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Abstract. ASTRO-F (IRIS) is the first Japanese satellite dedicated to
infrared astronomy. The primary purpose of this project is to investigate
the birth and evolution of galaxies in the early universe through deep,
wide-field surveys at wavelengths ranging from 2 to 200 microns. The
spatial resolution and the point source sensitivity are nearly the same
as those of the aperture diffraction limit and the natural background
and/or confusion limit, respectively. In the far-infrared wavelength band,
ASTRO-Fwill conduct an all-sky survey like the IRAS survey with several
tens of times higher sensitivity and several times better spatial resolution.
In the near- and mid-infrared, wide area sky-surveys will be conducted
over pre-selected portions of the sky. In addition to these photomet-
ric surveys, low-resolution spectroscopic capabilities are available for all
wavelength bands. The ASTRO-F mission will produce a fundamental
database for the next generation of advanced observatories, for example
FIRST, and NGST, and will complement the SIRTF mission by virtue
of its wide sky coverage. The launch by an M-V rocket is scheduled for
February or March of 2004.

1. Introduction

Satellite-borne infrared telescopes have made remarkable contributions to re-
cent advances in astronomy and astrophysics. The catalogs and sky images
produced from the JRAS survey (Neugebauer et al. 1984) are among the most
useful fundamental databases in all astronomy. The diffuse infrared maps made
by DIRBE on COBE and the IRTS (Murakami et al. 1996) have been employed
for determining the astrophysics of the interstellar medium and other phenom-
ena. FIRAS on COBE gave us the most important spectrum of the Cosmic
Microwave Background (CMB) radiation so far. ISO (Kessler 1996) was the
first and the only infrared satellite of the observatory type, and executed nu-
merous astronomical investigations of wide varieties. .

Following these successful infrared satellites, the ASTRO-F' (IRIS: the In-
frared Imaging Surveyor) project is being developed as the first Japanese satellite
dedicated to infrared astronomy, as one of the ASTRO-series projects of ISAS
(Murakami 1998; Shibai 2000). This series is managed by the Institute of Space
and Astronautical Science (ISAS), and is supported by scientists of Nagoya Uni-
versity, the University of Tokyo, and other universities and institutions in Japan,
as well as by collaborations with foreign institutions and scientists.
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Figure 1.  Cross-sectional view of the ASTRO-F (IRIS) spacecraft.

(b)Telescope MTM
(Mechanical Test Model)

Figure 2.  Mechanical test models of the ASTRO-F'. (a) Cryostat,
and (b) telescope.
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Table 1.  Summary of the ASTRO-F (IRIS) Mission

Cryogenics

Optical System

Instruments
IRC
(Near/Mid IR Camera)

FIS
(Far-Infrared Surveyor)

Orbit

Attitude control

Observation Modes
Continuous survey

Pointing

Mission life

Total Mass

170 liter liquid helium cryostat + Stirling
coolers + radiative cooling

Primary mirror aperture 70 cm at < 6 K.
Ritchey-Chrétien F/6.

Focal length 4.2 m. Image quality < 1 arcsec
without diffraction effect

InSb (512 x 412) 1.4” /pixel
Si:As-BIB (256 x 256) 2.3” /pixel
Bands 2.2, 3.8, 5, 7, 9, 11, 15, 20, 25 um
Grism spectrometer (R ~ 50)

Ge:Ga (5 x 20) 30” /pixel
Stressed Ge:Ga (5 x 15) 507 /pixel
50-70, 50-100, 100-200, 150-200 xm bands
Fourier spectrometer (R ~ 200)

sun-synchronous orbit at 700-900 km along
day/night border

pointing accuracy < 15 arcsec
pointing stability < 1 arcsec/minute

constant scanning along a great circle perpen-
dicular to the Sun
full sky coverage in a half year

deep survey with a fixed attitude (~ 10
minutes)
for IRC imaging and FIS spectroscopy

> 500 days (nominal cryogen life)
near-infrared observations can be continued
after the LHe run-out

960 kg (wet)
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2. Spacecraft and Cryostat

Figure 1 shows a cross-sectional view of the ASTRO-F satellite. The satellite
consists of the two parts, the mission part and the bus module. The bus module
contains the service modules necessary for the operations and the survival of
the spacecraft in orbit. The mission part consists of the cryostat containing
the telescope, focal plane instruments, coolers, and so on. Figure 2 shows the
ASTRO-F MTM (Mechanical Test Model).

The telescope is cooled down to 6 K to reduce instrumental thermal emis-
sion. The primary mirror has a 70 cm aperture, and is a newly developed,
lightweight, SiC mirror (Onaka et al. 1998). The optical system is of the Ritchey-
Chrétien type, and has a focal length of 4200 mm. The goal is to achieve better
than 1 arcsecond image quality at 6 K in orbit. A focus adjusting mechanism is
installed at the secondary mirror assembly. The MTM of the telescope is shown
in Figure 2.

ASTRO-F will be the first example of a hybrid-type cryostat satellite incor-
porating a mechanical cooler as well as cryogen. Adopting this hybrid cooling
system, we can install a large aperture telescope into a small cryostat. The tele-
scope and the focal plane instruments are cooled down to a temperature of 2 K
by super-fluid helium. The tank capacity is 170 liters. This value is consider-
ably smaller than those of previous cooled satellites. By employing a mechanical
cooling system (Stirling cycle cooler), most of the heat load from the cryostat’s
outer shell is absorbed and pumped away by the mechanical cooler system. The
expected cryogen life is one and a half years. In addition to this, near-infrared
observations can be continued using solely the mechanical cooling system even
after the helium cryogen runs out.

An M-V rocket will launchASTRO-F into a sun-synchronous circular orbit
at an altitude of 700 — 900 km. The M-V solid fuel rocket is a new launch
vehicle developed by ISAS. The last launch of the M-V rocket unfortunately
failed with the X-ray satellite, ASTRO-E on board. However, the cause of this
failure has been carefully investigated and determined by ISAS. After a revision
of the rocket design, the next M-V launch will take place in December 2002.

ASTRO-F has two operating modes, a survey mode and a pointing mode.
The survey mode is similar to that of IRAS. The ASTRO-F spacecraft rotates
once per orbital revolution at a constant rate and traces a scanning path of
great circles like IRAS. The difference is that IRAS was generally pointed in an
anti-geocentric direction, while ASTRO-F will always be pointed perpendicular
to the radius vector from the Sun and nearest to the anti-geocentric direction
on this great circle. As the result, the ASTRO-F survey covers the whole sky
in a half year with nodes at both zodiacal poles; the sky near these nodes is
scanned many times. Table 1 summarizes the characteristics of the ASTRO-F
(IRIS) mission. ,

Mechanical test models (MTM) of both the ASTRO-F spacecraft and tele-
scope have been constructed and used for verification of the spacecraft design,
as shown in Figure 2. The vibration level of solid-fueled rockets, such as the
M-V rocket, is generally larger than that of liquid-fueled rockets. Therefore,
design and verification tests were carefully executed,and both models have al-
ready passed a mechanical environment test. We are now preparing a thermal
environment test to be conducted toward the end of November, 2000.
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Figure 3.  Configuration of each field of view in the telescope focal
plane.

3. Focal Plane Instruments

Figure 3 shows the configuration of the focal plane. ASTRO-F has two scientific
instruments, the Far-Infrared Surveyor (FIS) and the Infrared Camera (IRC).
It also houses a focal plane star sensor (FSTS). They share the focal plane
for optimal use of the light beam. The near-infrared and shorter mid-infrared
channel of the IRC tap the region nearest the optical axis of the telescope to
assure highest spatial resolution, while the longer mid-infrared channel, the FIS,
and the FSTS make use of peripheral areas.

The IRC consists of three independent cameras covering the near- and mid-
infrared regions. The optics are designed with refractive elements of Si, Ge,
KRS-5, and CsI; the design image quality is sharper than the size of individ-
ual pixels. The large format arrays of IRC (Matsuhara et al. 1998; Onaka et
al. 1998) can cover wide fields with better spatial resolution than the present
infrared cameras in space, and, by incorporating grisms, achieve highly efficient
spectroscopic surveys. The low dispersion spectroscopic capability in the near-
infrared is unique and complements SIRTF. The arrays are state-of-the-art, and
are optimized for low background condition in space. The optical configuration
of the IRC is shown in Figure 4.

The FIS (Kawada 1998) is primarily designed for an IRAS-type all-sky
survey in the wavelength region from 50 to 200 um. Stressed and unstressed
Ge:Ga large arrays were newly developed to cover this wavelength region. The
former covers the region longer than 100 um (Figure 5), the latter the spectral
range below 100 um. The pixel sizes were determined to be nearly equal to
the diffraction-limited resolution. Each array has one wide-band channel of
three rows and one narrow-band channel of two rows. The pixel configurations
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Figure 4.  Optical systems and arrays of the infrared camera (IRC).

Figure 5. Stressed Ge:Ga array detector assembly (upper photo-
graph). At lower left is the spectral response of the array; the lower
right inset shows the structure of a single stage of the array.
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Figure 6.  Point source sensitivity of the ASTRO-F (IRIS) mission

of both arrays are shown in Figure 3. The arrays are tilted by 26.5 degrees
from the perpendicular to the scanning direction, which allows us to obtain
sampling points by a spacing of a half of the pixel pitch for better resolution
in the cross-scanning direction. In addition to the wide band all-sky survey, a
Fourier transform spectroscope is incorporated for measurement of the SEDs of
various objects and for detection of strong line emissions from distant starburst
galaxies. The spectrometer is a Martin-Puplett interferometer that polarizes
light; its spectral resolution is 0.2 — 0.3 cm™!.

The FSTS consists of two modules mounted directly on the focal plane. The
role of this sensor is to produce time-sequence signals at I-band wavelengths in
the survey mode. These provide the primary data for attitude reconstruction in
the all-sky survey observing mode.

4. Scientific Capability

Figure 7 shows a comparison of fields-of-view and pixel configurations of the
space infrared telescopes, IRAS, ISO, ASTRO-F (IRIS), and SIRTF. ASTRO-
F has wider fields-of-view than SIRTF and has better spatial resolution than
IRAS and ISO. This advantage is obtained by adopting state-of-the-art space-
optimized arrays in the near- and mid-infrared and through use of newly devel-
oped far-infrared arrays, and is a most important feature for wide sky survey
observations.

Two panels in Figure 8 show the observational capabilities of ASTRO-F.
The upper shows the spectroscopic capabilities in each band. As shown, low-
resolution spectroscopy is possible in all bands. SEDs (spectral energy distribu-
tions) of starburst galaxies as well as galactic star forming regions are efficiently
obtained by this capability. The lower panel shows the presently planned sky
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Figure 7. Comparison of array configurations of space-borne infrared
telescopes

coverage. The whole sky is covered in the far-infrared wide-band survey. Up to
100 square degrees will be surveyed with IRC wide-band imaging, and on the
order of 1 square degree can be covered with spectroscopy of both instruments.
Most of these capabilities are unique.

5. Operation

ASTRO-F is fundamentally a survey-type satellite on a polar orbit, as shown
in Figure 9. Therefore, the cooled telescope must always be pointed away from
the Earth. In the continuous survey mode for the all-sky survey, the telescope is
scanning at a constant rate along the great circle perpendicular to the Sun. This
will enable us to completely cover the sky during the first half year of the survey
(Phase I). However, during passages of the South Atlantic Anomaly (SAA), the
detectors will be useless due to impact of high-energy particles and to their after
effects. In addition to this, the Moon will shine into the telescope when the Moon
is within 33 degrees from the telescope axis. Due to these effects, and possibly
due to other miscellaneous failures, malfunctions, calibrations, and maintenance
operations, the whole sky cannot be covered within a half year. The parts of
the sky which are not covered during this first half-year of the survey will be
observed during the next half year and later (Phase II) while the cryogen lasts.

Pointing observations can be executed by staring at a certain direction for
periods of ten minutes, as shown in Figure 9. The expected attitude stability is
less than one arc second per one minute of time. The longest exposure of the
IRC is 64 seconds, and so, the stability is sufficent even for pointing observations
of the near-infrared channel. These pointing observations can be programmed
mostly in Phase II. The maximum number of the pointing observation is three
per orbit, and the total number of the ten-minute pointing observations is ex-
pected to be six thousand during life of the cryogen. After loss of cryogen
(Phase III), only the near-infrared pointing observation will be continued for
the remainder of the satellite’s life.
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Figure 8.  Observational capability of the ASTRO-F mission
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Figure 9.  Orbit and time-line of the ASTRO-F mission
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Figure 10. Roadmap to derive scientific information from the ob-
served flux levels in the two far-infrared bands and the use of additional
data
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6. Scientific Objectives

The primary scientific purpose of the ASTRO-F mission is to investigate the
processes leading to the formation and evolution of galaxies in the early uni-
verse. In the far-infrared region, the second all-sky survey following that of
IRAS will be conducted with remarkably improved performance; more than ten
times higher sensitivity for point sources (20 - 110 mJy), several times better
spatial resolution (30-50 arcsec), and an added, longer wavelength band (up to
170 pm). The final point source catalog is expected to include distant ultra-
luminous galaxies, starburst galaxies, proto-planetary disks, and other sources.
The expected number of detected point sources, mainly external galaxies, is
more than ten million, which should include more than ten thousand distant
starbursts at z > 1 (Takeuchi et al. 1999).

In addition to the all-sky survey, the IRC will conduct a deep wide-sky sur-
vey of pre-selected parts of the sky at 2 to 25 microns. IRC has six photometric
bands and low-resolution grism spectroscopy.

The FIS all-sky survey catalog and the selected field images taken by the
IRC and by the FIS spectrometer will not only enable us to investigate the his-
tory of galaxy evolution in the early universe with statistical means but also
contribute to detailed observations by SIRTF (Fanson et al. 1998), FIRST (Pil-
bratt 1998), NGST (Seery et al. 1998), HIIL2 (Nakagawa et al. 1998), SOFIA
(Becklin 1998), and other future observatory-type missions and ground-based
telescopes.
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rakami, H. Matsuhara, and M. Kawada, and the author thanks them for their
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Discussion

Tim Hawarden: In the later part of the mission, after the liquid helium runs
out, do you expect the near-infrared instruments to retain full performance?

Hiroshi Shibai: The expected focal plane instrument temperature after he-
lium exhaustion is 20 - 25 K. So, the InSb array will work well.
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