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Abstract

Countdown is the name of a game in which one is given a list of source numbers and a target

number, with the aim of building an arithmetic expression out of the source numbers to get

as close to the target as possible. Starting with a relational specification we derive a number

of functional programs for solving Countdown. These programs are obtained by exploiting

the properties of the folds and unfolds of various data types, a style of programming Gibbons

has aptly called origami programming. Countdown is attractive as a case study in origami

programming both as an illustration of how different algorithms can emerge from a single

specification, as well as the space and time trade-offs that have to be taken into account in

comparing functional programs.

1 Introduction

Countdown is the name of a game from a popular British television programme

(in France it is called Le Conte est Bon) in which contestants are given six source

numbers and a target number, all positive integers, with the aim of building an

arithmetic expression out of some of the source numbers whose value is a positive

integer as close to the target as possible. Each source number can be used at

most once and expressions are built using the four basic operations of addition,

subtraction, multiplication and division. Contestants are allowed only 30 seconds

thinking time.

For example, with source numbers [1, 3, 7, 10, 25, 50] and target 831 there is no

exact solution; one expression that comes closest is

(50− 1)× (10 + 7)− 3 = 830

In this example the source numbers are all different, but duplicates are allowed. We

will suppose that the source numbers are presented in numerical order.

Countdown was studied in Hutton (2002) as an illustration of how to prove

functional programs meet their specification. Hutton’s aim was not to develop the

best possible algorithm, but to present one whose correctness proof required only

simple induction.
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In this paper we revisit Countdown from a somewhat different perspective. Instead

of giving a specification, a program, and a proof of the program’s correctness,

our aim is to calculate various programs from the specification. The programs are

obtained by exploiting the properties of the fold and unfold functions of various data

types. Gibbons (2003) calls this technique origami programming. Like Gibbons and

Hutton we employ a declarative style of expression, using Haskell notation and ideas.

However, although the final programs are functional, the intermediate expressions

are relational. Countdown is attractive as a case study because it illustrates the

flexibility of a relational framework, how different programs can emerge from a

succinct specification, and the space-time trade-offs that have to be considered in

designing functional programs. For another case study in origami programming, the

derivation of algorithms for Arithmetic coding and decoding, see Bird & Gibbons

(2003).

Here is the relational specification of countdown:

countdown n = minwith (diff n) · Λ(mkExpr · subseq)

The expression on the right is interpreted as follows: make a selection (subseq) from

the list of source numbers and build a valid arithmetic expression (mkExpr) from

the selection (a valid expression is one whose value is a positive integer); do this in

all possible ways (Λ); finally, select from the set of possible results an expression

that minimises (minwith) the absolute difference (diff ) between the value of the

expression and the target value n . The final expression is not determined uniquely,

so countdown specifies a relation. The meanings of the component pieces will be

defined formally in the following two sections, the point now being merely to show

that Countdown can be specified very briefly in a compositional style.

2 Preliminaries

We think of binary relations as nondeterministic functions that can deliver zero or

more results for each argument. Relations can be used anywhere functions can; we

can use them as arguments to higher-order functions, return them as results, and so

on. Although Haskell notation is used for describing relations, relational programs

are not intended for execution. Instead, by removing the nondeterminism, we refine

a relational program to a functional one that can be executed.

A whole arsenal of techniques for reasoning in a relational calculus is presented

in Bird & deMoor (1997), but we will give just the minimum of notation to get

us going, illustrate the main ideas in the context of Countdown, and leave out

the details. Familiarity with functional programming, preferably programming in

Haskell, is assumed (e.g. see Bird (1998) and Gibbons (2003)).

Regarding notation, a relation R from set A to set B will be denoted by R :: A �

B . The domain of a relation R is the set dom R of those elements a ∈ A such that

R a delivers some result. If R is a function (meaning a single-valued relation with

dom R = A) we will write R :: A→ B as usual. In particular, countdown has type

countdown :: Int → [Int] � Expr
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Union, intersection and subtraction of relations are interpreted set-theoretically

under the normal interpretation of relations as sets of pairs. Relational composition

is denoted by (·) just as functional composition is.

To express that b is a possible result of applying a relation R to a we will

sometimes write b ← R a , in analogy with the expression b = R a , which is valid

only if R is a function. In particular, R ⊆ S if for all a we have b← S a whenever

b ← R a . We say R is a refinement of S , and write R � S , if dom R = dom S and

R ⊆ S . Thus refining a relation means reducing nondetermininsm while preserving

the domain.

The converse of a relation R :: A � B is a relation R◦ :: B � A defined by

a←R◦ b iff b←R a . Converse is contravariant, which is to say that (R · S )◦ = S ◦ ·R◦.
The availability of converse is perhaps the most important reason for employing a

relational framework. With it one can formulate properties of functions that would

otherwise require circumlocution and notational fuss. Converse works best with

uncurried functions; for example, the meaning of the converse of plus is immediate

from the definition plus (x , y) = x + y but requires an intermediate uncurrying step

when we define plus x y = x + y . Haskell programmers prefer curried definitions as

a matter of course, but we will be more sparing in their use.

Finally, the breadth of a relation R, denoted by ΛR, is a function that collects

the results returned by R in a set. Thus (ΛR) x = {y | y ← R x}. The operator Λ

satisfies a number of useful properties, including the composition law

Λ (R · S ) = union · mapSet (ΛR) · ΛS

where union :: Set (Set a)→ Set a , and mapSet maps a function over a set of values.

The composition law shows why it is notationally simpler to reason about the

composition of two relations than about the composition of their breadths, so use

of the law is usually delayed until the closing stages of a calculation.

3 Specification

To specify Countdown we need the following datatype of expressions:

data Expr = Val Int |App (Op,Expr ,Expr)

data Op = Add | Sub |Mul |Div

The constructor App is declared as a non-curried function for the reasons given

above.

The fold operation for datatype Expr is defined by

foldE :: (Int → a)→ ((Op, a , a)→ a)→ Expr → a

foldE f g (Val n) = f n

foldE f g (App (op, x , y)) = g (op, foldE f g x , foldE f g y)

In a relational setting, the arguments f and g of foldE can be relations with types

Int � a and (Op, a , a) � a , respectively, so foldE is a function taking two relations

into a third.
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Using foldE we can define a number of useful functions and relations. In particular,

the function value evaluates an expression and is defined by

value :: Expr → Real

value = foldE id apply

The subsidiary function apply applies an operator to two numbers and is defined in

the obvious way. In Countdown we are interested only in expressions whose values

are positive integers. Given that expressions are built only out of the four basic

arithmetic operations, we can generate all valid (that is, positive integer valued)

expressions solely out of valid subexpressions provided we ensure that whenever

division is used the denominator should divide the numerator exactly (so Div can be

interpreted as integer division), and whenever subtraction is used, the result should

be positive.

Valid expressions are determined by a relation valid :: Expr � Expr defined by

valid = foldE Val app, where app is a partial function (and hence a relation) defined

by

app :: (Op,Expr ,Expr) � Expr

app (op, x , y) | legal op x y = App (op, x , y)

The boolean-valued function legal is defined by

legal Add x y = True

legal Sub x y = value x > value y

legal Mul x y = True

legal Div x y = (value x ) mod (value y) == 0

Since app ⊆ App we have valid ⊆ foldE Val App = id , so valid is a subrelation of

the identity function.

Next to be considered is mkExpr :: [Int] � Expr , the relation that constructs

an expression out of a list of numbers. There are two ways this relation can be

specified. One is to first consider the function flatten :: Expr → [Int] defined by

flatten = foldE wrap join

where wrap x = [x ] and join (op, xs , ys) = xs ++ ys . Thus flatten returns the list of

integers on which an expression is based in order from left to right. Using flatten

we can define

mkExpr = valid · flatten◦ · perm

This takes a list of numbers to a valid expression whose basis is some permutation

of the list.

The other method for defining mkExpr is to exploit the assumption that the list

of source numbers is given in numerical order. Define basis by

basis = foldE wrap merge

where merge (op, xs , ys) merges two ordered lists xs and ys into ascending order.

Then basis returns the list of integers on which an expression is based in ascending
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order. We can then define

mkExpr = valid · basis◦

The two definitions of mkExpr are equivalent for ordered lists. Both are related to

arguably a more fundamental definition of basis that returns the bag of numbers

on which an expression is based, but we have decided not to make bags explicit in

the specification.

Whichever definition is used, our problem is to find an expression whose value is

as close to a chosen target number as possible, so we define

countdown :: Int → [Int] � Expr

countdown n = minwith (diff n) · Λ(mkExpr · subseq)

The relation subseq returns a subsequence of the input list, which will be in ascending

order if the input is. The relation minwith has type

minwith :: Ord b ⇒ (a → b)→ Set a � a

and minwith f selects an element from a set that minimises f . Here f = diff n , where

diff n x = abs (n − value x ).

The following sections are devoted entirely to the task of refining countdown to a

functional program. A number of such programs are derived, and Figure 1 provides

a road map to help the reader navigate through the various alternatives.

4 A first program

Hutton (2002) actually formulated countdown slightly differently as one of producing

all expressions whose value matched the target exactly. Modulo this minor difference

it is straightforward to derive his first program: we simply invoke the composition

law for Λ and then replace all set-valued functions by list-valued ones.

Hutton chose the definition mkExpr = valid · flatten◦ · perm so, following his

lead, suppose exprs , perms and subseqs are all list-valued functions that implement

Λ(valid · flatten◦), Λperm , and Λsubseq , respectively. Then we obtain

countdown n = nearest n · concat · map exprs · subbags

subbags = concat · map perms · subseqs

In this program union has been replaced by concat , mapSet by map, and an

intermediate function subbags introduced simply to break up an otherwise lengthy

expression. The names exprs and subbags are those chosen by Hutton.

What remains is to find appropriate implementations of the list-valued functions.

The functions perms and subseqs are easy enough, so we will concentrate on exprs .

The aim is to derive a recursive definition of exprs .

The first step is to appreciate that since flatten = foldE wrap join is defined as

a fold, flatten◦ can be defined as an unfold. This is the first principle of origami

programming: folds and unfolds are dual concepts connected by converse.
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Fig. 1. Road map. The round-cornered squares are results of development, each labelled with

the section where their main developments take place, and the names of the corresponding

programs used for experiments in section 13.

To define the function unfoldE associated with the datatype Expr , first recall the

type Either a b defined by

data Either a b = Left a |Right b

Then unfoldE is defined by

unfoldE :: (a → Either Int (Op, a , a))→ a → Expr

unfoldE f x = case f x of

Left n → Val n

Right (op, y , z ) → App (op, unfoldE f y , unfoldE f z )

To capture the relationship between foldE and unfoldE , recall the Haskell library
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function either defined by

either :: (a → c)→ (b → c)→ Either a b → c

either f g (Left x ) = f x

either f g (Right y) = g y

Then we have

(foldE f g)◦ = unfoldE (either f g)◦

It is the ability to state results like this that makes the generalisation to relations

both necessary and fruitful.

In particular, flatten◦ = unfoldE (either wrap join)◦. Hence expr = valid · flatten◦

can be rewritten in the form

expr = foldE Val app · unfoldE (either wrap join)◦

A relation defined as a fold after an unfold is known as a hylomorphism (see Meijer

et al., 1991). In a hylomorphism one builds a data structure (the unfold), and then

processes it (the fold). Hylomorphisms are at the heart of origami programming,

and most of the recursive definitions given by functional programmers are examples

of hylomorphisms, whether they are conscious of the fact or not. Folds and unfolds

are themselves instances of hylomoprhisms. Since foldE Val App = id and id = id◦

we have unfold (either Val App)◦ = id .

Hylomorphisms can be expressed recursively. For example, writing

hyloE = foldE f g · unfoldE h

we have for functions f , g and h

hyloE x = case h x of

Left n → f n

Right (op, y , z ) → g (op, hyloE y , hyloE z )

When h is an instance of the converse of either as in

hyloE = foldE f1 g1 · unfoldE (either f2 g2)
◦

we have for relations f1, f2, g1 and g2 that

hyloE = (f1 · f2◦) ∪ (g1 · mapE hyloE · g2
◦)

where mapE f (op, x , y) = (op, f x , f y). Replacing a fold after an unfold by a single

recursion is usually called hylo-fusion in the literature. Such a recursion can be

formulated for the fold and unfold functions over an arbitrary recursive data type.

We can compute hylosE = ΛhyloE by lifting the recursion for hyloE to the set

level:

hylosE = Λ(f1 · f2◦) union Λ(g1 · mapE (∈ · hylosE ) · g2
◦)

Here ∈:: Set a � a is the membership relation for sets, and union is the point-wise

union of two set-valued functions: (f union g) x = f x ∪ g x . Here we underline a
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function to make it infix. In particular, with exprs = Λexpr we obtain

exprs xs = {Val x | x ← wrap◦ xs} ∪
{e | (op, ys , zs)← join◦ xs ,

e1 ∈ exprs ys , e2 ∈ exprs zs ,

e← app (op, e1, e2)}

Apart from the unfamiliar form of the qualifiers in the set comprehensions, this

definition of exprs is the kind of recursion one would expect.

The assertion (op, ys , zs)← join◦ xs is equivalent to

(ys , zs) ∈ nesplits xs ∧ op ∈ ops

where nesplits returns the splits of xs into two nonempty components and ops =

{Add , Sub,Mul ,Div}. The function nesplits is easy to implement and we won’t give

details. Since wrap and join have disjoint ranges, we can rewrite the recursion for

exprs in the form

exprs xs = if singleton xs then {Val (head xs)}
else {e | (ys , zs) ∈ nesplits xs ,

e1 ∈ exprs ys , e2 ∈ exprs zs

e ∈ combine e1 e2}
combine e1 e2 = {App (op, e1, e2) | op ∈ ops , legal op e1 e2}

A list-valued implementation of exprs can now be obtained simply by replacing the

set comprehensions with list comprehensions. Of course, a potential disadvantage

of this simple device is that lists, unlike sets, can contain duplicates, so the same

expression might be generated more than once. However, if the source numbers

do not contain duplicates, then mkExprs as a list-valued function will not contain

duplicates either.

Apart from an implementation of nearest n , which will be omitted, we have

essentially reconstructed the first of Hutton’s solutions. It is a simple translation of

a relational specification into a functional program.

5 A second program

A similar development can be used with the second choice mkExpr = valid · basis◦.

Recalling that basis = foldE wrap merge, we have

mkExpr = foldE Val app · unfoldE (either wrap merge)◦

Setting mkExprs = ΛmkExpr and following exactly the same route as before, we

obtain

mkExprs xs = if singleton xs then {Val (head xs)}
else {e | (ys , zs) ∈ unmerges xs ,

e1 ∈ mkExprs ys , e2 ∈ mkExprs zs

e ∈ combine e1 e2}
combine e1 e2 = {App (op, e1, e2) | op ∈ ops , legal op e1 e2}
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where unmerges xs = {(ys , zs) | merge (op, ys , zs) = xs}. To give a constructive defi-

nition of unmerges first consider the relation unmerge that returns a single pair of

lists. We can define unmerge = foldr choose ([ ], [ ]), where

choose x (ys , zs) = (x : ys , zs) � (ys , x : zs)

The choice operator � returns either its left-hand or right-hand argument non-

deterministically. Note that unmerge is a total relation, returning well-defined results

even if the argument is not an ordered list.

The next step is to lift this relation to the set level by exploiting the rule

Λ(foldr f e) = foldr fs es

where es = {e} and fs x ys = {z | y ∈ ys , z ← f x y}. Replacing sets by lists, we

obtain

unmerges = filter ne · foldr choose [([ ], [ ])]

choose x xys = concat (map (add x ) xys)

add x (ys , zs) = [(x : ys , zs), (ys , x : zs)]

The function filter ne filters out possibly empty components; we can define

ne (ys , zs) = not (null ys) ∧ not (null zs)

For example, unmerges [1, 2, 3] produces

[([2, 3], [1]), ([1, 3], [2]), ([3], [1, 2]), ([1, 2], [3]), ([2], [1, 3]), ([1], [2, 3])]

Observe that half of these entries are the pairwise swaps of the other half. We can

define one half by slightly changing the definition of choose:

choose x [([ ], [ ])] = [([x ], [ ])]

choose x xys = concat (map (add x ) xys)

The additional clause breaks the symmetry by ensuring that the last element of the

list appears only in the first component of the pairs. For example, unmerges [1, 2, 3]

now produces the first half of the previous list:

[([2, 3], [1]), ([1, 3], [2]), ([3], [1, 2])]

In fact with the new definition of choose we can replace filter ne simply by tail , since

only the first element of the result has the empty list as a (second) component.

We can exploit the idea of producing only half the unmerges of a list by defining

a more efficient version of mkExprs in which the definition of combine is changed

to read

combine e1 e2 = {App (op, e1, e2) | op← ops , legal op e1 e2} ∪
{App (op, e2, e1) | op← ops , legal op e2 e1}

Exactly the same set of expressions is produced as before, but the computation is

twice as efficient. Primarily for this reason we might expect that the program above is

faster than the one in the previous section. Although computation of unmerges xs is

somewhat slower than nesplits xs , the benefits appear to be greater. This expectation

is confirmed in section 13 where we present some experimental comparisons.
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In summary, with the above definition of mkExprs expressed as a list-valued

function, we have

countdown n = nearest n · concat · map mkExprs · subseqs

The value countdown n xs is well-defined even if xs is not in numerical order.

6 A third program

The two programs derived so far relied on an immediate appeal to the composition

rule for Λ in the expression Λ(mkExpr · subseq). But why not go a further step first

and see if the two relations mkExpr and subseq can be fused into one? After all,

fusion is the most important technique available to the program optimiser.

The fold-fusion rule for foldE says that h · foldE f1 g1 = foldE f2 g2 if h · f1 = f2
and h · g1 = g2 ·mapE h . The function mapE was defined in Section 4. Equivalently,

the second condition reads

h(g1 (op, x , y)) = g2 (op, h x , h y)

Recalling that we can take mkExpr = valid · basis◦, where basis = foldE wrap merge,

consider the relation subseq◦ · basis . If we can apply the fusion rule to this relation,

obtaining a fold, then take its converse, obtaining an unfold, we have yet another

hylomorphism. Again, we emphasise that it is only in a relational framework that

we have the freedom to play around in this way, looking at things from both sides

as it were, and choosing which direction to go.

An appeal to the fusion rule for foldE is possible if we can find relations f and g

such that

subseq◦ · wrap = f

subseq◦ · merge = g · mapE subseq◦

Writing pick = wrap◦ · subseq , so pick picks an element from a nonempty list, we

have f = pick ◦. To deal with the second condition, observe that

ordered · subseq◦ · merge = merge · mapE (ordered · subseq◦)

where ordered ⊆ id is the partial function that is the identity on ordered lists. The

equation holds because the operation of merging two lists together and taking an

ordered super-sequence of the result defines exactly the same results as the operation

of taking ordered super-sequences of two lists and merging the result. Consequently,

ordered · subseq◦ · basis = foldE pick ◦ merge

Taking converses and using ordered◦ = ordered , we have

mkExpr · subseq · ordered = foldE Val app · unfoldE (eitherE pick ◦ merge)◦

On ordered lists, mkExpr · subseq · ordered = mkExpr · subseq , and since the list of

source numbers is assumed to be ordered, this appeal to fusion is adequate.
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Setting mkAllExprs = Λ(mkExpr · subseq), we therefore obtain

mkAllExprs xs = if singleton xs then {Val (head xs)}
else {Val x | x ← pick xs} ∪

{e | (ys , zs)← unmerges xs ,

e1← mkAllExprs ys ,

e2← mkAllExprs zs ,

e ∈ combine e1 e2}

In the case that xs is not a singleton list, we can either pick an element and apply

Val , or choose to unmerge xs . The ranges of pick ◦ and merge are not disjoint, so

we have to consider both possibilities.

Translating mkAllExprs into a list-valued function, we therefore obtain

countdown n = nearest n · mkAllExprs

The main advantage of mkAllExprs over the previous two programs is that we no

longer have to compute subseqs explicitly. There is, however, a big disadvantage:

unlike the previous programs duplicates of the same expression will be generated

by the list-valued version of mkAllExprs , so the size of mkAllExprs will be greater

than that of concat · map mkExprs · subseqs . For example, in mkAllExprs [1, 2, 3, 4]

the expression 1 + 2 will be generated four times, once for each of the unmerges

([2, 3, 4], [1]), ([1, 3, 4], [2]), ([1, 4], [2, 3]), ([2, 4], [1, 3])

Even ignoring this fact, the computation of mkAllExprs requires substantially more

resident space, as can be seen in Section 13. The general lesson is that appeal

to fusion comes with a health warning: it can lead to an increase in speed but

a deterioration in space utilisation, and the time spent in garbage collection in a

functional implementation can outweigh the time saved in the main computation.

7 From expressions to results

There is a serious problem with all the programs developed so far: value compu-

tations are repeated both in the evaluation of legal and in nearest n . It is more

efficient to pair expressions with their values to circumvent repeated evaluations of

value, an optimisation that Hutton installed in his second program.

Accordingly, define

type Result = (Expr , Int)

and the relation mkResult :: [Int] � Result by

mkResult = split (id , value) · mkExpr

where split (R, S ) is defined by (u , v )←split (R, S ) x iff u←R x and u←S x . Defining

diffR :: Int → Result → Int by

diffR n (e, v ) = abs (n − v )
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we can calculate

fst · minwith (diffR n) · Λ(mkResult · subseq)

= {since fst · minwith (diffR n) = minwith (diff n) · mapSet fst}
minwith (diff n) · mapSet fst · Λ(mkResult · subseq)

= {since mapSet f · Λ S = Λ(f · R) for a function f }
minwith (diff n) · Λ(fst · mkResult , subseq)

= {definition of mkResult}
minwith (diff n) · Λ(fst · split (id , value) · mkExpr · subseq)

= {since fst · split (f , g) = f provided f and g are functions}
minwith (diff n) · Λ(mkExpr · subseq)

To derive a recursion for mkResult we need the fact that for any relation C ⊆ id we

have

split (R, S ) · C = split (R · C , S )

In particular, for mkExpr = valid · basis◦ and since valid ⊆ id , we have mkResult =

split (valid , value) · basis◦. The reason for expressing mkResult in this particular

fashion is that, since both valid and value are defined as instances of foldE , the

relation split (valid , value) can be expressed as a fold. More precisely, the split-fusion

rule for foldE states that

split (foldE f1 g1, foldE f2 g2) = foldE (split (f1, f2)) (split (g2, g2))

There is nothing specific to foldE here; a similar identity holds for the fold function

associated with an arbitrary datatype – see the banana-split rule in (Bird and de

Moor, 1997). Hence we have

mkResult = foldE (split (Val , id )) appR · basis◦

where appR (op, (e1, v1), (e2, v2)) = (app (op, e1, e2), apply (op, v1, v2)). The crucial

observation is that we can compute appR more efficiently by rewriting it in the

equivalent form

appR (op, (e1, v1), (e2, v2)) | legal op v1 v2 = (App (op, e1, e2), apply (op, v1, v2))

with the obvious redefinition of legal that takes the values of expressions as

arguments rather than the expressions themselves. In this way we avoid repeated

evaluations of value in calls to legal .

The relation mkResult is expressed as a fold after an unfold, just like mkExpr ,

and so can be computed as a hylomorphism in exactly the same way as before.

With the necessary changes, the derivation of a functional program for ΛmkResult

follows exactly the same path as the one for Λ mkExpr and the resulting program

looks almost the same apart from that each tree is paired with its value and the

function value is not called repeatedly. In the remaining sections we will continue

the discussion in terms of Expr rather than Result , with the understanding that the

optimisation above is applied to all the final programs.
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8 Strengthening the validity test

There are about 33 million expressions that can be built from 6 numbers of which,

depending on the input, approximately 5 million satisfy valid . But there is a great

deal of redundancy in the set of expressions one can build. For example, x + y and

y +x are essentially the same expression, as are each of (x − y)+ z , x +(z − y) and

(x + z )− y , and each of x , x ∗ (y/y) and x/(y/y). One approach to restraining the

redundancy is to strengthen the definition of valid with the aim of excluding all but

a single representative of each set of essentially similar expressions. To reduce this

redundancy, Hutton used a validity test based on the following, stronger definition

of legal :

legal ′ Add x y = (value x � value y)

legal ′ Sub x y = (value x > value y)

legal ′Mul x y = (1 < value x ∧ value x � value y)

legal ′ Div x y = (1 < value y ∧ (value x ) mod (value y) = 0)

Hutton’s choice takes account of the commutativity of addition and multiplication

by requiring that arguments be in numerical order, and the identity properties of

multiplication and division by requiring that the appropriate arguments be non-

unitary. The stronger validity test reduces the number of valid expressions to about

250,000. Of course, the modification has to be justified formally. This is done by

proving that countdown ′ n � countdown n where

countdown ′ n = minwith (diff n) · Λ(valid ′ · basis◦ · subBag)

and valid ′ denotes the strengthened validity test. We omit details.

One can go further along this path and strengthen the validity test even more.

One possibility is to take

legal ′′ Add x y = (value x � value y ∧ not Add x ∧ not Sub x ∧ not Sub y)

legal ′′ Sub x y = (value x > value y ∧ not Sub x ∧ not Sub y)

legal ′′Mul x y = (1 < value x ∧ value x � value y ∧ not Mul x ∧
not Div x ∧ not Div y)

legal ′′ Div x y = (1 < value y ∧ (value x ) mod (value y) = 0 ∧
not Div x ∧ not Div y)

where not op (Val n) = True and not op1 (App op2 x y) = (op1 
= op2). With this

choice, every expression is reduced to a normal form

(e1 + (e2 + (· · · em ))) − (f1 + (f2 + (· · · fn )))

in which the values of expressions ej are in ascending order, as are the values of fj .

Moreover, each ej and fj is either of the form Val n or an expression of the form

(g1 × (g2 × (· · · gp))) / (h1 × (h2 × (· · · hq )))

where, again, the values of gj and hj are in ascending order, and each gj and hj

is in normal form. This choice reduces the number of expressions that have to be

considered to about 70,000.
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However, the strong validity test does not eliminate redundancy altogether. If two

expressions x and y have the same value but the basis of x is contained in the basis

of y , then there is no point keeping y . Whatever expressions we further construct

using y , we can construct with x instead. For example, the expressions 2 ∗ 7 and

2 + 5 + 7 have the same value but the basis of the former is contained in the latter,

so there is no point in keeping the latter. Such ‘thinning’ of the set of possible

expressions can therefore cut down the number of expressions we need to consider.

The downside, of course, is that thinning takes time. We consider thinning briefly

next.

9 Thinning

Thinning was discussed in Chapter 8 of Bird & deMoor (1997), where it was shown

that if � is a preorder satisfying x � y ⇒ f x � f y , then

minwith f = minwith f · thin (�)

where the relation thin (�) :: Set a � Set a is specified by

ys ← thin (�) xs ≡ ys ⊆ xs ∧ (∀x : x ∈ xs : (∃y : y ∈ ys : y � x ))

In words, the right-hand side asserts that ys is a subset of xs that has the option of

omitting any x which is worse under � than some other element y already in ys .

Note that thin (�) is a relation and we can refine it to a function in a number of

ways. One legitimate but not very useful refinement is id , the identity function of

sets, under which no thinning at all takes place. At the other extreme, we can thin

a set xs by taking just the minimal elements of xs under �. While most effective at

weeding out the unnecessary, this method takes more time, in fact time proportional

to n2, where n is the size of the set.

For the Countdown problem we can take � to be the preorder

e1 � e2 ≡ (value e1 = value e2) ∧ (basis e1 � basis e2)

where xs � ys holds if xs is a subsequence of ys . We have x � y ⇒ diff n x =

diff n y , so it is legitimate to introduce the term thin (�).

The next step is to fuse thin (�) with ΛmkExpr , thereby thinning at each

intermediate step rather than just at the final stage. How this is done depends

on the following result, which is stated for foldE and unfoldE but can be formulated

for hylomorphisms on any data type:

Theorem

Define S = thin (�) ·Λ(foldE f1 g1 · unfoldE (either f2 g2)
◦). Suppose that g1 is mono-

tonic under �. Then R � S , where R is defined recursively by

R = Λ(f1 · f2◦) union thin (�) · Λ(g1 · mapE (∈ ·R) · g2
◦)

The theorem, whose proof we omit, refers to the notion of monotonicity. A relation

g :: (Op, a , a) � b is monotonic under � if a1 � a ′1 and a2 � a ′2 and b←g (op, a ′1, a
′
2)
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together imply that there exists an a with a ← g (op, a2, a2) such that a � a ′. In the

case g is a function, the definition simplifies to read

a1 � a ′1 ∧ a2 � a ′2 ⇒ g (op, a2, a2) � g (op, a ′1, a
′
2)

which is the usual definition of monotonicity. In the case g = app, a partial function,

monotonicity comes down to the assertion that if e1, e′1, e2, e′2, and App (op, e′1, e
′
2)

are all valid expressions with e1 � e′1 and e2 � e′2, then so is App (op, e1, e2) and,

moreover, App (op, e1, e2) � App (op, e′1, e
′
2). Monotonicity is easily seen to hold for

the above definition of �.

While it is possible to refine thin (�) to a function thinlist (�) that thins a list

and returns a list, it appears no longer to be sensible to implement the set-valued

functions by list-valued ones. Exploring a long list to remove redundancies takes too

much time unless potentially redundant expressions are grouped together. But we

see no reasonable way of achieving this with a simple list-based structure. Instead we

can use an alternative structure Table = FiniteMap Int [(Expr , [Int])] that organises

the set of computed expressions according to their value. The entry associated with

value v in the table consists of a list of expressions with value v , along with their

bases. This list of expressions is kept thinned by some suitable refinement thinlist (�)

of thin (�).

We will not go into further details of how a thinning algorithm is derived, because

the bottom line is that, for Countdown, thinning turns out not to be worth the

candle. More precisely, our experiments show that a thinning algorithm with the

basic validity test is outperformed by a non-thinning algorithm with the stronger

validity test described above. Despite this disappointing result, the idea of thinning a

set of candidates preparatory to choosing an optimal one, is important in a number

of problems because it serves as an alternative to traditional dynamic programming

solutions (see Curtis, 1995).

10 Memoisation

Despite all the above refinements, computations are repeated since every subsequence

is treated as an independent problem. For example, in computing

mkExprs [1, 2, 3, 4, 6] and mkExprs [1, 2, 3, 5, 6]

the expression with basis [1, 2, 3, 6] will be computed twice, expressions with basis

[1, 2, 3] at least four times, and so on. One way to avoid repeated computations is

to memoize the computation of mkExprs , again trading additional space for speed.

The idea is to represent the set of expressions currently computed not by a list

but by a table of type FiniteMap [Int] [Expr], taking the keys of the table to be

the subsequences of the source numbers, so each subsequence is in numerical order.

Then, in computing mkExprs on an ordered list xs , we can first lookup xs in the

table to see whether the result has previously been computed; if it hasn’t, then we

compute it and store it in the table. We can either use a standard library module

for FiniteMap, or build a simple trie structure.
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In fact we can guarantee that the necessary results will have already been computed

if we define subseqs to return the list of subsequences in such a way that if xs is a

subsequence of ys , and both are subsequences of the input, then xs appears before

ys in the list. Then in the evaluation of mkExprs xs from Section 5, which involves

the evaluation of mkExprs ys and mkExprs zs for all (ys , zs) ∈ unmerges xs , we know

that all necessary subexpressions will have already been computed.

It is easy to install memoisation: we replace the term concat · map mkExprs by

memoExprs emptyFM , where the function memoExprs carries the table along as an

extra argument:

memoExprs table [ ] = [ ]

memoExprs table (xs : xss) = es ++ memoExprs (addtoFM table xs es) xss

where es = mkExprs table xs

mkExprs table [x ] = [(Val x )]

mkExprs table xs = [e | (ys , zs)← unmerges xs ,

e1← lookupFM table ys ,

e2← lookupFM table zs ,

e← combine e1 e2]

In these expressions emptyFM denotes an empty table, addtoFM the operation that

inserts a new key-value pair, and lookupFM the operation that retrieves the value

associated with a key.

The disadvantage of memoisation, of course, is that the table will become very

large, and the time saved may be outweighed by the time spent in garbage collection.

This is confirmed by the experimental results given in section 13.

11 Building a skeleton tree first

How can we keep the space required within reasonable bounds while increasing

the speed? Suppose we ignore the operators in an expression, focusing only on the

parenthesis structure. How many different oriented binary trees can we build? In an

oriented binary tree the order of the two subtrees of a tree is not taken into account.

We exploited this idea in section 5 in an “oriented” definition of unmerges . It turns

out that there are only 1881 oriented binary trees with a basis included in six given

numbers. For an algorithm that is economical in its use of space we could therefore

build these trees first, and only afterwards insert the operators.

Pursuing this idea, consider the following type of tip-labelled binary trees:

data Tree = Tip Int | Bin Tree Tree

The fold operation foldT for the data type Tree is similar to foldE :

foldT :: (Int → a)→ (a → a → a)→ Tree → a

foldT f g (Tip n) = f n

foldE f g (Bin x y) = g (foldT f g x ) (foldT f g y)

The function treebasis = foldT wrap merge returns the basis of a tree rather than an

expression and the function fromExpr , defined by

fromExpr = foldE Tip bin where bin (op, t1, t2) = Bin t1 t2
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converts an expression to a tree by dropping all the operators. For this reason, we

will call such trees skeleton trees. Clearly,

basis = treebasis · fromExpr

The converse toExpr = fromExpr◦ fills in arbitrary operators at the nodes, and can

be defined either as an unfold on trees, or as a fold on expressions.

Now we can reason:

Λ(valid · basis◦ · subseq)

= {above identity for basis , and converse}
Λ(valid · toExpr · treebasis◦ · subseq)

= {introducing mkTree = treebasis◦}
Λ(valid · toExpr · mkTree · subseq)

= {Λ composition, introducing toExprs = Λ(valid · toExpr)}
union · mapSet toExprs · Λ(mkTree · subseq)

= {Λ composition again, introducing mkTrees = ΛmkTree}
union · mapSet toExprs · union · mapSet mkTrees · Λsubseq

Following exactly the same path as in Section 5 mkTrees = Λtreebasis◦ can be

computed recursively by

mkTrees xs = if singleton xs then {Tip (head xs)}
else {Bin t1 t2 | (ys , zs)← unmerges xs ,

t1← mkTrees ys , t2← mkTrees zs}

The function toExprs = Λ(valid · toExpr) converts an oriented tree into a set of valid

expressions by inserting operators in all legal ways:

toExprs (Tip m) = {Val m}
toExprs (Bin t1 t2) = {e | e1← toExprs t1,

e2← toExprs t2,

e← combine e1 e2}

The function combine is the symmetrical one defined in section 5. Though the idea

of using skeleton trees leads to a program with more elaborate plumbing, the result

turns out to be surprisingly efficient.

12 A fold algorithm

In section 5 we asserted that since basis can be defined as a fold, basis◦ can be

defined as an unfold. True, but there is another possibility: we can express basis◦ as

a fold. In Mu & Bird (2002) there is a theorem giving conditions under which the

converse of a function can be expressed as a fold; the purpose of this section is to

make use of this theorem.
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To state it, define the fold function foldL for non-empty lists by

foldL :: (a → b)→ ((a , b)→ b)→ [a]→ b

foldL f g [x ] = f x

foldL f g (x : xs) = g (x , foldL f g xs)

The function foldL is related to the Haskell library function foldr1 in that foldr1 f =

foldL id (uncurry f ). The converse-of-a-function theorem specialised to nonempty

lists reads as follows:

Theorem

Suppose f :: b → [a] is a function returning a non-empty list, and one :: a � b

and add :: a → b � b are jointly surjective relations such that [x ]← f (one x ) and

x : f y ← f (add (x , y)) for all x and y . Then f ◦ = foldL one add .

Two relations are jointly surjective if the union of their ranges is the full set of

possible values of their (common) target type. For a more general version of the

theorem, and a discussion of its applications, see Mu & Bird (2002).

The theorem can be applied to the instance f = basis . In fact we will apply it to

the variant treebasis :: Tree → [Int] of the previous section. Recall, this computes

the basis of a skeleton tree rather than an expression. According to the theorem we

have to find one and add so that one and add are jointly surjective and

[x ] ← treebasis (one x )

x : treebasis t ← treebasis (add (x , t))

Then treebasis◦ = foldL one add . Recalling that treebasis = foldT wrap merge, it is

clear that the choice one = Tip satisfies the first equation. Bearing in mind that we

also need the range of add to be all possible non-tip oriented trees, the following

choice of add satisfies the second equation:

add (x ,Tip y) = Bin (Tip x ) (Tip y)

add (x ,Bin u v ) = Bin (Tip x ) (Bin u v )�

Bin (add (x , u)) v � Bin u (add (x , v ))

The relation add adds a new tip in all possible ways. It is possible to check that

one and add satisfy all the necessary conditions, but we omit details. In summary,

the function mkTrees of Section 11 can be computed by the alternative expression

mkTrees = Λ(foldL one add ).

Let us go one further step. Just as in section 6 we can combine foldL one add ·subseq

into one relation before lifting to the set level. This relation can be expressed as a fold

by appealing to the fusion rule for foldL. This rule says that h ·foldL f1 g1 = foldL f2 g2

if

h · f1 = f2 and h · g1 = g2 · mapLh

where mapLh (x , y) = (x , h y). To apply fusion we will need a definition of subseq

in terms of foldL. We have subseq = foldLwrap choose, where

choose (x , ys) = [x ] � ys � (x : ys)
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In words, subseqs is defined recursively by the applying the rules: (i) the only

subsequence of a singleton list is the list itself (wrap); and (ii) if ys is a (nonempty)

subsequence of xs , then we can form a subsequence of x : xs either by ignoring

ys completely (so choosing [x ]), or by choosing ys , or by choosing the combined

value x : ys . If we had allowed subseqs to return a possibly empty list, then the first

choice would have been subsumed by the third.

It is easy to check that foldL one add · wrap = one and

foldL one add · choose = insert · mapL (foldL one add )

where insert (x , t) = Tip x � t � add x t . Hence, in analogy with the function

mkAllExprs of section 6, we can define mkAllTrees = Λ(foldL one insert).

Using the Λ-lifting rule Λ(foldL f g) = foldL fs gs , where

fs x = {f x} and gs (x , ys) = {g (x , y) | y ∈ ys}

we obtain mkAllTrees = foldL ones inserts where ones x = {Tip x} and

inserts (x , ts) = {v | t ∈ ts , v ← insert (x , t)}

For purposes of implementation, mkAllTrees still has to be cast as a function

returning a list rather than a set, and the way this is done can have a subtle effect on

efficiency. The most straightforward definition is to in-line the relation insert , giving

inserts (x , ts) = [Tip x ] ++ [t | t ← ts] ++ [v | t ← ts , v ← adds (x , t)]

where

adds (x ,Tip y) = [Bin (Tip x )(Tip y)]

adds (x ,Bin u v ) = Bin (Tip x ) (Bin u v ) :

[Bin y ′ z | y ′ ← add (a , y)] ++

[Bin y z ′ | z ′ ← add (a , z )]

Note that, unlike the case of mkAllExprs , the list generated by mkAllTrees will

not contain duplicates: each possible skeleton tree will be generated just once.

Nevertheless, there is a more efficient way to define inserts . The idea is to interleave

the generation of elements from the second two terms in the above definition of

inserts:

inserts (x , ts) = Tip x : concat (zipWith (:) ts [adds (x , t) | t ← ts])

Here, zipWith f is a standard Haskell function for zipping two lists with a function

f . Exactly the same elements are returned as before, but in a different order. This

reorganisation of the generation order, which allows elements of ts to be garbage

collected as soon as they have been processed, reduces the heap residency. In fact, we

installed this optimisation only after inspecting the heap profile of the final program

and spotting the space leak resulting from keeping t longer than necessary.

13 Comparisons

Which of all the above algorithms is best? To recap, we can:
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1. Generate expressions directly, using a scheme based on any of:

map exprs · concat · map perms · subseqs

map mkExprs · subseqs

mkAllExprs

2. Generate skeleton trees first, using a scheme based on either of

map mkTrees · subseqs

mkAllTrees

Moreover, we can implement mkTrees and mkAllTrees either as a hylomorph-

ism (section 11) or as a fold (Section 12).

3. Use one of the strong validity tests of Section 8, or a thinning scheme.

4. Use either a full memoisation, or partial memoisation scheme by memoising

the skeleton trees of Section 11.

Among the above list of optimisations, the choice of validity test is orthogonal

to the others. Of the two tests described in Section 8, the second, stronger version

was found to improve the speed by up to 180%. To assess the effect of the other

optimisations, we implemented seven of the possible variations, all with the stronger

validity test built-in, and all with the optimisation described in Section 7 that paired

expressions with their values. These variations were:

hutton Hutton’s original algorithm based on map exprs · concat ·map perms · subseqs ,

modified to return a closest match;

mkexpr The algorithm based on map mkExprs · subseqs , derived in Section 5;

allexprs The algorithm based on mkAllExprs , derived in Section 6;

mktree The algorithm based on map mkTrees · subseqs , derived in section 11;

memoex Same as mkexpr, except with a memoisation scheme;

memotr Same as mktree, except with a memoisation scheme for the skeleton trees;

alltrees The algorithm based on mkAllTrees expressed as a fold, derived in Sec-

tion 12;

Each program was compiled using the Glasgow Haskell Compiler (version 6.0.1)

with the -O optimisation flag set, and ran on a desktop computer using a 2 GHz

PowerPC G5 processor. The programs were run a number of times, each on 100

prepared test cases with 6, 7, or 8 randomly generated source numbers. Shown in

Table 1 are the timings in seconds. In the first three rows the source numbers and

target were generated randomly, subject to guaranteeing 100 exact matches. In the

second two rows the target was set artificially to −1, guaranteeing 100 misses, and

ensuring that the full space of candidate solutions would be explored.

Shown in Figure 2 and 3, on the other hand, is the heap profile of the programs

running on the source numbers 7, 8, 9, 10, 13, 14, 37 and target number −1 (the profile

for memotr is omitted as it is basically similar to that of memoex except that the

space is reduced to about 500K). As can be seen from the data, the second program

(mkexpr) is significantly faster than hutton. The gain in speed does not come for

free, however, since mkexpr consumes about 30 times more memory (300 K against

10 K). The further fusion in Section 6, on the other hand, proves to be a bad idea.
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Table 1. Timing results for 100 test cases

srcs hutton mkexpr allexprs mktree memoex memotr alltrees

6 1.93 0.93 1.54 0.97 1.11 0.77 0.83

7 14.01 7.44 10.88 6.60 10.09 5.39 6.60

8 48.78 25.16 27.57 20.88 39.08 18.39 16.10

6 24.44 11.76 24.14 9.87 14.68 8.34 7.44

7 721.96 286.40 678.90 230.19 504.12 217.70 199.95

Not only does allexprs occupy much more memory than hutton (12M against 10K),

it is only marginally faster.

The program mktree gains its speed solely by its more economical use of memory.

Around 22% of the total running time of mkexpr was spent on garbage collection,

as opposed to just 5% in mktree. If we measure only the mutator time rather the

elapsed time, mkexpr is actually slightly faster than mktree. However, when we add

in the time for garbage collection time, then mktree is faster. On a machine with

smaller memory, the difference would be more significant. The lesson here, once

again, is that it is sometimes worth performing more computation in return for a

smaller memory residency.

The memoisation scheme adopted in memoex was also somewhat more efficient

than hutton. However, it has a rather large capacity for consuming memory; in our

test run the heap grew to over 100M! The partial memoisation trick of storing

skeleton trees rather than expressions, as implemented in memotr, gave a more

reasonable heap size of around 500K. The program memotr outperforms memoex

in speed for the same reason mktree outperforms mkexpr. Considering mutator time

only, memoex is about 20% faster than memotr. However, it actually spends around

60% of its total running time garbage collecting, while memotr spends only around

4%.

Surprisingly, the fold algorithm alltrees proved to be the most efficient algorithm

of all. Although fusing subseq into the unfold version of basis◦ turned out to be

a bad idea, basically because of repetitions in the resulting list, such repetitions

can be factored away if we express treebasis◦ as a fold. In an earlier experiment

we fused treebasis◦ · subseq into a fold without interleaving of results described in

section 12. This gained a little speed, while increasing heap residency. After spotting

the space leak and interleaving the order of elements in the list, we obtained a

program that was not only the fastest overall, but also the most economical in

memory consumption.

14 Conclusions

By now the reader has probably been counted out by Countdown. We draw three

main conclusions about the case study:
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Fig. 2. Heap profiles 1.

• Syntactic manipulation is a creative tool in functional algorithm design. With

the exception of the idea of introducing skeleton trees as an intermediate

data type, all variations were derived solely by considering various syntactic

manipulations of the relations in the specification;

• The algebra of folds and unfolds, that is, origami programming is central.

Virtually all programs were derived using just two patterns of computation,

the folds and unfolds associated with a data type. Understanding the laws that

express their properties, their relationship to one another, and the ways they
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Fig. 3. Heap profiles 2.

can be combined is of central importance in program calculation. And this

understanding can only be gained within a relational framework.

• In designing functional algorithms, the trade-off between time and space is

complicated by the need to take into account the time spent in garbage

collection. It is not an easy task to design a program that is efficent both in

space and time, especially as we still lack adequate analytic tools to predict

such efficiency in the context of a higher-order lazy functional language. The
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alternative is experimentation with a variety of programs. This task is eased if

the programs can be calculated fairly quickly from the problem specification.
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editors, Sixth International Conference on Mathematics of Program Construction: LNCS

2386, pp. 209–232. Springer-Verlag.

https://doi.org/10.1017/S0956796805005642 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005642

