the shadow condition) also B(#n) is empty.

If B(n) is empty, then since B is nonempty and shifted, we have {1,...,k} € B.
Since every set in A(n) intersects with {1, ..., k}, we get |[A(n)| + |B(n)| = |A(n)| <
(i) - ("5"):

If B(n) is nonempty, then by induction it holds that

A ()| + |B(n)]| < (::;) B (n —1k—_(12< - 1)) 1

o <(eo)- (")
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The result now follows from (1), the bound on |A(n)| + |B(n)|, and Pascal’s Triangle
identity. [ ]

Proof of Theorem 1

We will use the following lemma of Frankl and Fiiredi.

Lemma 3 (Essentially Frankl and Firedi [5])  If F is a pairwise-intersecting family of
k-element subsets of [n] with Npeg F = @, then there is a shifted family F' satisfying the
same properties and with |F'| > |F.

Proof  Given the lemma, the proof of Theorem 1 is nearly immediate. Let F be
a shifted family satisfying the conditions of the theorem. Define

A={F\l : FeFwithleF}
B={F :FeFwithl¢TF}.

Since ¥ is shifted, if F € F does not have 1, then (F\i) ul € JF for each i € 7. It follows
that 0B c A. Since J is intersecting, also A, B are cross-intersecting systems of
subsets of {2, ..., n}. Since F has empty intersection, both of A and B are nonempty.
The desired bound is now immediate from Theorem 2. ]

Remark 4 'This proof requires only the special case of Theorem 2 where the set
systems are shifted.

Proof of Lemma 3

For completeness, we also prove the lemma.

Proof Given J as in Theorem 1, apply shifting operations Shift;;. Each such
operation preserves the pairwise-intersecting property and cardinality, but may or
may not result in a system with a common element of intersection.

If a sequence of shifting operations ends in a shifted system with empty intersec-
tion, then we are certainly done.

Otherwise, some Shift;,. j, results in a system where every set contains iy. Thus,
before this step, we have a system F where every set contains either i or jo. Relabel
ip toland jj to 2, and continue applying Shift;. ; operations over all 3 < i < j. Thus,
after these additional shift operations, we have {1,3,...,k +1} and {2,3,...,k+1}
in the system. Without loss of generality (since every set in F contains 1 or 2), we
also have all k-element subsets containing {1,2}; otherwise, add them. Thus, we
have 0{1,...,k +1} contained in our system. As 0 {1,...,k + 1} has empty inter-
section and is preserved under all further shift operations (over 1 < i < j), the result
follows. |
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5 Discussion

In addition to being short and direct, our proof is relatively elementary, using only
shifting theory. Indeed, we recover a completely elementary proof of the restriction
of the Hilton-Milner Theorem to shifted systems.

A main difficulty in proofs of Hilton-Milner and/or Erd6s-Ko-Rado type results
is relating systems of (k —1)-element subsets to systems of k-element subsets. Our
approach handles this with the shadow containment condition of Theorem 2.

Our motivation here comes partly from combinatorial algebraic topology. In
particular, the simplicial complex generated by a shifted family of k-element sets
has homology with generators in B (using notation as in the proof of Theorem 1).
Thus, Lemma 3 transforms the combinatorial property of empty intersection into a
homological property. Kalai comments on similar connections between intersection
theorems and homology in [11, Section 6.4].

The approach also gives a unified proof of the well-known Erdds-Ko-Rado
Theorem. More concretely, if we relax the hypothesis of Theorem 2 to allow B to
be empty, then the corresponding bound is |A| + |B| < (Zj) Erd4s-Ko-Rado now
follows from replacing Theorem 2 with the relaxed cross-intersection theorem in the
proof of Theorem 1. The proof is similar to (and only slightly more complicated than)
the standard inductive proof of Erdds—Ko-Rado for shifted systems.

The approach also recovers uniqueness of the largest family for Theorem 1 when
n/2 > k > 4. Here, we strengthen the hypothesis of Theorem 2 to require B to have at
least two elements. We discuss the details in the following section.

6 Uniqueness of the Hilton-Milner family

As mentioned in the discussion, the same techniques give uniqueness of the maxi-
mum family in Theorem 1. We prove the following.

Theorem 5  In the situation of Theorem 1, if 4 < k < n/2 and |F| achieves the upper
bound, then there is some k-set B and i ¢ B so that F consists of B together with all
k-sets that both contain i and intersect B.

We require k >4 in order to avoid some technicalities. In particular, there is
another family achieving the bound for k = 3. See [10] for more details and a different
argument.

As in the proof of Theorem 1, we reduce to a shifted family, and prove for a shifted
family.

The proof for a shifted family requires a completely straightforward modification of
Theorem 2. We obviously require k > 4. We also strengthen the hypothesis to require
|B| > 2, replacing the condition that |B| > 1; with the strengthened hypothesis, the
inequality is strict. Then in the proof, we may have |B(n)| empty or nonempty. If
empty, then since B has at least two elements, so A(n) is strictly smaller than the
given bound. If nonempty, then the bound in (2) is already strict so long as k > 4.
In either case, the induction step yields a strict inequality.
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Theorem 5 follows for shifted families by applying the variant of Theorem 2 with
|B| > 2 to the same families as in the proof of Theorem 1.

It remains only to reduce to shifted families. This reduction requires a bit of care.
We did not find the following lemma in the literature, although we believe it to be
known to experts in the field.

Lemma 6 Let F be a family of pairwise-intersecting k-element subsets of [n] with the
additional property that for any Fy € J, the intersection N\ (5, F is empty. Then there
is a shifted family F' satisfying the same properties and with |F'| > |F|.

Proof. By the standard family, we mean the shifted family with A = {2,...,k + 1},
A"={2,...,k,k+2}, and all k-element sets that both contain 1 and intersect A
and A'. It is obvious that the standard family is at least as large as any family where all
but two sets contain 1.

Given F, we perform a sequence of shifts. If these terminate in a shifted family with
the desired properties, then we are done. Otherwise, an operation results in a family
without the additional property. Stopping just before this operation and relabeling
elements, we have a family containing sets with 1 and not 2, with 2 and not 1, with
both 1and 2, and possibly the set B = {3,...,k + 2}.

We may assume without loss of generality that we have all sets containing both 1
and 2 and intersecting with B. Since these sets do not have any common intersection
other than 1 and 2, the operations Shift;.; over all 3 < i < j preserve the additional
property.

After shifting over 3 < i < j, if we have only one set with 1 and not 2, or only one
set with 2 and not 1, then we replace with the standard family. Otherwise, we have
in the family {a,3,...,k+1} and {a,3,..., k, k + 2} for a = 1,2, along with all sets
containing {1,2} and intersecting B. In particular, the family contains as subfamilies
bothd{l,...,k+1}and d{L,..., k, k + 2}. Both subfamilies have empty intersection
and are preserved under all shift operations, so we can now shift until the system
stabilizes. ]
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