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In the terminology of J. R. Isbell [5], an element d of a semigroup S
is dominated by a subsemigroup U of S if, for an arbitrary semigroup X
and arbitrary homomorphisms a, fl from 5 into X, a(w) = f}{u) for every
u in U implies «.(d) = fl{d). The set of elements of S dominated by U is a
subsemigroup of S containing U and is called the dominion of U. It was
shown by Isbell that if one takes two disjoint isomorphic copies S+, S~ of
S and forms their amalgamated free product S+ * VS~, that is to say, the
quotient of the free product S+ * S~ by the congruence p generated by

«R = {(»+, u~):ue U},

(u+ and w being the images of u in S+, S~ respectively) then the homo-
morphisms fx+ : S -> S+ * 0S~, pr : S ->• S+ * VS~ defined by

fl+(S) = S+p, fl~{s) = S-p

are one-one. Moreover, jbi+(s) = [i~{t) only if s = t, and ^+(s) = /«~(s) i/
and only if s is in the dominion of U. In other words, the two natural copies
of S in S+ * VS~ intersect precisely in the dominion of U. Thus, in particular,
and in the terminology of [3], the amalgam [S+, S~; U] is embeddable if
and only if U is self-dominating (that is to say, its own dominion) in S.

One obvious question left unanswered in [5] and in the sequel [4] is
whether an amalgam [5, T;U] is necessarily embeddable if U is self-
dominating both in S and in T. A (commutative) example is given in § 2
to show that this need not be so. Another example shows that an amalgam
[S, T; U] may be embeddable even if U is not self-dominating either in 5
or in T.

In the preliminary section it is shown (Theorem 1.3) that amalgamated
free products are associative, and this is then used to show that if U is a
semigroup such that every amalgam [S, T; U] of two semigroups with U
as "core" is embeddable, then every amalgam [S{; U] of arbitrarily many
semigroups with U as core is embeddable. This result leads to considerable
simplification in the proofs in § 3.

Isbell [5] calls a semigroup absolutely closed if it is self-dominating
wherever embedded. For the purposes of this paper, concerned principally
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610 J. M. Howie [2]

as it is with commutative semigroups, the term "absolutely" may be mis-
leading, since it does not seem to be obvious that a commutative semigroup
which is always self-dominating when embedded in a commutative semi-
group is necessarily self-dominating when embedded in a non-commutative
semigroup. It would perhaps be preferable to refer to a semigroup belonging
to a subcategory K of the category Sg of semigroups as being AT-closed if
it is its own dominion whenever it is embedded in a semigroup in K. It
may, therefore, be possible for a semigroup in the category CSg of com-
mutative semigroups to be CSg"-closed but not Sg"-closed. No example,
however, is known to me. Examples are not hard to find if CSg is replaced
by a more trivial subcategory of Sg. For example, if we consider the sub-
category RB of rectangular bands ([1], § 1.8), it is fairly easy to show that
any rectangular band is RB-closed; however, it need not be S^-closed, as
is shown by ([4], Theorem 2.9).

A commutative semigroup U will be called CSg-amalgamable if the amal-
gam [St; U] is embeddable (in a commutative semigroup) for any family
{Sf-.iel} of commutative semigroups containing U. It is known ([4],
Theorems 2.3 and 2.6) that commutative regular semigroups and commuta-
tive totally division-ordered semigroups are CSg"-closed. In § 3 it is shown
that they are in fact CS^-amalgamable. It remains an open question
whether a commutative semigroup can be CSg--closed but not CSg"-amal-
gamable.

1. Preliminaries

Various basic definitions and results of semigroup theory, all to be
found in Clifford and Preston [1], will be used without comment. Section
1.5, on congruences, factor groupoids and homomorphisms, will be par-
ticularly relevant. However, unlike Clifford and Preston, I shall write
mappings on the left, and also consider relations on a set 5 as subsets of
the Cartesian square SxS.

The language and the methods used in this section are to a large extent
those of category theory and the results are in particular valid in both
Sg" (semigroups and homomorphisms) and CSg" (commutative semigroups
and homomorphisms), the two categories that principally concern us here.
Following Mitchell ([6], § 1.7), we call a commutative diagram
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[3] Commutative semigroup amalgams 611

a pullback for a1 and oc2 if for every pair of homomorphisms fi'j : P' -^ A1

and ^ : P' ->- A2 such that a ^ = a3/?2 there exists a unique homomorphism
y : P' -> P such that ^ = $xy and /32 = /92y. Dually, a commutative
diagram

ai
A > A1

K2 j j Pi
A2 >P

ft
is called a pushout for ô  and <x2 if for every pair of homomorphisms
/?i : Ax -> P ' and /32 : ̂ 42 -*• -P' s u c n t n a t /3'i«i = /32

a2 there exists a unique
homomorphism y : P -> P' such that (}[ = yfit and /32 = y/92. We shall
actually require a (possibly) infinite version of this latter definition: the
commutative diagram

is a pushout for {ani}iel if, for every family {$ : 4̂,- ->• P'}ieI of homomor-
phisms such that the diagram

commutes, there exists a unique homomorphism y : P -> P' such that

P'i = y/̂ » f°r every i in / .
As in [3], a (semigroup) amalgam consists of a semigroup U together

with a family {S{ : i el} of semigroups and a family {(pt : i el} of mono-
morphisms <p{ : U -> St. We denote the amalgam by

or by [S(; U; <p{~] or just [S;; U) if the context allows. The semigroup U
will be called the core of the amalgam 21.

The free product P = 77* {S8 : i e 1} of the amalgam 21 is defined as
Fjp, where F is the coproduct (in the terminology of Mitchell [6]) of the
objects Sj (that is to say, their free product in Sg and their "direct product"
in the sense of [3] in CSg) and p is the congruence on F generated by

m = {(yM), q>j{u)) '-ueU, i, j el}.

For each i in / there is a homomorphism jii : St-> P defined by

fit(x) =xP (xe S^
and the diagram

(i) {u^sA p}ieI

is commutative. In fact, the diagram (1) is a pushout for {q>t}ieI, and P is
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determined to within isomorphism by this property. This has been shown
(in different language) by B. H. Neumann ([7], p. 505) for the category
of groups; it is not hard to modify his proof to deal with the categories
Sg and CSg.

The amalgam 91 is said to be embeddable if for some semigroup T there
exists for each i in / a monomorphism X{ : Sj -> T such that the diagram

{U%SA T}ieI

is commutative and such that

MS<) n A,(S,) = X{U)

if i, j are distinct elements of I, where X : U -> T is the common value of
XiVi (i el). We say that the amalgam 91 is embedded in T.

From the pushout property of the diagram (1) we can deduce

THEOREM 1.1. An amalgam

91 = [{Si-.ieiy.U-.fa-.iel}]

is embeddable if and only if

(i) f*i is a monomorphism for each i;
(ii) fii(St) n fij(Sj) = fi(U) if i # /, where fi : U ->- P is e#««Z to

9Pj/«f /or some (and therefore every) i in I.

Thus, informally, the amalgam is embeddable if and only if it is em-
beddable in P.

Using ([6], Proposition 8.1) we obtain

THEOREM 1.2. The amalgam 91 is embedded in T if and only if there
exists a monomorphism Xt : St —>• T for each i in I such that the diagram

(2) <P,\

St • T

is commutative and is a pullback for Xt and Xi for every pair i, j of distinct
elements of I.

We now derive a general associativity property for amalgamated free
products.

THEOREM 1.3. Let [{S{ : i el}; U; {(p{ : i el}} be an amalgam. Suppose
that the index set I is partitioned into disjoint subsets Jk (k e K) and that
the amalgam [{S3- :jejk}) U; {<pj '•] ejk}] is embeddable for each k. Let
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[5] Commutative semigroup amalgams 613

Pk = II* {Sj : j e Jk}. Let fik (= fiiipi for every j in Jk) be the natural
monomorphism from U into Pk and suppose that the amalgam

[{Pk:keK};U;{/,k:keK}]

is embeddable. Then the amalgam

[{S,:*e/};C7;fo:*e/}]
is embeddable, and

n* {St :ieI}^IT* {/7* {S, : j e Jk} : k e K}.

PROOF. By virtue of Theorems 1.1 and 1.2 we can assume that for every
k in K and every j , j ' e Jk, the diagram

U • S,

(3) | i
S, >Pk

is a pullback for the natural monomorphisms Sy —> Pk, Sr —>• Pk. Also, if
P = nl {Pk : k e K}, then for every k, I in K,

U >Pk

Pi >P

is a pullback for the natural monomorphisms Pk -> P, Pt-^ P. We certainly
have a (perhaps infinite) commutative diagram

(1) {U^St-+P}teI,

where, for each i, the monomorphism S{->- P is equal to S, -> Pk^ P
for the appropriate k. To prove the theorem we must show that (1) is a
pushout for {U -> St}ieI and that for every i, j in / such that i ^ j ,

U > Sf

S, >P

is a pullback for 5S -> P and S, -> P.
To establish the first of these properties, suppose that for some P '

there exist homomorphisms 5^ -> P' such that

(6) {U^S^P'}^

is a commutative diagram. Then by the pushout property of the diagram
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there exists for each k in K a. unique Pk -*• P ' such that

(7) U -> S, -> P' = U -> S, -> Pk -> P'

for every / in Jk. By the commutativity of the diagram (6), it follows that

(8) {U^Pk^P'}keK

is a commutative diagram, where U ->• Pk is taken as £7 -> S3 -> Pfc for
some (and therefore every) / in Jk.

By the pushout property of the diagram

{U^Pk^P}keK,

there exists a unique P —>- P' such that

(9) U^Pk^P' = U -> Pk^P^P'

for every & in i£. Thus

U -> S, -^ Pfc - • P ' = C7 -^ S, -^ Pft -y P - • P '

for every ^ in K and every / in /fc and so, using (7) and the commutativity
of the diagram (8), we deduce that

(10) U -> S( -> P' = U -> St -> P -> P'

for every i in / . Moreover, the uniqueness of P -> P ' in (9) guarantees its
uniqueness in (10); thus {U ->• St -» P} i e 7 is a pushout for {£/ -> S J ^ j
as asserted.

For the other result we must consider two cases separately: (i) i, j e Jk;

(») iejk, JeJu k =£ I.
In case (i) we have that both St -> P and S, -> P factor through Pk.

If for some U' there exist U' -> Sit U' -> S3- such that

U'->St-+P = U'^Sj-> P,

it follows that

U' -> Si -> Pk - • P = 17' -> S, -> Pk -> P.

Since Pk —> P is a monomorphism, it follows that

U' -> St -> Pk = U' -+ 5, -> P,;

hence, by the pullback property of the diagram (3), there exists a unique
C7' -> C7 such that the diagram
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[7] Commutative semigroup amalgams 615

(11) V >U

s,
commutes. It follows that (5) is a pullback as required.

In case (ii) we have the commutative diagram

St< U 5,

pk—>p«—Pi

If, for some U' there exists U' -> S{, U' -> Sy such that

U'^-Si^-P = U'-+Si-> P,
then

U' -> St -> P* -> P = U' - • 5,̂  ̂  P , - • P.

Thus there exist C/' -> Pk (= U'^-St-* Pk) and C/' ->- P , (= [/' - • S, -> P,)
such that

U' -> Pk -+ P = U' -»- Pj - • P

and so, by the pullback property of the diagram (4), there exists a unique
U'^-U such that

(13) U' -> Pk = U' -y C/ -> Pfc

and

(14) U'-*Pl = U'->'U^*Pl.

Thus, using (13) and the commutativity of (12), we have that

V -+ St -> Pk = U' -+ U -+ Pk = U' -> U -> S{ -* Pk

and so

(15) U' -> Sf = U' -> £7 -> 5,

since 5f -> Pfc is a monomorphism. Similarly, using (14), we find that

(16) U' -> S, = U' -+ U -> S3.

and so (5) is a pullback as required, since the uniqueness of U' ->• U in (15)
and (16) follows from its uniqueness in (13) and (14). This completes the
proof.
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616 J. M. Howie [8]

Next we establish

THEOREM 1.4. / / U is a semigroup such that every amalgam [{S, T};
U; {cp, y>}] of two semigroups with U as core is embeddable, then every amalgam
2t = {{Sl : i el}; U; {q>t : i el}] of arbitrarily many semigroups with U as
core is embeddable.

PROOF. We apply Zorn's Lemma to the set S of subsets E oil such that
the amalgam

9l£ = [{5t : i e E}; U; {Vl : i e E}]

is embeddable. Then £ contains all subsets of cardinal 2 and so is non-
empty. Let P E denote the free product of the amalgam %E and let f be a
chain in & with union C. If E and E' in %? are such that E Q E' then

PE' = PE * U-PE'\E

by Theorem 1.3 and so there exists a natural monomorphism PE -> PE>.
Indeed {PE : E e ^} with its associated monomorphisms forms a direct
system with direct limit L. Now, if i e C, then i e E for some E in ^ and so
there exists a monomorphism St ->• L which equals St ~~> PE -> L for every
E such that i e E. Thus, for every i, j in C with i =£ j , we have a com-
mutative diagram

U * S 8

S} > L,

in which St^ L and S3 -> L are monomorphisms factoring through PE,
where E is any member of ^ large enough to contain both i and /. If there
exist U' and homomorphisms U' -> St, £/'->• S, such that

U' -+ S, -> L = U' -> S, -». L,
then

£/' -> S, -> PE -+ L = U' - • S, -> P B -^ L
and so

C/' -> St -+ PE = U' - • 5, ^ P £ ,

since PE -> L is a monomorphism. Since the amalgam [{St, 5J ; C7; {<p,, 9?,}]
is embedded in PE, the diagram

U > S,

I I
S, >PE

is a pullback for 5 t -> PE, S} —> PE, and so there exists a unique U' -> U
such that
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[9] Commutative semigroup amalgams 617

U' -* 5; = U' -> U -»• Sif C7' -> S, = £/' - j - U -> S}.

Thus the diagram (17) is a pullback for Sf -> Z., S,- ->• Z, and so the amalgam
2lc is embedded in L. [It can be shown that L s -Pc, but we do not need
this.] Thus C e $ and so by Zorn's Lemma £ contains a maximal element
J.IiJ^I,letK = Ju {i}, where i $ J. Then %K is embeddable by Theorem
1.3 and by the assumed embeddability of amalgams of two semigroups
with U as core, and so the maximality of J is contradicted. Thus / = /
and so 21 is embeddable as required.

2. Examples

The first example shows that an amalgam [{5, T}; U; {y, y>}] need
not be embeddable even if (p(U) and f{U) are self-dominating in 5 and T
respectively.

Let U be the quotient of the free commutative semigroup Fv on four
generators %, u2, u3, ut by the congruence a generated by

21 = {K« 3 , M2«4). K « 4 . «a«3). K , « D , K> M4)}-

Let S be the quotient of the free commutative semigroup Fs on six genera-
tors v1, v2, v3, vt, s1, s2 by the congruence /? generated by

Let 7" be the quotient of the free commutative semigroup FT on five
generators w1, w2, w3, wi? t by the congruence y generated by

© = {(w1, w2t), (w2, w^t), (w3, wAt), (wit w3t)}.

It is convenient to summarise the relevant facts about these semigroups
in the following theorem.

THEOREM 2.1. (i) The mapping cp : U -> S defined by

<p{Ui«.) = v^ (i = 1, 2, 3, 4)
is a monomorphism.

(ii) <p(U) is self-dominating in S.
(iii) (slVl)P # (s2v4)p.
(iv) The mapping y> : U -> T defined by

y>{UiV.) = wty (i = 1, 2, 3, 4)
is a monomorphism.

(v) ip(U) is self-dominating in T.
(vi) / / ji is the canonical mapping of S into the free product P of the

amalgam [{S, T}; U; {<p, rp}], then
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Before proving these assertions, let us note that it follows from (iii)
and (vi) that the amalgam [{S, T}; U; {q>, y>}] is not embeddable.

PROOF OF THEOREM 2.1. (i) It is clear from the definitions of 91 and 93
that <p is well-defined. In fact it is also one-one; for if

then v^v^v^v™* and v"lv%*v%*v2l are connected by a sequence of elemen-
tary 33-transitions. Now clearly the last relation ( s ^ , szvs) m ^ c a n n e v e r

be used in this sequence; hence M™»M™2M™3W™4
 a n ( j u^upu^u^' are connected

in an obvious way by a sequence of elementary ^-transitions — which is
what we require.

(ii) Consider the two homomorphisms % and w of S into the infinite
monogenic semigroup M = {1, x, x2, • • •}, defined as follows:

x(s) = 1 for every s in S;

m{v^) = 1 (* = 1, 2, 3, 4); m{SjlJ) = x (j = 1, 2).

Then clearly x(s) = w(s) if and only if s ecp{U) and so <p(U) is its own
dominion in S.

(iii) By inspection, no elementary 23-transition can change the word
slv1 into any other word. This is also the case for s2v4 and so certainly

(iv) This is less trivial. First notice that ® Q y, where

for we have sequences of elementary ©-transitions as follows:

wxw3 -> w^wzt -> w2wt, w1wi —> w2wit -> w2wa,

It follows that ip is well-defined, but it is not immediately clear that xp is
one-one. We must show that if two words in wlt w2, w3, w4 are connected
by a sequence of elementary ©-transitions, then they are connected by a
sequence of elementary ^-transitions; for it then follows that the cor-
responding two words in ux, u2, u3, ut are connected by a sequence of
elementary 9l-transitions.

It is convenient to begin by considering a sequence Sf of elementary
©-transitions beginning on a general element x of FT. The element a; is a
word of the form

and so can conveniently be identified with the quintuple

(m1, m2, m3, mi, m)
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[11] Commutative semigroup amalgams 619

of non-negative integers. Let us now name the ordered pairs constituting
© as follows:

Cl = [Wl> W2^), ' (̂ 2> Wlt)

C3 = (W3, Wtt), C4 = (Wt, W3t).

In the sequence £f, an elementary ©-transition will be called a forward
step if it increases the number of occurrences of t by one, and a backward,
step if it decreases the number of occurrences of t by one. The weight of
ct (i = 1, 2, 3, 4) in the sequence Sf is defined to be the number of forward
steps based on c{ minus the number of backward steps based on c^ The
weight of the sequence y is defined to be the quadruple (rx, r2, r3, rt) of
integers (positive, negative or zero), where ri (i = 1, 2, 3, 4) is the weight
of d in if.

By a straightforward inductive argument one can prove

LEMMA 2.2. / / Sf is a sequence of weight (rx, r2, r3, rt) of elementary
^-transitions beginning on the element (mx, m2, m3, mi, m) of FT, then
Sf ends on the element

(»h—r!+r2, m2+r1—r2, m3—r3+rit mi+r3—ri, m+^+r^rs+r^.

Our interest is of course primarily in sequences that connect two ele-
ments (mlt m2, m3, w4, 0) and (nlt n2, n3, w4, 0). If such a sequence has
weight (rx, r2, r3, r4), then rx+r2-\-r3+ri = 0.

The next lemma contains the result we require.

LEMMA 2.3. If (m1, m%, m3, mi, 0) and (n1, n2, n3, w4, 0) are y-equiv-
alent, then there exists a sequence of elementary ̂ -transitions connecting them.

PROOF. In describing sequences of elementary ©-transitions, I shall
use phrases such as "k uses of w\ ~> wf. If k is non-negative the meaning
of this is clear; if k is negative, the phrase is to be interpreted as meaning
"~k uses of w\ -»- w\".

By hypothesis, there exists a sequence of weight {rltr2,ra,rt) of
elementary ©-transitions connecting (m1, m2>m3,mi, 0) to (%, n2,n3,ni,0),
and, as we have seen, r1

J
rr2-\-r3-{-r4 = 0. Notice that rx—r2 is even if

and only if rx-\-r2 is even; this in turn holds if and only if r3-\-ri is even,
that is, if and only if r3—r4 is even.

By Lemma 2.2,

(nx, n2, n3, nt, 0) = {mx—rx+r2, m2+rx—r2, m3—r3-^rri, mi+r3—ri, 0).

If rx—r2 and r3—r4 are both even, then a sequence consisting of ^(rx—r2)
uses of w\ -> w\ followed by \{r3—r4) uses of w\ -> w\ will change
(tnx, m2, m3, mA, 0) to (nx, n2, n3, w4, 0). A typical intermediate element
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in the sequence will be (k1, k2, k3, ft4, 0), where kt lies between m^ and nt

for each i, and so negative values never appear.
Now suppose that r1—r2 = 2ft+1, r3—ri = 2/+1, where ft and I are

integers. Thus
n1 = m1—2k—l, w2 = m2-\-2k-\-l,

n3 = m3—2l—l, w4 =

If we apply a sequence of elementary ^-transitions consisting of ft uses of
w\ -> w\ followed by I uses of w\ -> w\, then we change (wjj, m2, m3, m4, 0)
to

(18) (mj—2k, m2+2k, m3 — 2l, mt + 2l, 0).

This is legitimate unless n2 = 0 or ni == 0, in which case we should have
m2+2k = — 1 or w4+2/ = — 1. Suppose for the moment that n2 > 0 and
w4 > 0. Then a single use of w1w3 -^ w2wt transforms the quintuple (18)
into (»1( n2, n3, ni, 0) as required.

If n2 = 0 (and w4 > 0), then m2-\-2k = — 1. Since m2 > 0 we must
therefore have that ft ^ — 1; hence ?%—2ft —2 ^ m1 ^ 0. Now, ft+1 uses
of w\ -> w\ followed by I uses of w\ -> w\ will change (m1, m2,m3,mi, 0) to

(m1~-2ft — 2, w2+2ft+2, m3—2l, mi+2l, 0),

and a single use of ie>2K>3 -> w1w4 now changes this to (n1, n2, n3, nt, 0) as
required. Similar modifications are effective if n2 > 0 and w4 = 0 or if
n2 = W4 = 0.

This completes the proof that y> is a monomorphism.
(v) It is clear that y>(U) is an ideal in T. If, therefore, we take % as

the natural homomorphism of T onto the Rees factor semigroup Tjrp{U)
and co as the homomorphism mapping every element of T to the zero of
T/ipfU), then obviously %{x) = co(x) (xeT) if and only if xey)(U). Thus
y>(U) is its own dominion in T.

(vi) The free product P of the amalgam [{S, T); U; {<p, y}] can be
described as the quotient of the free commutative semigroup on the seven
generators ux, u2, u3, ui, sx, s2, t by the congruence n generated by

$ = {s1u2, s2u3), (ult u2t), (u2, uxt), (u3, uj), (M4, u3t)}.
Hence

vi)^) = (Si»i)^ = {sxuzt)n = {s2u3t)n

This completes the proof.
The next example is of an amalgam [{S, T}; U; {<p, y)}] which is em-

beddable, but such that q>{U) is not self-dominating in S and y>{U) is not
self-dominating in T.
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Let U be the free commutative semigroup generated by ult • • •, u6.
Let 5 be the quotient of the free commutative semigroup Fs on eight
generators v1} • • •, v6, x, y by the congruence a generated by

% = {{v1: xv2), (v3, v2y)}.

Let T be the quotient of the free commutative semigroup FT on eight
generators w1: • • •, w6, z, t by the congruence ft generated by

S3 = {(wit zws), (w6, w5t)}.

Again we summarise the relevant facts in a theorem.

THEOREM 2.4. (i) The mapping cp : U -> 5 defined by

cp(ut) = v{x (i = 1, • • •, 6)
is a monomorphism.

(ii) The mapping y> : U -> T defined by

w{Ui) = w$ (i = 1, • • •, 6)
is a monomorphism.

(iii) <p(U) is not self-dominating in S.
(iv) y(U) is not self-dominating in T.
(v) The amalgam [{S, T}; U; {<p, rp}] is embeddable.

PROOF. By the symmetry of the situation, it will clearly suffice to prove
(i), (iii) and (v).

(i) A typical element of Fs is

which it is convenient to identity with the octuple (n1, • • •, n6,p, q) of non-
negative integers. If (nx, • • -, n6, 0, 0) is an arbitrary element of the sub-
semigroup V of Fs generated by vx, • • •, v6, then any element of Fs derived
from this by a sequence of elementary 9l-transitions is necessarily of the
form

{nx—r, n2-\-r-\-s, n3—s, nt, ns, n6, r, s)

where r, s are non-negative integers. This element belongs to V only if
r = s = 0 and so oc n (VxV) is the identical equivalence on V — which is
exactly what we require in order to show that cp is a monomorphism.

(iii) It follows from the considerations above that an element
(«!,•• •, n6, p, q)oi of S belongs to <p(U) if and only if n2—p—q S: 0. This
condition is certainly not satisfied by

(»!»)« = (1, 0, 0, 0, 0, 0, 0, l)oc

and so (v^a £<p(U). However, if y and d are two homomorphisms of 5

https://doi.org/10.1017/S1446788700006273 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006273


622 J. M. Howie [14]

which coincide on cp(U), then, denoting fa. by / for any element / in F s ,
we find that

y(Vly) = y(vx)y{y) = 6{vx)y{y)

= d(xvt)y(y) = d(x)d(va)y(y) = d(x)y(v2)y(y)

= *(xMv*y) = H*)r(y3) = *(*)*&,)
= d{xv3) = d(xv2y) = d{vxy).

Thus vxy is in the dominion of <p(U) in S and so <p{U) is not self-dominating,
(v) The free product P of the amalgam [{S, T}; U; {cp, y}] can be

described as the quotient of the free commutative semigroup FP on the ten
generators %,• • • , u6, x, y, z, t by the congruence n generated by

$ = {(%, xu2), {u3, u2y), (M4, ZU&), (U6, ust)},

t h e canonical h o m o m o r p h i s m s /* : S ->- P , v : T - > P being given b y

jM(Wja) = utn (i = 1, • • •, 6), (x{xu.) = «7r, /i(«/a) = yn;

v{wtp) = M,-?r (i = 1, • • •, 6), v(z/3) = ZTI,

The elements u"1 • • • u^'xjykzltm of FP can conveniently be identified with
10-tuples

(nlt • • •, n6, j , k, I, m)

of non-negative integers. Thus, if

s = (Ml> • • •, ne, j , k)aL, s' = (n[, • • •, ri6, j ' , k')x

are two elements of S, then the supposition that /J,(S) = //.(s') amounts to
the supposition that the two 10-tuples

K , • " •, »„ /, k, 0, 0), (ni, • • •, n6, f, k', 0, 0)

in FP are connected by a sequence of elementary ^-transitions. It is
easy to see that the most general element of FP obtainable from
(«!,•• •, n6, j , k, 0, 0) by elementary ^-transitions is

(19) (%—_/>, n2+p+q, n^—q, n^—r, ns+r+s, n%—s, j+p, k+q, r, s),

where r and s are non-negative integers and p and q are integers such that
j+p, k-\-q are non-negative. Putting r = s = 0, we find that

s' = (nx—p, n2+p+q, n3—q, ni, n5, n6, j+p, k+q)cc.

Hence s = s', since it is clear that the two octuples

(»i, • • ', n9, j , k), (nx—p, n2+p+q, nz—q, «4, n5, n6, j+p, k+q)

can be connected by a sequence of elementary 2l-transitions. A similar
argument establishes that v is a monomorphism.
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Suppose now that
t = (n'i, • • •, n6, l,m)P

is an element of T and that fi{s) = v(t), where s is as before. Then there
exists a sequence of elementary ^-transitions connecting

(%, • • •, ns, /, k, 0, 0) and (n'1: • • •, n'6, 0, 0, /, m).

It follows from (19) that p = — j , q = — k and so

n'i = n\~\~j> n2 = n2—j~k> n3 = n3-\-k.

It is now easy to see that the element (nlt • • •, n6, j , k) of Fs can be con-
nected to the element {n\, n'2, n'3, «4, n5, n6, 0, 0) by means of a sequence
of elementary 9t-transitions, and so s 6 cp(U) as required.

This completes the proof.

3. CSjf-amalgamable semigroups

By virtue of Theorem 1.4 we can restrict our attention to amalgams
of two semigroups. Accordingly, let 21 = [{5, T};U; {y, ip}] be a commutative
semigroup amalgam. It will be convenient to denote (p{U) and f(U) by
V and W respectively and to write v, vit v', etc. and w, wi, w', etc. respec-
tively for (p(u), (p{ut), q>(u'), etc. and ip{u), y(w4), tp{u'), etc.

The coproduct [6] of 5 and T in the category CSg is most easily described
as follows: first form 5(1) and Ta) by adjoining an extra unity element 1
to each of 5 and T whether or not they already have unities; then form the
Cartesian product Sa)xT{1); then remove the element (1,1). Since this
semigroup is the commutative analogue of the free product of 5 and T as
usually understood in semigroup theory, it is reasonable to write it as
S *T. It contains isomorphic copies {(s, 1) : s eS}, {(1, t) : t e T] of 5 and
T respectively.

The free product P = S * VT of the amalgam 21 is thus given by

P = (S * T)IP,

where p is the congruence on 5 * T generated by

91 = { ( ( ? ( « ) , 1) , {l,f{u))):ueU},

and the canonical homomorphisms fi : S -> P, v : T -> P are given by

p{s) = (s,l)P, v{t)=(l,t)P.

We first obtain general necessary and sufficient conditions for the
embeddability of the amalgam 21, analogous to the commutative zigzag
theorem (1.1) in [4].
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Suppose that (x, y), (z, t) e S * T and that (x, y) -»• (z, t) by an
elementary 9?-transition. Then either

(x, y) = (p, q)(v, l)(r, s), (z, t) = (p, q)(l, w)(r, s),

or

(x, y) = (p, q)(l, w)(r, s), (z, t) = (p, q)(v, l)(r, s),

where p, r e Sa), q, s e Ta), v = <p(u), w = y{u), u eU. A step of the first

type will be called an r-step (since the v moves right); one of the second
type will be called an l-step. By commutativity we thus have either

x = zv, t = wy,
or

z = xv, y = wt.

Two consecutive /-steps (corresponding to ult u% respectively) can be com-
bined into a single r-step (corresponding to M2

MI)- A similar remark applies
to /-steps and hence we may assume that every sequence of elementary
9{-transitions consists of /-steps and r-steps alternately.

If fi(s) = ju(s'), where s, s' e S, then there exists a sequence

of elementary 9^-transitions. The first step must be an r-step, since 1 has
no divisors in S; similarly the last step must be an /-step. Hence there
e x i s t s1, • • • , s , e S , < , , • • • , tn_1 e T, ux, • • •, u2n e U s u c h t h a t

Sn-lV2n-2 = = S»"2»-l . W2n-l^n~X = W2n>

snv2n = s'.

Thus fi is one-one if and only if the equalities

w1 = w2tlt
S,V9 = S9li,, Wnt, = W,t9,

\ '

Sn-lV2n-2 = = SnV2n-l> W2n-l^n-l = W2n

imply that s1v1 = snv2n.
A similar argument shows that v is one-one if and only if the equal-

ities
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V± = SXV2, W2t1 = W3t2,

SjW3 = S2Vit W4t2 = W5ts,

(21)
Sn-2V2n—3 == Sn-lV2n-2> W2n-2*n-\ = W2?i-l^n>
Sn-lV2n~l — V2n

(where st, • • •, sn_t e S, tlt • • •, tn e T, %, • • •, u2n e U) imply that w1t1 =
w2ntn.

Also, if [A and v are one-one, then /*(S) n v(r) = (i<p(U) ( = J-^(C/)) if
and only if the equalities

wx ==-w2tlt

(22)

Sn-2ll2n-4 = Sn~lV2n-3' W2n-3^n-2 = W2n-2^n-l>

Sm-lB2n-2 = W2n-1

(where $!, • • •, sn_1 e S, ^ • • • , ^ 1 £ J r , %, • • •, «2n-i e f̂ ) imply that
s\v\ eV.

THEOREM 3.1. / / 31 = [{5, 7"}; U; {q>, f}] is a' commutative semigroup
amalgam and U is regular, then %.is embeddable.

PROOF. Since U is both commutative and regular, it is an inverse
semigroup; that is, every element x of U has a unique inverse x"1 such that

txr^x = x, x~1xx~1 = x~l. '•

Suppose now that we have a set of equalities (20). Let wTw~x = w~xwn= er

for r = 1, • • •, 2w, and let fr = e2e4 • • • e2r (r = 1, • • •, n),Then

LEMMA 3.2. If-t* = fTtr (r = 1, • • •, w— 1), thenj* e W, and

w1 = w2t*, w2T_xt*_x = w2rt* (r = 2, • • -, n—1),
W2«-lC-l =*W2nfn-l-

PROOF. First,

t* — fxtx = e2tx = w^w^ = w^1^-, e PF.

Also, if t*_! e W, then

t* = frtt = tr-xHrK = fr-l^WtrK
(20))

https://doi.org/10.1017/S1446788700006273 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006273


626 J. M. Howie [18]

hence t* e W. Thus the first statement in the lemma is proved by in-
duction.

Also,
Wl = wit\ = Wa*2*l = W2fxtx = W2t*,

wtr-ltt-l = / r - l ^ l t l = fr-l™2rK

= /r-l««r«'«r', = K ' , = »«rC

(r = 2, • • . , » - ! ) ,

and so the lemma is proved.
Returning now to the proof of Theorem 3.1, if we let s* = (pf~x{t*)

(r = 1, • • •, n— 1), we have that

C i

where e = 9'V-1(/«-i) is an idempotent of V. However, the situation is
symmetrical and so we can equally assert that snv2n = fs^^^, where / is an
idempotent of V. Hence

Sivi = esnvin = efsnv2n (since fsnv2n = snv2n)

= fesnv2n = fs1v1 = snv2n,

and so /i : S -> P is a monomorphism.
The proof that »> : T ->• P is a monomorphism is similar.
Finally, suppose that we have equalities (22), and take t*, • • •, t*_±

as before. Then the result of Lemma 3.2 holds, and if we again write s*
for (pf1^*), we obtain

s1v1 = s^as* = • • • = s^i/js^jjS*..! = w2n_1s*_1 e V.

This completes the proof.
Before stating the next theorem, we recall some definitions in [4].

First, if c, d are distinct elements of a commutative semigroup 5, we say
that c is a potential divisor of d if, for every a, b e S1,

ac = be =>• ad = bd.

S is called division-ordered if every potential divisor is an actual divisor.
If S is division-ordered and if, for any two distinct elements x, y of S,
either x divides y or y divides x, we say that S is totally division-ordered.

It is known ([4], Theorem 2.6) that totally division ordered commutative
semigroups are CSg"-closed. In fact we even have
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THEOREM 3.3. / / 31 = [{S, T}; U; {cp, y>}] is a commutative semigroup
amalgam and U is totally division-ordered, then 21 is embeddable.

PROOF. With the same notation as before, suppose that u : S -> P is
not a monomorphism. Then there exist s, s' e S such that fi(s) = /*(s'),
but s ^ s'. That is, there exist ult • • •, uin e U, sx, • • •, sn e S, tx, • • •, tn_1 e T
such that

s = s1v1 ts1v1,
S1V2 =

(23)

and such that s ̂  s'. Let us suppose that s, s', ux, • • •, tn_x are chosen so
that n is as small as possible.

LEMMA 3.4. Suppose that /J, : S ->• P is not a monomorphism and that
(23) is the shortest set of factorisations exhibiting this fact. Then

(i) Ustu^U1;
(ii) one or other of u^, ui+1 does not belong to UjU1 (j = 3, • • •, 2w—2);

(iii) «2n-2^«2»-lf/1-

PROOF, (i) If u2u = M3 (u eU1), then

M ^ = ww%ty = ww1 e W.

Hence, if s" = s^Wj), we have

s" = s2(ww1), wwx = wtt%,

s2vt = s3v&, w5t2 = w6ts,

Thus n(s") = yit(s'), and the set of factorisations demonstrating the fact is
shorter than the set (23). Hence s" = s'. Now, either ux = u2 or u2 is a
potential divisor of ux; for, if u, u' e U1, then

uu2 = u'u2 => ww2 = w'w2

=> ww2tx = w'w2tx => wwx = w'wx => uux = u'ux.

Hence, since U is division-ordered, there exists u* e U1 such that w*w2 = ux.
Hence

s = sxvx = sxv*v2 = s2v*v3 = s2v*vv2 = s2vvx = s"

and so s = s', contrary to hypothesis.
A similar argument establishes (iii).
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To prove (ii), suppose first that / = 2i, an even integer, and that

U2i-1 == U2iU'> U2i+1 = U2iU"'

where u', u" e U1. Then the two rows

st-ivzi-z = SiV2i_lt K ^ - I ^ - I = w2itit

SiV2i = Si+lV2i+l> W2i+lh = W2i+2^i+l

of the factorisations (23) can be replaced by the single row

Si-lV2i-2 — Si+lV ' W h-1 = W2i+2^i+l>
where

for

and

u* = w2<-iM" = u2iu'u" = u2i+1u';

2i-2 = SiV*i-i = SiV2iv' = si+1vZi+1v' = si+1v*,

^ = w"w2i_1ti_1 = w"w2itt = w2i+1tt = w2i+2ti+1.

The set of factorisations (23) can thus be shortened, contrary to hypothesis.
Suppose now that / = 2i-\-l, an odd integer, and that

Then, by an argument very similar to that employed in the previous case,
we can show that the three rows

SiV2i =

Si+lV2i+2 = Si+2V2i+3> W2i+3^i+l == W2i+ih+2

of the factorisations (23) can be replaced by the two rows

Si-lV2i-2 =

stv* =

where u* = u'u2i+2 = u'u"u2i+1 = u"u2i. Thus again we obtain a reduction
in the length of the factorisations (23), contrary to hypothesis. This com-
pletes the proof of the lemma.

Returning now to the proof of the theorem, we consider the factorisa-
tions (23). Since U is totally division-ordered and since, by Lemma 3.4 (i),
u3 is neither equal to nor divisible by u2, we must have that u2 is divisible
by u3, hence, by Lemma 3.4 (ii), M4 is neither equal to nor divisible by u3,
and so u3 is divisible by w4. Hence, by Lemma 3.4 (ii), u5 is neither equal
to nor divisible by ui, and so M4 is divisible by uh. Continuing in this way,
we end with the statement that u2n_2 is divisible by M2n_1, contrary to
Lemma 3.4 (iii). Hence /J, must in fact be one-one.
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A similar argument shows that v is one-one.
To establish the intersection property, suppose by way of contradiction

that there exist s e S, t e T such that fi(s) = v(t), but s $ V. Then there
exist ux, • • •, u2n_1 e U, s1: • • •, sB - 1 e S, tx, • • •, tn_1 e T such that

s = stvlt wx = w2tt,

S1V2 — S2V3, W3k = ^4^2-

(24)
Sn-2V2n-i = Sn-lV2n-3> W2n-3^n-2 = = W2n-2^n-l>

Sn-lV2n-2 = V2n-1< W2n-l^n~l = = '»

and again we can suppose that s, t, ult • • •, tn_1 are chosen so that n is as
small as possible.

Closely analogous to Lemma 3.4, we have

LEMMA 3.5. Suppose that [x(S) n v(T) properly contains ft(p{U) and that
(24) is the shortest set of factorisations exhibiting this fact. Then

(i) Ustu^U1;
(ii) one or other of ut_x, uj+1 does not belong to UjU1 (j = 3, • • •, 2w—3);

PROOF. The proof of (ii) is identical to the proof of Lemma 3.4 (ii).
The proofs of (i) and (iii) are very similar. Considering (iii) by way of
illustration, we suppose that u2n_3 = u2n_2u, where u eU1. Then

Sn-2V2n-i = Sn-l
V2n-3 = Sn-lV2n-2V = V2n-lV

and so if we replace the last two lines of the factorisations (24) by the
single line

sn_2w2n_4 = v2n_xv, ie»2B_1^B_2 = t',

we obtain a set of factorisations which asserts that u(s) = v(t').
Hence s eV by the minimal property of (24) — a contradiction.
It is now easy to use the totally division-ordered property of U to

derive a contradiction from the factorisations (24), in exactly the same
way as for the factorisations (23).

One corollary of Theorem 3.3 seems interesting enough to deserve a
mention. It is shown in the proof of ([4], Corollary 2.7) that finite monogenic
(cyclic, in the terminology of [1]) semigroups are totally division-ordered.
Hence

COROLLARY 3.6. Finite monogenic semigroups are CSg-amalgamable.
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