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ON A PERIODIC MUTUALISM MODEL
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Abstract

Sufficient conditions are obtained for the existence of a globally attracting positive periodic
solution of the mutualism model

dr
dAfrfr)

dr

l+Ni0-T2(t))

where n, AT,, a, 6 C(R, R+) and a, > AT,, i = 1,2, r,, a, e C{R, /?+), i = 1,2 and r,,
Ki, or,-, r,-, tr,- (i = 1, 2) are functions of period a> > 0.

1. Introduction

Consider the mutualism model

dr

dr

(1.1)

where r,-, Kk,ai 6 /?+are constants and a, > Kt,i = 1,2. Depending on the nature of
AT, (i = 1, 2), system (1.1) can be classified as facultative, obligate or a combination
of both. For more details of mutualistic interactions we refer to Vandermeer and
Boucher [7], Boucher et al. [2], Dean [3], Wolin and Lawlor [8] and Boucher [1]. A
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modification of system (1.1) leads to the time-lagged model

i\ + ctiN2(t — r2)
dt

dN2(t)
dt

= r2N2(t)

N2(t - r2)

- N2(t)
(1.2)

where r i , t 2 e [0, oo) are constants. In system (1.2) the mutualistic or cooperative
effects are not realized instantaneously but take place with time delays. For further
ecological applications of system (1.2), we refer to [5] and the references cited therein.

The effects of a periodically varying environment are important for evolutionary
theory as the selective forces on systems in a fluctuating environment differ from those
in a stable environment. Thus, the assumptions of periodicity of the parameters are
a way of incorporating the periodicity of the environment (such as seasonal effects
of weather, food supplies, mating habits and so forth). We refer to Pianka [6] for
a discussion of the relevance of periodic environments to evolutionary theory. The
purpose of this article is to consider the model

dt
dN2(t)

dt
= r2(t)N2(t)

1 + N2(t - r2(0)
K2{t)+a2{t)Nx{t-xx{t))

together with the initial conditions:

Nt(t) = <Pi(t)>0, t€[-T*,O],

-N2(t- a2(t))

> 0;

(1.3)

(1.4)

where r,, AT,-, or, G C(R, R+), a, > Kh i = 1, 2, r,, a, e C(R, R+), i = 1,2, rh Kh

a,, r,, a, (i = 1, 2) are functions of period co > 0 and

T* = max { max r,(0, max a,(

In Section 2 we discuss the existence of a positive CD-periodic solution of (1.3)-
(1.4), in Section 3 we study the uniqueness and global attractivity of the positive
periodic solution of (1.3)—(1.4) and in Section 4 we give an example to illustrate that
the conditions of our results can be realized.

. 2. Existence of a positive periodic solution

In this section we use Mawhin's continuation theorem to show the existence of at
least one positive periodic solution of (1.3)—(1.4). To do so, we need to introduce the
following notation.
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Let X, Y be real Banach spaces, L : DomL c X -*• Y a Fredholm mapping of
index zero and P : X ->• X, Q : Y —*• Y continuous projectors such that Im P =
KerL, Ker Q = ImL and X = KerL © Ker P, Y = ImL ® Im Q. Let LP denote
the restriction of L to Dom L f] Ker P, KP : Im L —*• Ker P f] Dom L the inverse (to
LP) and J : Im Q —> KerL an isomorphism of Im Q onto KerL.

For convenience, we introduce Mawhin's continuation theorem [4, page 40] as
follows.

LEMMA 2.1. Let Q C X be an open bounded set and N : X —*• Y be a continuous
operator which is L-compact on £l (that is, QN : fi —*• Y and KP(1 — Q)N : S2 —>• Y
are compact). Assume

(a) for each X e (0, 1), x € dtl fj Dom L, Lx £ XNx;
(b) /or each x € 3fi f| Ker L, (Wx ^ o, and deg{7 QiV, fi f| KerL, 0} ^ 0.

T/ien Lx = iVx /ta^ af least one solution in Q (~) Dom L.

LEMMA 2.2. Let

(and.Q = {(x,y)T e R2 : \x\ + \y\ < M), where M,at, bt, c, € R+ are constants,
tQi> bh i = l,2, and M > max{| ln(a,/c,)|, | ln(fc,/c,)|, i = 1, 2}.

degl/,fi,(0,0)}#0.

PROOF. Set

H(x, y, M) = fai - - ^ I : ^ - - c,e\a2 - - ^ — ^ - c2C>) , 0 < /x <
\ 1 + \iey 1 + Ltê  /

It is then easy to see that, for (x, v, fi)T e R2 x [0, 1],

— b\ r M
C ^ a C ^ < 0 as X-T'

a2-b2 M
a2 — cxe

y <a2- c2e
y < 0 as y > —,

1 + tie" 2
a, — h, M

> b\ — cie
x > 0 as x <1 + fxey ~ 2

and
a2-b2 M

a2 — c2e
y > b2 — c2e

y > 0 as y < .
l+fie* y ~ 2
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Hence

H(x,y, ii)^0 for (x j , / i ) € 3fi x [0, 1],

It follows from the property of invariance under a homotopy that

deg{/ (x, y), n, (0, 0)} = deg{#(x, y, 0), Q, (0,0)}.

By a straightforward computation, we find

[4]

The proof is complete.

We now come to the fundamental theorem of this paper.

THEOREM 2.3. The initial value problem (1.3)—(1.4) has at least one positive co-
periodic solution.

PROOF. Since solutions of (1.3)—(1.4) remain positive for t > 0, we can let

x(t) — loglNiit)] and y(t) = log[N2(t)] (2.1)

and derive that

•*1(O+«i(Oe><'-'*'» j(f_ffi{|))-

(2.2)
dt

dy(t)

dt
= nit)

1

Take

= Y = {(.x(t),y(t))T:x(t),y(t)€C(R,R),x(t+co)=x(t),y(t+a>) =

and

(x, y)T\\ = max |jc(f)l + max \y(t)\.
0<l<w 0<t<w

With this norm, X is a Banach space. Let

N H-
L\ \ = dr

L d/ J

P\ \ =

- / x(t)dt
00 Jo

i r
- / y(t)dt
& Jo

• 0 ex.
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Since KerL = R2 and ImL is closed in X, L is a Fredholm mapping of index
zero. Furthermore, we have that N is L-compact on Q (see [4]), where ft is any open
bounded set in X. Corresponding to the equation Lx = kNx, we have

dr
dy(t) K2(t) + a2(f)e»(<-T'(t)))

— e'

(2.3)

Assume that (x(t), y(t))T e X is a solution of system (2.4) for a certain k e (0, 1).
By integrating (2.3) over [0, to], we obtain

and

dr = O

dt = O.

It is easy to see that we can rewrite (2.4) and (2.5) respectively as

and

Thus from (2.3) and (2.6), it follows that

/ \x'(t)\dt<k r,(f) —-—-
Jo Jo L ^ ey(t-z2(t))

('-CTl) j dr

= 2 /
Jo

that is,

L w

Similarly, by (2.3) and (2.7) we have
I \y'(t)\dt<2 f r2(t)a(t)dt = M2.

Jo Jo

Moreover, from (2.6) it follows that

I r,(0«i(0d/>

(2.4)

(2.5)

(2.8)

(2.9)
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which implies that there exists a point t[ e [0, co] and a constant C\ > 0 such that

Suppose that t[ — ax (t[) = tx+nco,ti € [0, co] and n is an integer, then

|jc(r,)| < Q. (2.10)

Similarly, by (2.7) we can obtain that there exists a point t2 e [0, co] and a constant
C2 > 0 such that

\y(h)\ < c2.

Therefore it follows from (2.8)-(2.11) that

(2.11)

max \x{t)\ < \x{tx)\ + f \x\t)\dt <Q+MU

max
te[0.a>)

f \y' (t)\dt <C2 + M2.

Clearly M, and C, (i = 1, 2) are independent of A. Denote M=Mi+M2+Ci+C2+D,
where D > 0 is taken sufficiently large such that M > max{| ln(a,/c,)|, | ln(&,/c,)|,
/ = 1,2}. Now we take Q. = {(x(t),y{t))T € X : \\(x, y)T\\ < M\. This satisfies
condition (a) in Lemma 2.1.

When (x, y)T e 3ft f] Ker L - dQ. f| R2, (x, y)T is a constant vector in R2 with
|JC| + |y| = M. Then

r2a2 - r2K2

1 + e*
["]•

where
1 C03 1 C03

h = - r,(t)dt, lWi = - \ n(t)a,
<O Jo CO Jo

i = 1,2. Furthermore, take 7 = / : Im Q
Lemma 2.2, we have

r,K, = - [
CO Jo

KerL, (x,v) r i->- (;c,;y)r. By

deg [J QN(x, y)T, Q, (0, 0)} = deg { QN(x, y)T, Q, (0, 0)} ^ 0.

We now know that Q verifies all the requirements in Lemma 2.1 and thus that (2.2)
has at least one (^-periodic solution. By (2.1), we easily see that (1.3) -(1.4) has at
least one positive a>-periodic solution. The proof is complete.
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3. Uniqueness and global attractivity

We first obtain certain upper and lower estimates for solutions of (1.3)—(1.4). For
convenience we introduce the notation:

r\\

«.,

K\2

on

= max r,(0,
re[O,a)]

= max ai(t),

= min Ki(t),

= max <7i(0,

r2l = max r2{t),

a.2\ = max a2(t),

K22 = min K2(t)
te[O,ai]

a2i = max o2{t).
re[O,tu]

LEMMA 3.1. If(Ni(t), N2(t)) is a solution of the initial value problem (1.3)—(1.4)
then there exist numbers T\ and T2 such that

B\ < Ni(t) <AX for t > T,

and

B2 < N2(t) < A2 for t > T2,

in which Ai =anexp(anrnon), A2=a2lzxp(a2lr2io2l), Bx = Ki2ex$[ruon(Kn -
Ax)] and B2 = K22eKp[r2lo2l(K22 - A,)].

PROOF. It is easy to see that Â i and Â2 satisfy

(3.1)

< r2(t)N2(t)[a2l -N2(t- o2(t))].

Now either Ni(O is oscillatory about c*n or it is nonoscillatory. In the case where
Ni(t) is oscillatory about an» we let [tn] be the sequence such that l im, , .^ tn = oo
and a n — Ni(tn) = 0. Let Nt(t*) be the local maximum of A î(t) on (tn, tn+l). Then

0 = N[(O

Now N{(t* - o-.(C)) < a n ; so let § be the zero of a,, - W,(f) in [t* - ox(t*n), t*l By
integrating (3.1) from £ to t*, we have
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or

#i(O <anexp aM / n(t)dt\ <auexp(anruou),

that is,

A{ for t > t i + 2 a u . (3.2)

Next suppose that N{(t) is nonoscillatory about an. Then it is easy to see that for
every e > 0 there exists a T[ = T,'(e) such that

iV,(O <an + e for / > T[.

This together with (3.2) implies that there exists a 7̂ ' such that

Ni(t) <A{ for t > 72'.

On the other hand, from (1.3) we find

> n(t)Nt(t)[Kl2 -NiO- a,(0)],
(3.3)

- N2(t - o2(t))].

Let Ni(t) be an oscillatory solution about K\2 and let {sn} be a sequence such that
limn^oo5n = oo and N(Sn) — K12 = 0. Suppose that Ni(s*) is a local minimum of
N\(t) on (sn, sn+l). Then

0 = N'M > rds^Nds^lKn - N^ - a , « ) ) ] .

So A"i2 — Ni(s* — <Ti(5*)) < 0, that is, there exists a point r\ € [s* — 0i(s*), s*] such
that Ni(rj) = Kl2. Note that Kl2 - Ax < 0, then

log ^ ^ > / r,(O(Ar12 - A,)dr >

Hence

that is,

#i(0 > Kntxp[rnau(Kn - Ax)] = fi, for t > tx + 2au. (3.4)

Next, suppose that A^O is nonoscillatory about Kx2. One can easily prove in this
case that for every positive £ there exists a 73' = 7j'(e) such that

Ni(t) > Kn-e for t > %.
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This together with (3.4) implies that there exists a 7̂ ' such that

W,(O>fii for t > T 4 .

Similarly, one can prove that there exists a T2 such that

B2 < N2(t) < A2 for t > T2.

The proof of Lemma 3.1 is complete.

We will now proceed to derive sufficient conditions under which (1.3)—(1.4) has
a unique positive cu-periodic solution (N*(t), Af2*(O) which globally attracts all other
positive solutions of (1.3)—(1.4).

Let (N*(t), N£(t)) be apositive (^-periodic solution of (1.3)—(1.4), whose existence
is given by Theorem 2.1. We set

and derive that

and N2(t) =

, y(t -

= G[x{t -

- F(0,0),

" G(0, 0),

(3.5)

(3 6)

where

By the mean value theorem of differential calculus, we can rewrite (3.6) in the form

d*(0
= -an(t)x(t - CT,(O) + an(t)y(t - x2{t)),

(3.7)

At
~ r,(0) - a22(t)y(t - o2(t)),

where

- K2(t))r,4(t)

and/?, (0 lies between Â * (r - ^ (0) and N, (/-ffi (0 ) . »?2 (0 lies between Â2* (f - r2 (0)
and A 2̂(t - T 2 ( 0 ) , ^3(0 lies between 7V2'(f - o2{t)) and 7V2(r - CT2(0), and J74(/) lies

https://doi.org/10.1017/S1446181100012293 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012293


578 YongkunLi [10]

between N*(t — Ti(0) and Ni(t — ti(t)). By Lemma 3.1, we can conclude that there
exists a number T* such that for all / > T*, we have

~ Ki(t))B2

where

(«2(0 ~ ^2(0)gt ^ , , («2(0^(>Pl ^
< a ( 0 < <C2 I,

(1 + B2)2 • ~« (1 + B,)2 '

With the above preparation we formulate our second fundamental result.

THEOREM 3.2. Assume that every solution of (3.7)-(3.8) satisfies

\t) + y2(t)]=0. (3.9)

Then there exists a unique positive co-periodic solution (N*(t), N2*(t)) of (1.3)—(1.4)
such that all other positive solutions of (1.3)—(1.4) satisfy

0, N2(t)} = [N*(t), N*(t)). (3.10)
»->oo

PROOF. The existence of at least one positive cu-periodic solution of (1.3)—(1.4) is
a consequence of Theorem 2.1. The uniqueness of the periodic solution will follow
from (3.10). But every solution (x(t), y(t)) of (3.7M3.8) satisfies (3.9), which implies
(3.10). This completes the proof.

Next, assume that r,-(f) = r,, Oj(t) = at (i = 1,2) are constants, and define two
numbers fi\ and fi^ which satisfy

H* = fi, - [AMM + C12r2) + C21(C21r, + A2a2) + A,ff,(A, + C,2)

+ C21T,(C21+/l2)],

H\ = B2 - [CniAtOi + C12T2) + C21(C2,T, + A2a2) + C12r2(A, + C12)

+ A2<r2(C21+A2)].

Then we have the following result.

COROLLARY 3.3. Assume the following conditions hold:

(i) r,-(0 = ti, ff,-(0 = or,-(i = 1,2) are constants;
(ii) ^ J > 0 , A * ; > 0 ;
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(iii) the quadratic form

is nonnegative.

Then (1.3)—(1.4) has a unique positive co-periodic solution (N*(t), Af2*(0)> and all
other positive solutions of (1.3)—(1.4) satisfy (3.10).

PROOF. Entirely similar to the proof of [5, Theorem 4.3.6], one can obtain that
every solution of (3.7)-(3.8) satisfies (3.9). Therefore the conclusions of the theorem
follow from Theorem 3.1. The proof is complete.

4. An example

Finally, as an application of our main results, we consider the system

to
_N

together with the initial conditions (1.4), where <ph i = 1, 2, are constants. One can
easily verify that (4.1)—(1.4) satisfies all the conditions of Corollary 3.1. Therefore,
system (4.1) has a unique positive w-periodic solution, which attracts all other positive
solutions of (4. l)-( 1.4).
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