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Abstract

We prove that under a sharp growth condition meromorphic functions posses a direction such that at most
four rational functions are completely ramified in any sector containing the direction.
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1. Introduction and statement of the theorem

Let f : C → Ĉ be a transcendental meromorphic function. Then it follows from
Nevanlinna’s theory of meromorphic functions that the equation f (z) = c has
infinitely many solutions with at most two exceptional values c ∈ Ĉ (Picard’s theorem)
and that it has infinitely many simple solutions with at most four exceptional values
c ∈ Ĉ, so-called completely ramified values (see [4] or [16, Chapter 1]). The question
whether the constants c in the above equations can be replaced by more complicated
objects, in particular by rational functions or so-called small functions for f , has a long
history. As was shown by Nevanlinna [7, Chapter IV, p 39], Picard’s theorem extends
to the seemingly most general setting of small functions. From the generalization of
Nevanlinna’s second fundamental theorem stated in [14] it follows immediately that at
most four small functions can be completely ramified.

Motivated by the results in sectorial value distribution theory (see [16]) we treat in
this paper the following question: under which conditions does there exist a direction
(a ray from 0 to ∞), such that at most four rational functions are completely ramified
for f in any sector containing the direction.
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It is not very surprising that a theorem of this type holds, but it is also clear that such
a direction cannot exist for every f : there exist transcendental meromorphic functions
that omit an open set of values around every direction. This can be shown by an
analysis of an example given in [8] (see [13, Section 2]).

We show that the growth condition (1), given already in [9] in connection with a
‘Picard version’ of Theorem 1.1, is also sharp for our considerations.

The main result of this note is the following.

THEOREM 1.1. Let f : C → Ĉ be a transcendental meromorphic function with

lim sup
r→∞

T (r, f )

(log r)3 = ∞. (1)

Then there exists a direction such that, for any distinct rational functions ϕ1, . . . , ϕ5,
in every sector containing that direction at least one of the equations f = ϕi has
infinitely many simple solutions.

The growth condition (1) is sharp in the following sense: in [9] an example was
given with T (r, f ) ∼

1
3 (log r)3 such that, around every direction, f omits infinitely

many rational functions, which are then of course completely ramified.
It is worth noting that a direction with at most four completely ramified constants

exists already if in (1) the denominator (log r)3 is replaced by (log r)2. This
is also a sharp growth condition, as follows easily from the results in [5, 8]
and [11, Theorem 4.1.4].

In order to prove Theorem 1.1 we collect some facts from value distribution
theory and prove several lemmata in the next section. We note that this line of
thought, with minor adjustments, reproves the fact that a transcendental meromorphic
function (without any growth restriction) has at most four completely ramified rational
functions. (See the remark at the end of the paper.)

2. Value distribution theory and some preliminaries

If D ⊂ Ĉ is a domain and f : C → Ĉ is meromorphic, then the bounded
components of f −1(D) are called the islands of f over D. If I is an island over D
then f : I → D is a proper map and its degree is called the multiplicity of the island.
If I has multiplicity 1, that is if f is one-to-one on I , then I is called a simple island.

The following lemma is an easy consequence of Rouché’s theorem. It constitutes
the basic idea of our method (see also [10]). As usual Dδ(0) denotes the open disc of
radius δ around 0.

LEMMA 2.1. Let f : C → Ĉ be meromorphic with infinitely many simple islands In
over Dδ(0) and ϕ be rational with ϕ(∞) = 0. Then f − ϕ has infinitely many simple
zeros in ∪In .
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The rest of this section deals with the fact that there need not exist simple islands
over ϕ(∞) and that many target functions ϕ can have the same value at infinity.
We develop a statement that works in simply connected islands with an additional
property (Lemma 2.6).

The following theorem is one of the main consequences of Ahlfors’s theory of
covering surfaces [1].

THEOREM 2.2. Let f : C → Ĉ be a non-constant meromorphic function and
D1, . . . , Dq ⊂ Ĉ be simply connected domains with disjoint closures. If every simply
connected island of f over Di has multiplicity at least µi then

q∑
i=1

(
1 −

1
µi

)
≤ 2. (2)

An application of Zalcman’s rescaling lemma [17] to Theorem 2.2 shows the
following.

COROLLARY 2.3. Let F be a non-normal family of meromorphic functions on D and
D1, . . . , Dq ⊂ Ĉ be simply connected domains with disjoint closures.

If q = 3 and if all but finitely many f ∈F have no simple island over any of the Di
then there are two Di such that, with at most finitely many exceptions, all f ∈F have
simply connected islands over both Di .

If q = 4 and if all but finitely many f ∈F have no simple island over any of the Di
then, with at most finitely many exceptions, all f ∈F have simply connected islands
over every Di .

If q = 5 then there exists at least one Di , such that, with at most finitely many
exceptions, all f ∈F have simple islands over this Di .

For the proof one first has to enlarge the D1, . . . , Dq ⊂ Ĉ slightly (e.g. using
polygonal paths surrounding the domains) such that Ahlfors’s theory can still be
applied to the limit function obtained from Zalcman’s lemma with respect to the larger
domains. A Rouché argument then yields the statement. The statement for q = 5 is
also known as the Ahlfors five islands theorem.

The next lemma follows from the Riemann–Hurwitz formula in the form treated
in [12]. Here r(I ) :=

∑
z∈I (mult f (z) − 1) denotes the ramification of f on I , where

mult f (z) is the multiplicity of f at z.

LEMMA 2.4. Let I and D be simply connected domains and f : I → D be a proper
holomorphic map. Then

deg f = 1 + r(I ).

The following lemma makes it possible to work in simply connected islands.
A value z0 ∈ Ĉ is called completely ramified for a meromorphic function f , if all
preimages f −1(z0) have multiplicity at least 2.
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LEMMA 2.5. Let I and D be simply connected domains, z0 ∈ D and f : I → D be a
proper holomorphic map such that z0 is completely ramified. Further, let ϕ : I → D
be holomorphic such that ϕ(I ) is contained in a simply connected domain G with
G ⊂ D \ {z0}. Then f − ϕ has at least two simple zeros in I .

PROOF. Let d := deg f . The preimage f −1(G) consists of q ≤ d components
U1, . . . , Uq which are simply connected. (If G is a disc then the Ui are simply
connected by the maximum principle. For the general case use the Riemann mapping
theorem.) Let di be the degree of f : Ui → G and r(Ui ) be the ramification of f on
Ui . Then application of Lemma 2.4 on each Ui and summation gives

d − q =

q∑
i=1

r(Ui ). (3)

Clearly d = | f −1({z0})| + r( f −1({z0})) (where |·| denotes cardinality). Since z0 is
completely ramified, | f −1({z0})| ≤ d/2 and r( f −1({z0})) ≥ d/2. From Lemma 2.4 it
follows that

d − 1 = r(I ), (4)

so that
∑q

i=1 r(Ui ) ≤ r(I ) − r( f −1({z0})) ≤ d/2 − 1. This and (3) show that
q ≥ d/2 + 1. Now suppose that r(Ui ) ≥ 1 for at least q − 1 of the domains Ui . Then

r(I ) ≥ r( f −1({z0})) +

q∑
i=1

r(Ui ) ≥
d

2
+ q − 1 ≥ d.

This contradicts (4). Hence, we can assume r(Ui ) = 0 for i = 1, 2, which implies
that U1, U2 are simple islands of f over G.

If G is a disc with centre z1 then by assumption |ϕ − z1| < | f − z1| on ∂Ui ,
i = 1, 2. By Rouché’s theorem f − ϕ and f − z1 both have exactly one simple zero
in U1 and U2, which proves the lemma in this case. For the general situation use the
Riemann mapping theorem. 2

For I ⊂ C, which is assumed to be contained in a proper sub-sector of C, we set

1 arg(I ) := max
z,w∈I

|arg z − arg w|.

LEMMA 2.6. Let f : C → Ĉ be meromorphic, with infinitely many simply connected
islands In over Dδ(0) with 1 arg(In) → 0, and let ϕ1, ϕ2 be distinct rational functions
with ϕ1(∞) = ϕ2(∞) = 0. Then for at least one k = 1, 2 it follows that f − ϕk has
infinitely many simple zeros in ∪In .

PROOF. Suppose that f − ϕ2 possesses only finitely many simple zeros in ∪In .
Consider f̃ := f − ϕ2 and ϕ̃ := ϕ1 − ϕ2 and a sequence Ĩn ⊂ In of islands of f̃ over
Dδ/2(0). Such Ĩn exist since ϕ2(∞) = 0. Further, all Ĩn , with at most finitely many
exceptions, are simply connected, because a bounded component of the complement
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of such an island contains a pole of f̃ . Except for finitely many, these have to be
poles of f , which is impossible since Ĩn ⊂ In and the In are simply connected. For
each of the proper mappings f̃ : Ĩn → Dδ/2(0) the value z0 = 0 is completely ramified.
Further ϕ̃(z) = (c + o(1))z−k as z → ∞ for some c 6= 0 and k ∈ N. For n large
enough we have by assumption 1 arg( Ĩn) < 2π/k. Increasing n if necessary we obtain
1 arg(ϕ̃( Ĩn)) < 2π . Further d|z|−k < |ϕ̃(z)| < D|z|−k for some d, D > 0 for large z.
It follows that for ϕ̃ : Ĩn → Dδ/2(0) there exist ln, Ln > 0 such that for n ≥ n0

ϕ̃( Ĩn) ⊂ {w ∈ Dδ/2(0) | ln < |w| < Ln < δ/2, arg w ∈ (xn, yn)} =: Gn,

with yn − xn < 2π . Gn is a simply connected domain with Gn ⊂ Dδ/2(0) \ {0}. We
can apply Lemma 2.5 to f̃ , ϕ̃ : Ĩn → Dδ/2(0), which proves the claim. 2

3. Proof of Theorem 1.1

In [9, Lemmas 2.2 and 2.3] it was proved that if (1) holds, then f has a sequence of
discs D j := {z ∈ C | |z − z j | < α j |z j |} with α j → 0 that forms a sequence of filling
discs (or cercles de remplissage) for every Möbius transformation of f with rational
functions as coefficients. We work exclusively in these discs. A sequence of discs D j
as described above is a sequence of filling discs if f takes on every infinite union ∪D jk
all values in Ĉ with at most two exceptions infinitely often. It follows immediately
from [9, the proof of Theorem 1.2] that we can choose the sequence α j → 0 such that
the functions

f j : D → D j , f j (z) := f (z j + α j z j z),

form a non-normal family in D. Hence, we can use Corollary 2.3. Further, we may
assume that arg z j → β, so that the ray teiβ with t > 0 will be a suitable direction.

Let ϕ1, . . . , ϕ5 be distinct rational functions. Note that we may apply Möbius
transformations with rational functions as coefficients to f and all ϕi without affecting
the assertion. Set M := {ϕi (∞) | i = 1, . . . , 5} and denote by ak the elements of M .
Further, we define

T (w, z) :=
w − ϕ1(z)

w − ϕ2(z)
·
ϕ3(z) − ϕ2(z)

ϕ3(z) − ϕ1(z)
. (5)

Considering T ( f (z), z) instead of f and T (ϕi (z), z) instead of ϕi we may assume
that {0, 1, ∞} ⊂ M and hence |M | ≥ 3. Choose discs Dδ(ak) around the values of M
that have disjoint closures. We say that f has islands over ak if f has infinitely many
islands in ∪D j over the disc containing ak .

If |M | = 5 the assertion follows from Lemma 2.1 and Corollary 2.3 with q = 5.
Suppose |M | = 4. If there are infinitely many simple islands over one of these

four values, then the claim follows again from Lemma 2.1. Hence, according to
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Corollary 2.3 with q = 4, we can assume that there are infinitely many simply
connected islands over each value in M . Two ϕi have the same value at ∞, say
ϕ4(∞) = ϕ5(∞). Applying a Möbius transformation we may assume ϕ4(∞) = 0 and
ϕ5(∞) = 0. Since 1 arg(D j ) → 0, Lemma 2.6 proves the assertion in this case.

We now assume |M | = 3. Using (5) we may suppose that ϕ1 ≡ 0, ϕ2 ≡ ∞ and
ϕ3 ≡ 1. Assume that over none of the values {0, 1, ∞} are there infinitely many simple
islands.

(i) Suppose there are two values in M such that for both values there are two ϕi
taking the value at ∞. Then we can argue exactly as in the case |M | = 4, since
by Corollary 2.3 with q = 3 over at least one of the two values there are infinitely
many simply connected islands.

(ii) If without loss of generality ϕ4(∞) = ϕ5(∞) = ∞ then both functions are non-
constant since they are distinct from ϕ2. We can assume that c := (ϕ4/ϕ5)(∞) 6=

0. Then apply the transformation w/ϕ5. (This means that (5) was not a good
choice. Instead one should take

T (w, z) :=
w − ϕ1(z)

w − ϕ2(z)
·
ϕ5(z) − ϕ2(z)

ϕ5(z) − ϕ1(z)
,

from the start.)

We get ϕ1 ≡ 0, ϕ2 ≡ ∞, ϕ3(∞) = 0, ϕ4(∞) = c and ϕ5 ≡ 1. Depending on c this
leads to (i) or to the case |M | = 4. 2

4. Remarks

(a) It is remarkable that the growth condition (1) was already used in [15] to
prove the existence of Hayman directions. Hayman directions are singular directions
corresponding to Hayman’s classical theorem [4, Corollary to Theorem 3.5], on the
value distribution of f and its derivatives: f takes every value of C infinitely often
or every derivative f (k) takes every value in C \ {0} infinitely often in any sector
containing the direction. In the proofs of the results given in [9, 15] and Theorem 1.1
one can take the same filling discs. This leads to the following theorem.

THEOREM 4.1. Let f : C → Ĉ be a transcendental meromorphic function satisfying
(1). Then there exists a Julia direction for f that is a Hayman direction, where at
most two rational functions are omitted and where at most four rational functions are
completely ramified.

It is unclear whether (1) is needed for the existence of Hayman directions. If the
Hayman direction is supposed to be also a Julia direction which is generated by filling
discs, which is implicit in the proof of [15], then again the example in [9] shows that
(1) is sharp. (We refer to [2] and [3].)
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(b) Our method can be used to prove that every transcendental meromorphic
function has at most four completely ramified rational functions. In the proof of
Theorem 1.1 it was important that the filling discs stay filling discs after application
of transformations with rational functions as coefficients. This was assured by (1).
For functions of slow growth it may happen that the transformation leads to (i) filling
discs in other places or even (ii) no filling discs at all. Point (i) is of no importance
for the proof of a non-sectorial theorem. Problem (ii) occurs if the transformed
function is a so-called Julia exceptional function (see [8]). This is equivalent to
f #(z) = O(1/|z|) for z → ∞ where f #

= | f ′
|/(1 + | f |

2) is the spherical derivative
of f . Let z j → ∞ be a sequence such that lim inf j→∞ |z j | f #(z j ) ≥ 1/2. Such a
sequence exists by a theorem of Lehto and Virtanen [5, 6]. From the Marty criterion
it easily follows that the sequence f j (z) := f (z j z) is normal in C \ {0}. Hence there
exists a subsequence converging to some function F meromorphic in C \ {0}. Since
F#(1) = limk→∞ |z jk | f #(z jk ) ≥ 1/2 it follows that F is non-constant. Suppose that
|M | = 3. Then F takes at least two of the ak or has a simple root for one ak . This
follows from Theorem 2.2 applied to the function F ◦ exp. Let z1 be a root of F for
some ak . It is not complicated to check that δ can be chosen so that z1 is contained
in a simply connected island I over D2δ(ak) with I ⊂ Dη(z1), where η is chosen such
that 1 arg(Dη(z1)) < ε. In addition, if z1 is a simple root then δ can be chosen such
that I is a simple island. It follows that f has appropriate islands over Dδ(ak) with
‘small’ 1 arg in the discs z jk Dη(z1), so that the proof of Lemma 2.6 also works in this
situation. The case |M | = 4 can be treated analogously.
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