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SOLUTION OF A SCHRODINGER EQUATION
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Abstract

A simple eigenvalue and a corresponding wavefunction of a Schrodinger operator
is initially approximated by the Galerkin method and by the iterated Galerkin
method of Sloan. The initial approximation is iteratively refined by employing
three schemes: the Rayleigh-Schrodinger scheme, the fixed point scheme and a
modification of the fixed point scheme. Under suitable conditions, convergence
of these schemes is established by considering error bounds. Numerical results
indicate that the modified fixed point scheme along with Sloan's method performs
better than the others.

1. Introduction

The purpose of this note is to illustrate the use of some recent iterative re-
finement schemes in computing solutions of the Schrodinger equation

s , (1)

where Vs(r) is a central attractive potential of the inverse power type:

Vs(r) = -g/rs+2,-2<s<0,

g > 0 being the coupling constant.
Using the Fourier-Fock technique and the separation of variables, it is

shown in [5] that the solution of the above Schrodinger equation can be
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116 Rekha P. Kulkarni and Balmohan V. Limaye [2]

reduced to an eigenvalue problem for an infinite matrix A(s, I) depending
upon the parameter s and the angular momentum / . The matrix A(s, /)
defines a compact positive operator on I2 , the space of all complex square-
summable sequences.

Let X(s, 1; q) denote the q-X\\ eigenvalue of A(s, /) and E (s, I) denote

the q-th energy level. Then Ea(s, I) - -(KX(s, I; q))~2/s, where K is a
constant which can be predetermined by an appropriate choice of the units. A
similar relationship holds between the corresponding eigenvectors of A{s, I)
and the wavefunctions.

In [5], the eigenvalues X(s, I; q) of the infinite matrix A{s, /) were ap-
proximated by the eigenvalues A( / I ) (J , / ; q) of the matrix A(n)(s, /) of order
n, obtained by selecting the first n rows and n columns of A(s, / ) . It
was observed there that the rate of convergence of ^"\s, 1; q) to X(s, I; q)
(as « - t o o ) is good in the interval —2<s< - 0 . 5 , but is slow in the in-
terval -0.5 < s < 0 . Thus, in this latter range of 5, eigenvalue problems
for very large matrices A("'(5, /) were required to be solved. The computer
time needed for such a calculation increases exponentially with n , and often
a solution can become infeasible due to excessive requirement of computer
memory.

Eigenvalue problems for infinite or very large full matrices can be tackled
economically by first solving an eigenvalue problem for a nearby matrix of
moderate size to obtain a crude initial approximation of the eigenelements
and then by employing iterative procedures to refine the initial approxima-
tion. In the present paper we shall consider three iteration schemes: the
Rayleigh-Schrodinger scheme, a fixed point scheme and a modification of
this fixed point scheme. The method of truncating an infinite or a very large
matrix to its first n rows and n columns is known as the Galerkin method.
An iterated Galerkin method is proposed by Sloan (see [7]) in which the ma-
trix is truncated to its first n columns. We shall consider both these methods
for finding the initial terms of the above iteration schemes. A comparison
of large numerical data has prompted us to prefer the modified fixed point
scheme along with Sloan's method to the remaining.

The iteration schemes provide sequences of iterates A and 0 converging
to a simple eigenvalue X and an eigenvector q> of the large matrix. At
each stage, we compute the Rayleigh quotient q{<Pj) based on <p.. The
Rayleigh quotient q{(pj) is a much better approximation of X than <Pj is of
cp . In [2, p. 360-361], some of our earlier numerical experiments have been
reported for the case of the largest eigenvalue of A{s, 0) , with 5 = -0.5 ,
-0 .05 , - 0 . 0 1 . These experiments were performed by using the Rayleigh-
Schrodinger scheme with the Galerkin method. This was suggested to the
authors by F. Chatelin, for which they are grateful.
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2. Various iteration schemes

Let T denote a compact operator on I2 and let TQ denote a finite rank
approximation of T. For example, if nn:l

2 —»I2 is the projection given by

then TQ = nnTnn is the Galerkin approximation of T, while the Sloan
approximation of T is 7^ = Tnn .

Let Ao be a simple eigenvalue of To with a corresponding eigenvector
<p0. Then Ao is a simple eigenvalue of the adjoint operator ro*:/2 —> I2,
and there is a unique eigenvector cp*0 of 7^ corresponding to Ao such that
{q>0, <PQ) = 1. The spectral projection Po associated with To and Ao is given
by

Pox = (x, <p*0)<p0, xel2.

The reduced resolvent So associated with To and Xo is given by

50=lim(r0-z/)-1(7-JP0).
z->X0

Then it can be proved that (cf. [2], p. 107)

(To - V ) S 0 = I-P0 = S0(T0 -A0I), S0P0 = 0 = P0S0.

Let A be a nonzero simple eigenvalue of T and let q> be an eigenvector
of T such that (<p, (p^) — 1 . If (p* is the eigenvector of T* corresponding
to I such that {q>, <p*) = 1, then the spectral projection P associated with
T and X is given by

Px = {x, q>*)(p, xeX.

Rayleigh-Schrodinger Scheme
Since T = T0 + (T -To), one can consider the linear perturbation family

T(t) = TQ + t(T-T0), teC,

so that T(0) = TQ and 7*(1) = T. Let us assume that for \t\ sufficiently
small, T(t) has a simple eigenvalue k(t) and a corresponding eigenvector
<p(t) such that (tp(t), <PQ) = 1, and that X{t) and <p(t) are analytic at / = 0:
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118 Rekha P. Kulkami and Balmohan V. Limaye [4]

By equating the coefficients of like powers of t in T{t)(p{t) = X(t)<p(t), we
obtain

To<Po = V o >
(which is the initial eigenequation) and for k = 1, 2,... ,

= sof - (T -
The series (2) and (3) are known as the Rayleigh-Schrodinger series with
initial terms Ao and <p0 , respectively. At t = 1 , consider the partial sums

a n d ? ; = ?o + S ? ( * ) ' 7 = 1 , 2 , . . . .
k=l k=\

It is then easy to see that for j = 1, 2, . . . ,

* and

<Pj = <Pj-i +so\~ T(Pj-y ;
L ; = 2

This yields the well-known Rayleigh-Schrodinger iteration scheme.

Schemes based on fixed point iterations
Since Tip = l(p and (q>, q>*0) = 1, it follows that {Tcp, <p^) = A, and if

A ^ O ,
<? = T(p/{T(p, <pl).

Thus, <p is a fixed point of the function F(x) = Tx/{Tx, cp*0) defined for
all x which satisfy (Tx, <p*0) ^ 0 . Starting with some x0 and XQ in I1, we
define the power iteration scheme by

xj_l ,x*), . / = 1 , 2 , . . . , (5)

provided (Txj_l, x^) ^ 0. Let X be the dominant (simple) eigenvalue of
T. It can be proved that if {x0, <p*0) / 0 and (cp, x^) ^ 0, then the power
iterates x converge to the eigenvector x of T which satisfies {x, x^) — 1,
and kj = (TXJ_1,XQ) converge to A. (See, e.g., Theorem 11.12 of [6]).
While we are at liberty to choose x0 and xj almost arbitrarily, the power
iteration has the limitation that it can converge only to the dominant eigen-
value of T. This feature of the power iteration makes us seek other iteration
schemes based on the fixed point principle for approximating intermediate
eigenvalues of T.
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We note that <p ^ 0 is an eigenvector of T corresponding to X = (T<p, q>*0)
if and only if

(T<p,<p*0)<p-T<p=0.

Now, for x in X, we observe that x — 0 if and only if PQx = 0 = S0;t. If
we let x = (T^ , (p*0)q> - T(p , then PQx = 0. Thus, <p ^ 0 is an eigenvector
of r if and only if

So((T<p,<pl)<p-T<p) = O,

or, in other words, if and only if <p ^ 0 is a fixed point of the function

Gx = x + S0((Tx, <p*)x - Tx).

This leads to a fixed point iteration scheme:

(pQ: an eigenvector of ro, and for j = 1, 2, . . . ,

P7 = 9j-x + SQ&JVJ-X ~ T^j.i). (6)
We refer to Theorem 11.5 of [6] for a proof of the convergence of this fixed
point scheme as well as the Rayleigh-Schrodinger scheme under the condi-
tions

| | ( r - T0)P0\\, \\S0\\ < 1/4 and | | ( r - r o )5o | | < 1/4.

Another way of proving the convergence of the above fixed point scheme
and of modifications of it is given in the following Propositions 2.1 and
2.2. The basic idea used here comes from Propositions 2 and 3 of [1]. In
[3], convergence of several schemes based on the fixed point technique was
similarly proved. This work is to appear in [4]. Refer also to Theorem 11.10
of [6].

PROPOSITION 2.1. Let

If\\T- To\\ < l/c0, then for j = 0,l,2,....

\\<P-<Pj\\<\\<p-<P0\\lcQ\\T-TQ\\]j^0

and

\l-lj+l\<\\P0(T-T0)\\ llp'H ||p - p o | | [ g | r - r o | | ] y ' - O as y - o o .

PROOF. We first prove that if for some j

\\<P-<Pj\\<\\<P-<P0\\,

then
\\9-9J+l\\<c0\\T-T0\\\\V-p0\\.
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Now, since PQ<p — <pQ = PQ(p , we have

<P ~ <Pj+l =<P-<Pj- S0(lj+l<Pj - T<pj)

= S0(T0 - V ) ( P - <Pj) ~ S0(*j+l<Pj - T<pj)

= S0(T0 - T)(q> - fj) + (X- *.j+l)S0{9j - <p + <p - <p0)

+ (A - /gso(0> -tpj).

mow,

\l-lj+l\ = \((T-T0)(<p-<pj),<pl)\<\\T-T0\\\\<pt
0\\\\<Pj-<p\\,

and
|A - A o | = \((T - T0)<p, <pl)\ < \\T- r o |

Hence

We now establish the desired bound of \\q> - » || by induction on j . The
bound is obvious for j = 0 . Assume that

\\<P-<?j\\<\\<p-<P0\\[c0\\T-T0\\]
j.

Then \\<p - <Pj\\ < \\<p - <po\\, since co | | r - To\\ < 1. Hence by what we have
just proved,

\\9-9J+i\\<c0\\T-T0\\\\q,-9j\\

<\\<p-<pQ\\[c0\\T-T0\\]
J+l.

Thus, the induction is over. Finally, since PQV^ = (p*Q , we have

The bound for \X — A,+1| given in the statement of the proposition now
follows easily.

Finally, we consider a modification of the above fixed point scheme in
which each iteration step consists of a power iteration followed by a fixed
point iteration:

<p0: an eigenvector of To, and for j = 1, 2, . . . ,
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[7] Iterative refinement schemes 121

Provided ( 7 > _ , , (p^) ^ 0 it can be easily seen that for j — 1, 2, . . . ,

j , , 0 J J I J , , 7 (8)

with Xj = (7>y_, , <p*Q) and /ij = (T2<pj_l, <p*Q).

PROPOSITION 2.2. Let c be a constant such that \\(p - (pQ\\ < c\\(T - T0)T\\.
Let d0 = 2[\\S0\\ + c\\9*Q\\ \\T\\]/\X\ + 2\\S0\\ ||p*|| | | r | | [||^|| + 8c||r||2]/|A|2. / /
\\(T - r o ) r | | < l/d0, then for 7 = 0 , 1 , 2 , . . . ,

\\<P ~ <Pj\\ < \\<P - <P0\\[d0\\(T - TQ)T\\]j - 0

and

oll W<P ~ <PQ\\[d0\\(T - T0)T\\]j -,0asj-+oo.

PROOF. We first claim that if for some j

\\<P-<Pj\\<\\<p-<PoW a n d \*j+i\>\M/2,

then

This follows from the identity

<P ~ <Pj+i = y ^ - { W o " T)T + (X - X0)T](<p - 9) -(X- Xj+l)cp)
j+i

-^-{(T\cp - 9j), 9o)-W-lJ+l)]So[T{q> - 9j)-X(<p -
A;+i

and the estimates

= \({J-TQ)T<p,q>l)\l\k\

<\\{T-T0)T\\\W\\\\9l\\l\k\,

-^ll l l^oll . 7 = 0 , 1 , 2 , . . . ,

\M < \\T\\.

We now establish the desired bound of \\cp - (pM by induction on j . The
bound is obvious for j = 0. Assume that

\\<P-<Pj\\<\\<p-<P0\\[d0\\(T-T0)T\\]j.
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122 Rekha P. Kulkarni and Balmohan V. Limaye [8]

Then | |p - q>.\\ < \\<p - <po\\, since dQ\\(T- T0)T\\ < 1. Also, since

2c\\T\\\\9;\\/\X\\<d0,

we have

This implies |A;+1| > |A|/2. Hence by the above claim,

\\<P-<Pj+l\\<d0\\(T-T0)T\\\\(p-<pj\\

<\\<P-9o\\[do\\Cr-TQ)T\\]j+l.

Thus, the induction is over. Finally, since PQVQ = <p*Q , we have

The bound for \X — ^,+1| given in the statement of the proposition now
follows easily.

REMARK 2.3. Comparing Proposition 2.1 and Proposition 2.2, we ob-
serve that the iterates for the earlier fixed point scheme have geometrically
decreasing error bounds with common ratio co\\T - TQ\\, while this ratio
for the modified fixed point scheme is do\\(T - T0)T\\. When T is a com-
pact operator and (Tn) is a sequence of bounded operators which converges
to T pointwise, we note that \\T — Tn\\ may not converge to zero, while
\\(T - Tn)T\\ does converge to zero. This suggests that the modified fixed
point scheme may have a wider application. Even when \\T — TJ\ tends to
zero, it is plausible that \\(T — Tn)T\\ will tend to zero much faster. For
example, if Tn = Tnn , where nn is a projection,

\\{T - Tn)T\\ = \\T(I - nn)T\\ = \\T(I - nn)
2T\\ < \\T(I - nn)\\ | |(/ - nn)T\\

= \\T-Tn\\\\(I-nn)T\\.

When T is compact and nn converges to the identity operator pointwise,
we note that | |(/ - nn)T\\ tends to zero, and as such \\{T - Tn)T\\ is much
smaller than | | r - r n | | . Incases T is self-adjoint and nn is orthogonal, we
see that | | ( / - nn)T\\ = \\T*{l-nn)*\\ = \\T(I-nn)\\. Hence in this case, we
have

\\(T-Tn)T\\ = \\(T-Tn)\\
2.

These observations will be illustrated by the actual computations reported in
the last section. The better performance of the modified fixed point scheme is
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not surprising because each iteration of this scheme is composed of a power
iteration and a fixed point iteration.

3. Residua] and Rayleigh quotient

Let a nonzero vector yi and a scalar fi be given. To what extent can the
pair (y/, fi) be thought of as an eigenpair of an operator T ? A measure of
this extent is given by the quantity | | r ^ - / / ^ | | 2 / | | ^ | | 2 . For a fixed nonzero
vector y/, there is a scalar q(y/) which minimises this quantity. It is called
the Rayleigh quotient of T at y/ :

q(y) = (Ty/, y/)/(W, V).

The minimal value is called the residual of T at y/ :

r(y,) = \\Ty,-q(y,)yv\\2/\\y,\\2.

The iteration schemes considered in the previous section generate a se-
quence of approximate eigenvectors » . , _ / = 1, 2 , For a fixed <p., the
pair (<Pj., q(<Pj)) represents the best approximate eigenpair. Hence a stopping
criterion for the iteration process can be laid down as follows:

Stop if

(RESID),. = | | 7 > ; _ , -q{y>j_l)(Pj_x\\2l\\<pj_x\\2

is less than a predetermined small positive number, say 10~', t > 0.
Let T be a self-adjoint operator such as the infinite matrix A(s, I) con-

sidered in Section 1. A result of Krylov and Weinstein (Theorem 8.5 of [6])
implies that if y/ is a nonzero vector, then there is a spectral value X of
T such that \X-q{y/)\ < r{y/). Thus, if r(y/) < 10"', then q(y/) equals
a spectral value A of T, correct up to t decimal places. If A is a spectral
value of T which is nearest to q{y/), then we have, in fact,

|A - q(v)\ < [r{y)fl dist(*(vO, a{T)\{X}),

by the Kato-Temple inequality (Theorem 8.7 of [6]). Hence if q(y/) is suf-
ficiently near A, and if X is well-separated from the rest of the spectrum of
T, then q(y/) is an approximation of X of order at least [r(y/)]2 .

Let X be a simple eigenvalue of T and let P denote the associated spectral
projection. If Pyi ^ 0, and 8 denotes the acute angle between y/ and the
eigenvector Py/ of T, then we have (cf. (8.25) of [6])

sine < \\r{yy)\\ldist{q{y,), a{T)\{X}).

Thus, the smallness of the residual at y/ also implies the nearness of y/ to
an eigenvector of T. These results are borne out by the numerical examples
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considered in the next section: When (RESID) , is of order 10~'/2, the
Rayleigh quotient q{<p ) is already an approximation of order 10"' of the
eigenvalue A. (See Table 4.4.)

Further, if T(p — X(p , then

q(y/) -X = {{T-XI)((p -ij/),<p- y/)/(y/, y/),

so that
\q(y,)-x\<\\T-u\\\\<p-y,\\2/\\y,\\2.

Hence if \\T — A/||/||y/\\ is of moderate size and y/ is an approximation of
an eigenvector <p of T of order 10~'/2, then q(y/) is an approximation of
the eigenvalue A of T of order 10"' . These observations are also illustrated
in the next section (Table 4.4).

4. Numerical experiments

In this section we report some computations we have carried out regard-
ing the approximate solution of the Schrodinger equation described in the
introduction. They are performed on CYBER SYSTEM 170/840 in single
precision for which the floating-point arithmetic gives 14 reliable decimal
digits.

The infinite matrix A(s, /) mentioned in the introduction is given by the
following: For i, j = 1, 2, ... ,

and for i < j ,

where (a)n denotes the Pochhammer symbol: (a)n = T(a + n)/r{a).
As pointed out in Section 1, the use of iterative refinement is recommended

when the convergence of X{n){s, l;q) to k(s, / ; q) is slow as « ->oo , i.e.,
in the range -0 .5 < s < 0 . For this reason, we have chosen -0.4 and -0.2
as the values of s for our experiments. We shall illustrate only the cases
/ = 0, and q = 1, 2 and 3 (i.e., the 3 largest eigenvalues). For the purpose
of these computations we truncate T to its first m columns and m rows,
i.e., we take T = A{m)(s, I). Let To = T° (Galerkin method) or Ts

n (Sloan
method), where n is much smaller than m . Thus, in effect, we initially solve
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[11] Iterative refinement schemes 125

an n x n matrix eigenvalue problem to find ^"\s, I; q) = Ao , and then use
an iteration process to approximate A(m)(.s, l;q). We have chosen m = 100
and n — 10.

In each iteration we need to calculate Soy for some y in X with Poy = 0.
This computation can be reduced to a solution of a linear system of (n + 1)
equations in n unknowns (Proposition 17.4 of [6]). This is done once in each
iteration. Apart from this solution, the number of multiplications/divisions
needed in the y-th iteration (j = 1, 2, ...) is given in Table 4.1.

TABLE 4.1

Scheme

Rayleigh-
Schrodinger

Fixed point

Modified
Fixed Point

Method

Galerkin

Sloan

Galerkin

Sloan

Galerkin

Sloan

Multiplications/Divisions

m2 + m(j + 1) + n(n + j + 1)

m2 + m(n + j + 1) + n{j + 1)

m2 + 2m + n(n = 2)

m2 + 2m + n{n + 2)m2 + m(n + 2) + 2/j

2m2 + 3/n + n(n +4)

2m2 + 3/w + n(n + 4)2m2 + m(n + 3) + 4n

For the basic computer program used in these computations, we refer to
the Section 20 of [6].

The stopping criterion used is:

(RESIDE < 10~13.

Table 4.2 shows the number of iterates needed to satisfy the stopping
criterion for the three iteration schemes considered in Section 2, and the
two choices To (Galerkin method) and TQ (Sloan method) for the initial
approximation TQ of T. A maximum of 125 iterates are calculated in each
case; if the iteration does not stop at this stage, the current RESID is given
at the end of the table.

It can be seen from Table 4.2 that the number of iterates for the cases cor-
responding to s = -0.4 is much less than those for the cases corresponding
to 5 = - 0 . 2 . Also the number of iterates increases progressively as we move
from the first to the second and then to the third eigenvalue.

Taking into account the relative effort needed for implementation, quali-
tatively (convergence or nonconvergence) and quantitatively (the number of
iterates needed), the fixed point scheme seems to be superior to the Rayleigh-
Schrodinger scheme.

Although the modified fixed point needs a larger number of multiplications
than the fixed point scheme, it needs appreciably less number of iterations.
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FIGURE 4.1. q = \ , the largest eigenvalue.

The amount of work for the Galerkin and the Sloan methods for each of the
three schemes is comparable, whereas the Sloan method needs less number
of iterates as compared to the Galerkin method in general.

It is for these reasons that we shall employ the modified fixed point scheme
along with the Sloan method in the rest of the experiments. It is to be noted
from Table 4.2 that for s = - 0 . 2 , q = 3 , we have convergence only for the
modified fixed point scheme with the Sloan method.

We next present some graphs which show how RESID decreases at each
iteration for the cases k(s,l;q), s = - 0 . 8 , - 0 .4 , - 0 .2 ; / = 0 and
9 = 1 , 2 , 3 . The graphs for the five cases A(-0.8, 0; 1), A(-0.4, 0; 1),
A(-0.2, 0; 1), A(-0.8, 0; 2) and A(-0.8, 0; 3) are straight lines indicating
geometric convergence; the graph for ^( -0 .4 , 0; 2) resembles a straight line.
The graphs for A(-0.2, 0; 2) and X(—0A, 0; 3) indicate semi-geometric or
staggered convergence, while the graph for A(-0.2, 0; 3) is peculiar in the
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sense that it does not decrease steadily. Although we have plotted this last
graph only for the first 36 iterations, the pattern continues to be the same for
the next 89 iterations.

Since the main idea behind the use of the iteration schemes is to avoid
solving large eigenvalue problems, we have not considered so far the actual
accuracy attained by the iterates Xj and (p.. However, for an illustrative

purpose, we give in Table 4.3 the actual values of X^00\s, I; q) and in Table
4.4 the actual values of X -Xj , X- q{(pj), \\(p - <Pj\\2 and (RESID) j for the
largest eigenvalue X.

As commented in Section 2, it can be noticed from Table 4.4 that the
Rayleigh quotients q. satisfies | A - ^ . | < 1 0 ~ 1 3 in about half the number of
iterations needed to satisfy \\<p - ^ | | 2 < 10~13 or (RESID)} < 10~13.

TABLE 4.3. Values of X{i00\s, 0; q)

s
i
-0 .8

-0.4

-0.2

1

0.953404

1.142053

1.551141

2

0.437882

0.510090

0.727840

3

0.274809

0.297409

0.384904

We remark that, if we solve a slightly larger initial eigenvalue problem,
it is reasonable to expect that a smaller number of iterations will be needed
to satisfy the stopping criterion. We give below the size n of the initial
eigenvalue problem and the corresponding number of iterations needs to sat-
isfy the stopping criterion for the case s = - 0 . 2 , 1 = 0, q = 3 , using the
modified fixed point scheme and the Sloan method:

n
10
15
20
25
30

iterations
125(a)

60
51
42
35

(a):(RESID)1 2 5 = 8 .7x 10"1 2
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[16]

F I G U R E 4.2. q = 2 , the second largest eigenvalue.
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12 18 __ U 30 36 '

131

log. (RESID)

FIGURE 4.3. q = 3 , the third largest eigenvalue.
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