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Abstract
Conditional risk measures and their associated risk contribution measures are commonly employed in finance and
actuarial science for evaluating systemic risk and quantifying the effects of risk interactions. This paper introduces
various types of contribution ratio measures based on the multivariate conditional value-at-risk (MCoVaR), multi-
variate conditional expected shortfall (MCoES), and multivariate marginal mean excess (MMME) studied in [34]
(Ortega-Jiménez, P., Sordo, M., & Suárez-Llorens, A. (2021). Stochastic orders and multivariate measures of risk
contagion. Insurance: Mathematics and Economics, vol. 96, 199–207) and [11] (Das, B., & Fasen-Hartmann, V.
(2018). Risk contagion under regular variation and asymptotic tail independence. Journal of Multivariate Analysis
165(1), 194–215) to assess the relative effects of a single risk when other risks in a group are in distress. The prop-
erties of these contribution risk measures are examined, and sufficient conditions for comparing these measures
between two sets of random vectors are established using univariate and multivariate stochastic orders and statisti-
cally dependent notions. Numerical examples are presented to validate these conditions. Finally, a real dataset from
the cryptocurrency market is used to analyze the spillover effects through our proposed contribution measures.

1. Introduction

In actuarial science and finance, risks are often not isolated events but are highly correlated and capa-
ble of spreading. When financial institutions face adverse conditions, such risks can quickly propagate
through complex market interconnections, creating a domino effect that escalates losses from a single
institution to the entire market, potentially triggering widespread systemic risk. Systemic risk is a core
concept in these fields, as it leads to market failures, large-scale financial crises, and profound, long-
lasting impacts on the real economy. Typical examples of systemic risk include financial crises, market
crashes, bank runs, and contagion effects spreading across multiple industries [14, 45].

In this paper, we focus on the “capital” type of systemic risk model, which is a method to assess
systemic risk losses and their probability of occurrence, and can be characterized by a risk measure.1
Among widely recognized risk measures, value-at-risk (VaR) and expected shortfall (ES) have been
extensively discussed in the literature [1, 12, 16]. However, they fail to effectively quantify systemic
risk as they only consider isolated individual economic entities. Hence, there is a need for novel condi-
tional risk (co-risk) measures to quantify and evaluate systemic risk in financial systems. The conditional

1Systemic risk models can be categorized into the following five types: (i) early warning systems; (ii) capital; (iii) liquidity; (iv) contagion; and
(v) network. For further details, the reader can refer to [37] and [17].
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value-at-risk (CoVaR), introduced by [3], measures the VaR of a particular asset under a certain level
of systemic stress. Mainik and Schaanning [32] proposed conditional expected shortfall (CoES), which
measures the ES of a specific asset or portfolio under a certain level of systemic stress and is defined
by the average tail integral of CoVaR. Acharya et al. [2] introduced the concept of marginal ES and
empirically validated its effectiveness in predicting emerging risks during the 2007–2009 financial cri-
sis. The theoretical properties of these co-risk measures and their applications in finance and insurance
can be found in [4, 5, 15, 19, 26, 28, 30, 42, 43]. However, these co-risk measures can only assess
the interaction effect from one entity to another entity but cannot characterize the absolute or relative
spillover effects, which lays the foundation for relevant research on proposing various risk contribution
measures.

The class of risk contribution measures can be divided into two types: difference-based and ratio-
based contribution measures. The former is usually defined as the difference between conditional and
unconditional risk measures, while the latter is defined as the ratio between the difference-based contri-
bution measure and the benchmark unconditional risk measure. For example, Adrian and Brunnermeier
[3] introduced the well-known difference-based and ratio-based contribution measures in terms of
CoVaR when the conditional systemic event is taken as VaR at some fixed level. Girardi and Ergün
[20] also defined the difference-based contribution measures (denoted as ΔCoVaR and ΔCoES) based
on CoVaR and CoES with different types of conditional events. From the perspective of stochastic
orders and dependence structures, Sordo et al. [38] provided sufficient conditions to rank CoVaR,
CoES, and their risk contribution measures ΔCoVaR and ΔCoES. Dhaene et al. [13] introduced
conditional distortion (CoD) risk measures and the difference-based distortion risk contribution mea-
sures (ΔCoD), discussing sufficient conditions to rank different bivariate vectors with respect to these
measures. Recently, Zhang [46] introduced several types of ratio-based distortion risk contribution mea-
sures (ΔRCoD) and examined sufficient conditions for comparing these measures in terms of a new
characterization of the convex transform order.

Most of the abovementioned works only consider a single risk as the systemic risk event, which runs
counter to the reality in the financial market that there might be multiple risks collapsing simultane-
ously. This scenario hinders the usage of the aforementioned systemic risk measures, which calls for
the definitions of multivariate systemic risk measures. In fact, multivariate risks are attracting increasing
attention from many researchers such as [27], [40], and [29]. Let X = (X1, . . ., Xn) represent a portfolio
of risks. Here, we assume X2, . . ., Xn represent systemic risk, capturing the volatility and uncertainty of
the entire system or market, rather than just the impact of any individual asset or event. The definition of
multivariate marginal mean excess (in short, MMME) is initially introduced by [11] and the asymptotic
behavior is studied under suitable conditions within the framework of multivariate regular variation, hid-
den regular variation, and asymptotic tail independence. The multivariate CoVaR (in short, MCoVaR)
and multivariate CoES (in short, MCoES) are firstly formally defined in [34] to quantify the risk of
X2, . . ., Xn spilled over to X1. Besides, the difference-based contribution risk measures are also intro-
duced. Utilizing MCoVaR, MCoES and MMME, and their associated difference-based contribution
measures (with unconditional risk measure as the benchmark), Ortega-Jiménez et al. [34] investi-
gated sufficient conditions for implementing comparisons between two different sets of multivariate
risk vectors.

In this paper, we introduce two types of multivariate risk contribution ratios to reassess the concepts
of MCoVaR, MCoES, and MMME. Our research motivation stems from the fact that when we are more
concerned with relative contributions rather than absolute contributions of systemic risks, the effec-
tiveness of those contribution measures studied in [34] is limited. Therefore, this paper introduces the
multivariate risk contribution ratio measures to address this issue, where the first type of benchmark
measure uses unconditional risk values such as VaR or ES, which are univariate risk measures, and the
second type of benchmark measure uses a multivariate joint risk measure based on the median of sys-
temic events, a method commonly used in financial markets. Based on the newly proposed contribution
measures, we theoretically analyze sufficient conditions for comparing two distinct multivariate risk
portfolios. In particular, for two risk vectors (X1, . . ., Xn) and (Y1, . . ., Yn), the consistency of co-risk
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measures is examined under different stochastic orders and dependence assumptions. Further, we com-
pute the values of these new risk measures using real-world dataset in the cryptocurrency (CC) market,
comparing with existing related risk measures, and analyzing the market interactions.

The remaining sections of this paper are structured as follows. Section 2 reviews some basic con-
cepts, including univariate and multivariate stochastic orders, copula functions, and some well-known
(conditional) risk measures. Section 3 introduces several new definitions of multivariate systemic risk
contribution ratio measures based on MCoVaR, MCoES, and MMME and establishes sufficient con-
ditions to compare two different risk portfolios under these new measures. Section 4 analyzes the risk
co-movement effect in the CC market by computing and comparing these proposed contribution risk
measures. Section 5 concludes the paper. All proofs and supplementary definitions are provided in the
appendix.

2. Preliminaries

Throughout this paper, let X = (X1, . . ., Xn) and Y = (Y1, . . ., Yn) represent two n-dimensional random
vectors with joint distribution functions (distribution function) denoted by F and G and joint density
functions f (x) and g(x), respectively, which will be abbreviated to “X ∼ F” and “Y ∼ G”. Their
marginal distributions are denoted by F1, . . ., Fn and G1, . . ., Gn, which are continuous and have finite
expectations. Additionally, their joint survival functions are denoted by F and G, that is, F (x) = P(X >

x) and G(x) = P(Y > x) for x ∈ Rn. Let x = (x1, . . ., xn) and y = (y1, . . ., yn) be two real-valued vectors
in Rn, we denote x ∨ y = (min{x1, y1}, . . ., min{xn, yn}) and x ∧ y = (max{x1, y1}, . . ., max{xn, yn}).

2.1. Stochastic orders

The quantile function for a random variable X with distribution function FX is defined as:

VaRp(X) := F−1
X (p) = inf{x ∈ R|FX (x) ≥ p}, p ∈ (0, 1).

Now, we present several pertinent definitions of univariate stochastic orders that will be utilized in
subsequent discussions.

Definition 2.1. Let X and Y be two random variables with distribution functions FX and FY, density
functions fX and fY, and survival functions FX and FY , respectively. Then X is said to be smaller than Y
in the:

(i) usual stochastic order (denoted by X ≤st Y) if FX (t) ≤ FY (t) for all t ∈ R;
(ii) excess wealth order (denoted by X ≤ew Y) if E

[ (
X − F−1

X (p)
)
+
]
≤ E

[ (
Y − F−1

Y (p)
)
+
]

for all
0 < p < 1, where x+ = max(0, x);

(iii) star order (denoted by X ≤★ Y) if F−1
Y (p)/F−1

X (p) is increasing in p ∈ (0, 1), when the two random
variables are nonnegative;

(iv) expected proportional shortfall order (denoted by X ≤ps Y) if EPSp(X) ≤ EPSp(Y) for all p ∈
DX ∩DY , when the two random variables are nonnegative, where DX = {p ∈ (0, 1) : F−1

X (p) > 0},
DY = {p ∈ (0, 1) : F−1

Y (p) > 0}. Here,

EPSp (X) = E
[(

X − VaRp(X)
VaRp(X)

)
+

]
and EPSp(Y) = E

[(
Y − VaRp (Y)

VaRp(Y)

)
+

]
.

In Definition 2.1, (i)–(iii) are referenced in [35], and (iv) can be found in [6]. It is also known that both
of the star order and the expected proportional shortfall order are scaled invariant and the former implies
the latter. Interested readers can refer to the monographs [35] and [7] for more detailed discussions.
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Next, for the random vector X = (X1, . . ., Xn), we introduce some multivariate stochastic orders and
dependence notions, indicating that in some stochastic sense, larger values of one random vector are
associated with larger or smaller values of another random vector.

Definition 2.2. [35]. Let X = (X1, . . ., Xn) and Y = (Y1, . . ., Yn) be two random vectors with joint
distribution functions F and G, respectively. Then

(i) the random variable {Xi, i ∈ Ac}, is said to be right-tail increasing (decreasing) in {Xj, j ∈ A},
(denoted by {Xi, i ∈ Ac} ↑RTI[RTD] {Xj, j ∈ A}) if P(Xi > xi, i ∈ Ac |Xj > xj, j ∈ A) increases
(decreases) in xj, where A is a subset of {1, . . ., n} with at least one element, and Ac denotes the
complement of A;

(ii) the random vector X is said to be smaller than Y in the multivariate hazard rate order (denoted
by X ≤hr Y) if F (x)G(y) ≤ F (x ∧ y)G(x ∨ y) for all x, y ∈ Rn;

(iii) the random vector X is said to be smaller than Y in the weak multivariate hazard rate order
(denoted by X ≤whr Y) if G(x)/F (x) is increasing in x ∈

{
x : G(x) > 0

}
;

(iv) the random vector X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y)
if E[h(X)] ≤ E[h(Y)] for all bounded increasing h : Rn → R;

(v) the random vector X is said to be multivariate totally positive of order 2 (denoted by MTP2) if
f (x)f (y) ≤ f (x ∧ y)f (x ∨ y) holds for all x, y ∈ Rn;

(vi) the random vector X is said to be smaller than Y in the multivariate likelihood ratio order (denoted
by X ≤lr Y) if f (x)g(y) ≤ f (x ∧ y)g(x ∨ y) for all x, y ∈ Rn;

(vii) the random vector X̂i = (X1, . . ., Xi−1, Xi+1, . . ., Xn) is said to be stochastically increasing in
Xi (denoted by X̂i ↑SI Xi) if the conditional distribution {(X1, . . ., Xi−1, Xi+1, . . ., Xn |Xi = xi)} is
stochastically increasing as xi increases;

(viii) the random vector X is said to be positive dependent through the stochastic order (or PDS) if
X̂i ↑SI Xi for i ∈ {1, . . ., n}.

According to [21], the following relationships hold:

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤whr Y and X ≤lr Y =⇒ X ≤st Y .

2.2. Copula

Let F be the joint distribution function of the random vector X with continuous marginal distribu-
tion functions F1, . . ., Fn. Then, there exists an n-dimensional copula function C(p1, . . ., pn) defined on
[0, 1]n such that

F (x1, . . ., xn) = C(F1(x1), . . ., Fn(xn)), ∀ x1, . . ., xn ∈ R.

Here, the copula function C captures the dependence structure of the random vector (X1, . . ., Xn). Let
Ui = Fi (Xi), which follows a uniform distribution U [0, 1]. Then the copula function C can be re-
expressed as:

C(p1, . . ., pn) = P(U1 ≤ p1, . . ., Un ≤ pn),

where pi = Fi (xi) for i = 1, . . ., n. Clearly, it is deduced that

C(p1, . . ., pn) = F
(
F−1

1 (p1), . . ., F−1
n (pn)

)
.
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The joint tail function, denoted as C, is expressed as

C(p1, . . ., pn) = P(X1 > F−1
1 (p1), . . ., Xn > F−1

n (pn)).

For an n-dimensional uniform random vector, the joint tail function C can be represented in terms of
the copula C as follows (see Theorem 4.7 in [10]):

C(p1, . . ., pn) =
n∑

i=0

(−1)i
∑

w(p) ∈Z (n−i,n,1)
C(w(p))

 ,

where Z (n − i, n, i) is the set of the
(n
i
)

possible vectors with n − i components equal to 1, i components
equal to pi.

The Archimedean copula, a prevalent category within the family of copulas, is characterized by
a generating function known as the Archimedean generator. The expression for an n-dimensional
Archimedean copula is given by:

Ck (u1, u2, . . ., un) = k−1 (k(u1) + k(u2) + · · · + k(un)) ,

where k is a strictly decreasing function called the generating function, with its inverse denoted as k−1.
Prominent examples of Archimedean copulas include the Clayton, Gumbel, and Frank copulas, each
employing distinct generating functions to model the dependencies among random variables. For these
specific forms of Archimedean copulas, please refer to Appendix B.2.

Next, the definition of concordance order is provided describing one copula is more positively
dependent than the other.

Definition 2.3. [33]. Given two n-dimensional copulas C and C′ , C is smaller than C′ in the
concordance order (denote by C ≤c C′) if C(p) ≤ C′ (p), for all p ∈ [0, 1]n.

For copula functions C and C′ , there also exists a stronger ranking relationship in terms of the weak
multivariate hazard rate order [21], which is defined as follows.

Definition 2.4. Given two n-dimensional copulas C and C′ , C is said to be smaller than C′ in the
weak multivariate hazard rate order (denote by C ≤whr C′) if C

′ (p)/C(p) is increasing in p ∈{
p ∈ [0, 1]n : C(p) > 0

}
.

2.3. Multivariate co-risk measures

For an individual risk X with distribution function FX, the ES of X at a given probability level p ∈ (0, 1)
is defined as

ESp [X] =
1

1 − p

∫ 1

p
VaRt [X]dt.

Essentially, VaR represents the one-sided critical value of asset value loss over a certain holding period
at a given confidence level, practically manifesting as an amount serving as the threshold. Compared to
VaR, ES considers the magnitude of losses beyond the VaR threshold, making it a more comprehensive
measure of risk. ES is particularly suitable when tail risk is of concern or when a more comprehensive
risk assessment is needed. Besides, according to the Basel IV accords, the internal/advanced model
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approach is revised by replacing the VaR measure with the ES measure, which further highlights the
importance of ES in solvency regulation; see [25] and [44].

In finance, the interconnections among entities’ (e.g. banks or financial institutions) risks can lead to
varying levels of systemic risk. To investigate the risk spillover of other individuals on one concerned
entity, Ortega-Jiménez et al. [34] introduced a multivariate co-risk measure called MCoVaR as follows:

MCoVaRp [X1 |X2, . . ., Xn] = VaRp1

X1

���� n⋂
j=2

{
Xj > VaRpj [Xj]

} ,

where p = (p1, . . ., pn) ∈ (0, 1)n. Clearly, MCoVaR is the VaR of the conditional distribution of X1
at level p1, given the joint systemic risk event {X2 > VaRp2 [X2], . . ., Xn > VaRpn [Xn]}. As a direct
generalization, the MCoES is further introduced in [34] as follows:

MCoESp [X1 |X2, . . ., Xn] =
1

1 − p1

∫ 1

p1

MCoVaRt,p2,...,pn [X1 |X2, . . ., Xn]dt.

Following [11], the MMME is delineated as:

MMMEp[−1] [X1 |X2, . . ., Xn] = E

(
X1 − AX,p[−1]

)
+

���� n⋂
j=2

{
Xj > VaRpj [Xj]

} ,

where p[−1] = (p2, . . ., pn) ∈ (0, 1)n−1, AX,p[−1] =
∑n

i=2 aiVaRpi [Xi] and ai ∈ [0, 1] satisfies
∑n

i=2 ai = 1.
The MMMEp[−1] [X1 |X2, . . ., Xn] represents the expected excess of X1 over a threshold AX,p[−1] , condi-
tional on the event that each Xj exceeds its VaR at level pj, for j = 2, . . ., n. The threshold AX,p[−1] is a
weighted sum of the VaRs of X2 to Xn. This measure captures the expected amount by which X1 exceeds
the threshold, reflecting the marginal mean excess risk under the given joint conditions.

3. Multivariate conditional risk contribution ratio measures and comparison results

Ortega-Jiménez et al. [34] introduced two definitions of difference-based multivariate risk contribution
measures corresponding to MCoVaR and MCoES, where the benchmark risk measure does not involve
systemic risk. However, when regulators in financial markets focus on the relative spillover effects of
systemic risk, the effectiveness of these measures becomes limited. To assess relative risk, the relative
spillover effect of risk can be measured by dividing the multivariate risk contribution of an entity by
its benchmark. One way to evaluate the risk contribution ratio of X2, . . ., Xn to X1 is to compare the
conditional risk measure of X1 (MCoVaR) with its unconditional risk value (VaR). Another method is
to replace the unconditional risk value VaR with the conditional VaR of X1 when X2, . . ., Xn are under
benchmark conditions, where the benchmark state is typically defined by the median [38].

We introduce the definition of a risk contribution ratio measure leveraging MCoVaR as follows.

Definition 3.1. For p = (p1, . . ., pn) ∈ (0, 1)n, the ratio-based contribution MCoVaR with uncondi-
tional VaR as benchmark measure is defined by2

ΔRMCoVaRp [X1 |X2, . . ., Xn] =
MCoVaRp [X1 |X2, . . ., Xn] − VaRp1 [X1]

VaRp1 [X1]
, (1)

2To avoid misleading, we sometimes use MCoVaRp1,p2,...,pn [X1 |X2, . . ., Xn ] to represent MCoVaRp [X1 |X2, . . ., Xn ].
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provided that VaRp1 [X1] ≠ 0. For p1 ∈ (0, 1), the ratio-based contribution MCoVaR with median-type
MCoVaR as the benchmark measure is defined by

ΔR−medMCoVaRp [X1 |X2, . . ., Xn] =
MCoVaRp1,p[−1] [X1 |X2, . . ., Xn] − MCoVaRp1, 1

2
[X1 |X2, . . ., Xn]

MCoVaRp1, 1
2
[X1 |X2, . . ., Xn]

,

(2)

provided that MCoVaRp1, 1
2
[X1 |X2, . . ., Xn] ≠ 0, where p[−1] = (p2, . . ., pn) ∈ (1/2, 1)n−1 and 1

2 =(
1
2 , . . ., 1

2

)
∈ Rn−1.

Similarly, the multivariate risk contribution measures for MCoES are defined as follows.

Definition 3.2. For p = (p1, . . ., pn) ∈ (0, 1)n, the ratio-based contribution MCoES with unconditional
ES as benchmark measure is defined by

ΔRMCoESp [X1 |X2, . . ., Xn] =
MCoESp [X1 |X2, . . ., Xn] − ESp1 [X1]

ESp1 [X1]
, (3)

provided that ESp1 [X1] ≠ 0. For p1 ∈ (0, 1), the ratio-based contribution MCoES with median-type
MCoES as the benchmark measure is defined by

ΔR−medMCoESp [X1 |X2, . . ., Xn] =
MCoESp1,p[−1] [X1 |X2, . . ., Xn] − MCoESp1, 1

2
[X1 |X2, . . ., Xn]

MCoESp1, 1
2
[X1 |X2, . . ., Xn]

, (4)

provided that MCoESp1, 1
2
[X1 |X2, . . ., Xn] ≠ 0, where p[−1] = (p2, . . ., pn) ∈ (1/2, 1)n−1 and 1

2 =(
1
2 , . . ., 1

2

)
∈ Rn−1.

Correspondingly, the ratio-based contribution MMME with unconditional mean excess as the
benchmark measure is defined as follows.

Definition 3.3. For p[−1] = (p2, . . ., pn) ∈ (0, 1)n−1, the risk contribution ratio measure of MMME is
defined by

ΔRMMMEp[−1] [X1 |X2, . . ., Xn] =
E

[(
X1 − AX,p[−1]

)
+

���� n⋂
j=2

{
Xj > VaRpj [Xj]

}]
− E

[(
X1 − AX,p[−1]

)
+

]
E[(X1 − AX,p[−1] )+]

,

(5)

provided that E[(X1 − AX,p[−1] )+] ≠ 0.

These multivariate risk contribution ratio measures are new compared with the ones introduced
in [34]. Next, we shall establish sufficient conditions for comparing these newly proposed mea-
sures for multivariate risk vectors. For two n-dimensional portfolio of risks X and Y, this section
established sufficient conditions for comparing the ratio-based risk contribution measures in terms
of MCoVaR, MCoES, and MMME. The next result compares ΔRMCoVaRp [X1 |X2, . . ., Xn] and
ΔRMCoVaRp [Y1 |Y2, . . ., Yn] under some appropriate conditions imposed on marginal risks X1 and Y1
and the dependence structure.
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Theorem 3.4. Let X = (X1, . . ., Xn) and Y = (Y1, . . ., Yn) be two nonnegative random vectors with the
distribution functions F and G, marginal distributions F1, . . ., Fn and G1, . . ., Gn, and copulas C and
C′ , respectively. Suppose that C ≤whr C′, and either (X2, . . ., Xn) ↑SI X1 or (Y2, . . ., Yn) ↑SI Y1 holds.
Then, for p = (p1, . . ., pn) ∈ (0, 1)n, X1 ≤★ Y1 implies that

ΔRMCoVaRp [X1 |X2, . . ., Xn] ≤ ΔRMCoVaRp [Y1 |Y2, . . ., Yn] . (6)

Recall that an increasing function h : [0, 1] → [0, 1] is said to be a distortion function if it satisfies
h(0) = 0 and h(1) = 1. The following lemma is needed for proving the comparison results under other
types of ratio-based contribution measures.

Lemma 3.5. [6]. Let X and Y be two nonnegative random variables with distribution functions FX and
FY, respectively. Then,

(i) X ≤★ Y if and only if IA,B(X) ≤ IA,B(Y) for all distortion function A(t), B(t) and convex function
A ◦ B−1(t), where

IA,B(X) =
∫ 1
0 F−1

X (t)dA(t)∫ 1
0 F−1

X (t)dB(t)
. (7)

(ii) X ≤ps Y if and only if IA,B(X) ≤ IA,B(Y) for all distortion function A(t), convex distortion function
B(t) and convex function A ◦ B−1(t).

In the following theorem, sufficient conditions for comparison between ΔRMCoESp [X1 |X2, . . ., Xn]
and ΔRMCoESp [Y1 |Y2, . . ., Yn] are provided in terms of the expected proportional shortfall order.

Theorem 3.6. Let X = (X1, . . ., Xn) and Y = (Y1, . . ., Yn) be two nonnegative random vectors with
distribution functions F and G, marginal distributions F1, . . ., Fn and G1, . . ., Gn, and copulas C and
C′ , respectively. Suppose that C ≤whr C′, and either (X2, . . ., Xn) ↑SI X1 or (Y2, . . ., Yn) ↑SI Y1 holds.
Then, for p = (p1, . . ., pn) ∈ (0, 1)n, X1 ≤ps Y1 implies that

ΔRMCoESp [X1 |X2, . . ., Xn] ≤ ΔRMCoESp [Y1 |Y2, . . ., Yn] . (8)

Next, we provide an example to illustrate the findings in Theorems 3.4 and 3.6. It is known that if a
random vector X satisfies MTP2, it then implies that X̂i ↑SI Xi holds for all i ∈ {1, . . ., n}. An example
of a copula satisfying MTP2 is provided below. As per [31], the Archimedean copula Ck is MTP2 if
and only if (−1)nk (n) is log-convex, where k (n) denotes the nth derivative. Let Ψ (n) := ln

(
(−1)nk (n) ) .

For the Gumbel copula, k(u) = (−ln u) \ , with n= 3, we have

C\ (u1, u2, u3) = exp
{
−
[
(−ln u1) \ + (−ln u2) \ + (−ln u3) \

] 1
\

}
.

Fixing \ = 2, it follows that

Ψ (3) (u) = ln
(
6 − 4 · ln u

u3

)
.

Furthermore, taking the second derivative with respect to u yields that

d2Ψ (3) (u)
du2 =

12(ln u)2 − 40 · ln u + 29
u2(2 · ln u − 3)2 > 0, u ∈ (0, 1),
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Figure 1. Plots of ΔRMCoVaRp [X1 |X2, X3] and ΔRMCoVaRp [Y1 |Y2, Y3]. Subfigure A fixes p3 = 0.55,
and Subfigure B fixes p3 = 0.95.

which implies that C2(u1, u2, u3) is MTP2. Based on this observation, the following two examples can
be established.

Example 3.7. Let X = (X1, X2, X3) and Y = (Y1, Y2, Y3) are two random vectors with Gumbel copula
C and C′ , respectively. By taking \ = 2, it satisfies (X2, X3) ↑SI X1. We denote by Z ∼ W (U, V) to
state that Z has a Weibull distribution with scale parameter U > 0 and shape parameter V > 0. Suppose
X1 ∼ W (1, 5) and Y1 ∼ W (1, 4), indicating X1 ≤★ Y1 (see Table 2.1 on p. 102 of [7]). As plotted
in Figure 1, the result of Theorem 3.4 is illustrated.

Example 3.8. Let X = (X1, X2, X3) and Y = (Y1, Y2, Y3) are two random vectors with Gumbel copula C
and C′ , respectively. By taking \ = 2, it satisfies (X2, X3) ↑SI X1. We denote Z ∼ G(U, V) to represent that
the random variable Z follows the Gamma distribution with shape parameter U > 0 and scale parameter
V > 0. Suppose X1 ∼ G(3, 1) and Y1 ∼ G(1, 1), indicating X1 ≤★ Y1 (see Table 2.1 on p. 102 of [7]).
As plotted in Figure 2, the result of Theorem 3.6 is illustrated.

The next result compares ΔRMMMEp[−1] [X1 |X2, . . ., Xn] and ΔRMMMEp[−1] [Y1 |Y2, . . ., Yn] under
some appropriate conditions imposed on the dependence structure when X and Y have the same
marginals.

Theorem 3.9. Let X = (X1, . . ., Xn) and Y = (Y1, . . ., Yn) be two random vectors with the distribution
functions F and G and same marginal distributions. If C ≤whr C′, then for all p[−1] = (p2, . . ., pn) ∈
(0, 1)n−1, we have

ΔRMMMEp[−1] [X1 |X2, . . ., Xn] ≤ ΔRMMMEp[−1] [Y1 |Y2, . . ., Yn] . (9)

In Theorem 3.9, we assumed that both vectors have the same marginal distributions. Under this
assumption, the comparison of ΔRMMME can be equivalent to the comparison of MMME, with con-
ditions similar to Corollary 2 in [34]. Therefore, the two measures exhibit consistent ordering under the
copula structure, a property we refer to as dependence consistency.

The following example is provided to show the validity of Theorem 3.9.
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Figure 2. Plots of ΔRMCoESp [X1 |X2, X3] and ΔRMCoESp [Y1 |Y2, Y3]. Subfigure A fixes p3 = 0.55,
and Subfigure B fixes p3 = 0.95.

Example 3.10. Let X be an n-dimensional random vector following the multivariate Gumbel
Exponential distribution with its joint survival function given by

F, (x1, . . ., xn) = exp

{
−
∑

I
_I

∏
i∈I

xi

}
, xi ≥ 0, i = 1, . . ., n,

where , = {_I : I ⊆ {1, . . ., n},_I ≥ 0, I ≠ ∅}. Let Y be another n-dimensional random vector
with a multivariate Gumbel exponential survival distribution G,∗ . For n= 3, let _∗i = _i = 10, which
implies Xi

st
= Yi for i = 1, 2, 3. Additionally, set _∗12 = _∗13 = _∗23 = _∗123 = 10 and _12 = _13 =

_23 = _123 = 100. Since , ≥ ,∗, according to [23], this implies X ≤whr Y (or C ≤whr C′). The plots of
ΔRMMMEp[−1] [X1 |X2, X3] and ΔRMMMEp[−1] [Y1 |Y2, Y3] are displayed in Figure 3, which is consistent
with the result of Theorem 3.9.

Under an unconditional risk measure as benchmark, different copulas can be used to measure the
risk contributions of two multivariate risk vectors, as the benchmark is unaffected by the copula. This is
the reason why we can consider different copulas in the comparison results developed in Theorems 3.4,
3.6, and 3.9. However, when a median-type co-risk measure as the benchmark, which is also affected by
the copula, using different copulas can make the comparison of risk contribution measures challenging.
Therefore, to ensure the comparability of median-type risk contribution measures, the same copula will
be adopted in the following discussions.

The next result establishes sufficient conditions for comparison between
ΔR−medMCoVaRp [X1 |X2, . . ., Xn] and ΔR−medMCoVaRp [Y1 |Y2, . . ., Yn] when X1 and Y1 are ranked
by the star order.

Theorem 3.11. Let X = (X1, . . ., Xn) and Y = (Y1, . . ., Yn) be two nonnegative random vectors with
distribution functions F and G, and marginal distributions are F1, . . ., Fn and G1, . . ., Gn, respectively.
Suppose that X and Y have the same copula C such that X1 ↑RTI (X2, . . ., Xn). For p1 ∈ (0, 1) and
(p2, . . ., pn) ∈ (1/2, 1)n−1, X1 ≤★ Y1 implies that

https://doi.org/10.1017/S026996482500004X Published online by Cambridge University Press

https://doi.org/10.1017/S026996482500004X


Probability in the Engineering and Informational Sciences 11

Figure 3. Plots of ΔRMMMEp[−1] [X1 |X2, X3] and ΔRMMMEp[−1] [Y1 |Y2, Y3].

ΔR−medMCoVaRp [X1 |X2, . . ., Xn] ≤ ΔR−medMCoVaRp [Y1 |Y2, . . ., Yn] . (10)

It is worth addressing that the condition X1 ↑RTI (X2, . . ., Xn) indicates that the conditional prob-
ability P(X1 > x1 | X2 > x2, . . ., Xn > xn) increases with xj, focusing on how X1 behaves given
(X2, . . ., Xn). Such condition can be implied from X1 ↑SI (X2, . . ., Xn), which is very different from
(X2, . . ., Xn) ↑SI X1. In fact, the later condition (X2, . . ., Xn) ↑SI X1 means that the conditional dis-
tribution of (X2, . . ., Xn |X1 = x1) is stochastically increasing in x1, showing how the random vector
(X2, . . ., Xn) shifts as X1 changes. These conditions describe different stochastic relationships and do
not imply any interdeducible relationship.

In the following theorem, we establish sufficient conditions for comparing
ΔR−medMCoESp [X1 |X2, . . ., Xn] and ΔR−medMCoESp [Y1 |Y2, . . ., Yn] when X1 and Y1 are ranked
by the expected proportional shortfall order.

Theorem 3.12. Let X = (X1, . . ., Xn) and Y = (Y1, . . ., Yn) be two nonnegative random vectors with
distribution functions F and G, and marginal distributions are F1, . . ., Fn and G1, . . ., Gn, respectively.
Suppose that X and Y have the same copula C such that C is MTP2. For p1 ∈ (0, 1) and (p2, . . ., pn) ∈
(1/2, 1)n−1, X1 ≤ps Y1 implies that

ΔR−medMCoESp [X1 |X2, . . ., Xn] ≤ ΔR−medMCoESp [Y1 |Y2, . . ., Yn] . (11)
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a b

Figure 4. (a) Plots of ΔR−medMCoVaRp [X1 |X2, X3] and ΔR−medMCoVaRp [Y1 |Y2, Y3]. (b) Plots of
ΔR−medMCoESp [X1 |X2, X3] and ΔR−medMCoESp [Y1 |Y2, Y3].

The following example illustrates the results of Theorems 3.11 and 3.12.

Example 3.13. Let X = (X1, X2, X3) and Y = (Y1, Y2, Y3) be two random vectors with the same
Gumbel copula C with \ = 2. Thus, C is MTP2 and X1 ↑RTI (X2, X3). Suppose X1 ∼ G(3, 1) and
Y1 ∼ G(1, 1), which implies X1 ≤★[ps] Y1 (see Table 2.2 on p. 102 of [7]). The plots of ΔR−medMCoVaR
and ΔR−medMCoES are shown in Figure 4, which agree with both of the results in Theorems 3.11 and
3.12.

4. An application in the CC market

In this section, risk measures proposed in Section 3 are applied for CC market dataset to quantify the
relative spillover effects. We employ a static methodology to quantify the relative risk contributions of
CCs using the multivariate risk measures discussed in this paper. The static approach offers several dis-
tinct advantages that align with the goals of this study. Firstly, it delivers clear and interpretable results,
allowing for a straightforward comparison of risk contributions among different assets. This clarity is
essential for both theoretical validation and practical application, as it provides actionable insights for
investors and regulators. Secondly, the static method is computationally efficient, enabling the analysis
of large datasets and the application of complex risk measures without excessive resource demands.
This efficiency is particularly valuable in the context of CCs, where data volumes are substantial and
market dynamics are intricate. Lastly, the static approach provides a stable framework for initial explo-
ration and validation of new risk measurement tools, ensuring that the core properties of these tools can
be assessed reliably before extending to more complex dynamic analyses.

The analysis utilizes three CCs: Bitcoin (BTC), Ethereum (ETH), and Monero (XMR). The data
contain daily closing prices in USD stemming from the Community Network Data provided by
CoinMetrics.3 The sample includes N = 3,226 observations from 01/09/2015 to 30/06/2024 as CCs are
traded every day, including weekends. For ease of our subsequent analysis, the prices are transformed
in log-losses, that is,

Xi,t = −100 · ln
(
pi,t/pi,t−1

)
,

3See https://coinmetrics.io/.
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Table 1. Statistical summary for log-losses of the cryptocurrencies.

Cryptocurrency Mean Median Max Min
Standard
deviation

BTC −0.174 −0.171 47.056 −22.405 3.705
ETH −0.243 −0.054 56.561 −30.062 5.527
XMR −0.183 −0.203 49.224 −59.634 5.625

Table 2. Correlation matrix for log-losses of cryptocurrencies.
Panel A: Spearman correlation matrix

BTC ETH XMR

BTC 1.000 0.630 0.575
ETH 0.630 1.000 0.565
XMR 0.575 0.565 1.000

Panel B: Kendall correlation matrix

BTC ETH XMR

BTC 1.000 0.486 0.424
ETH 0.486 1.000 0.418
XMR 0.424 0.418 1.000

where Xi,t represents the percentage-based log-losses4 on day t with i ∈ {1, 2, 3} for BTC, ETH, and
XMR and pi,t denotes the closing price for CC i on day t. For each CC i, N observations (xi,1, . . ., xi,N )
are obtained. A statistical summary for these percentage-based log-loss samples is shown in Table 1,
and their Spearman and Kendall correlation matrices are provided in Table 2. From Table 1, it can
be observed that both BTC and XMR have relatively low mean losses, with BTC showing the smallest
standard deviation, indicating a more stable performance. The elevated standard deviations observed for
Ethereum and Monero relative to Bitcoin may reflect heightened exposure to volatility inherent in the
CC market, particularly during discrete events or periods of acute market stress. Ethereum, for instance,
has demonstrated sensitivity to regulatory scrutiny and protocol upgrades (e.g., transitions to Ethereum
2.0), while Monero’s volatility has been amplified by debates over privacy regulations and network
congestion. These idiosyncratic factors, coupled with broader market uncertainty, likely contribute to
the pronounced fluctuations seen in both assets compared to Bitcoin. The results from Table 2 indicate
that all the three CCs enjoy positive dependence structure in losses, and the correlation between BTC
and ETH is relatively stronger compared with the correlation between ETH and XMR.

We use the method of inference function for margins (IFM) proposed in [22], which has been also
widely applied by many research papers such as [36] and [47]. Interested readers can refer to [22] for
more efficiency properties of IFM. To calculate the co-risk measures introduced both in Sections 2
and 3, the following empirical procedure is adopted:

• Step 1: Estimate the respective marginal model for each group of samples separately.
• Step 2: Estimate the copula based on the pseudo-sample observations obtained from the parametric

probability integral transformation on the samples.
• Step 3: Calculate the respective risk measures.

4Differing from the majority of economics and finance literature, this paper focuses on risk measurement based on the probability distributions
of losses. Since we denote Lt as the stock index’s declining changing pattern, the right tail of the distribution of Lt represents extreme risk.
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4.1. Parameter estimation of the marginal distributions

The generalized Pareto distribution (GPD) is widely applied in the insurance and finance sectors as
a probability distribution for modeling extreme values [9, 18]. Its distribution function is defined as
follows:

F (x; b, V) =


1 −
(
1 + b

V
x
)− 1

b , b ≠ 0

1 − exp
(
− x

V

)
, b = 0

, (12)

where b is the shape parameter and V is the scale parameter. For each individual risk Xi with distribu-
tion function Fi and a confidential level U, the GPD serves as a suitable approximation for the excess
distribution function P(Xi −U ≤ x |Xi > U). Consequently, the following approximation can be utilized:

Fi (x) = Fi (U) + P(Xi − U ≤ x − U |Xi > U) (1 − Fi (U))
≈ Fi (U) + F (x − U; bi, Vi) (1 − Fi (U)) , x ≥ U.

For t = 1, . . ., T , let xi,(1) ≤ · · · ≤ xi,(T ) denote the order statistics of {xi,t}1≤t≤T , i = 1, 2, 3. Setting
threshold U, we apply the empirical distribution to fit the samples that are less than the U-quantile and
utilize the GPD to fit the samples that are greater than the U-quantile. Using the maximum likelihood
estimation (MLE) method to estimate parameters b i and Vi, denote as b̂i and V̂i, the estimated marginal
distribution Fi is as follows:

F̂i (x) =


∑T
t=1 I (xi,t≤x)

T , x ≤ xi,( dUT e )

1 − (1 − U) exp
(
− x−xi,( dUTe)

V̂i

)
, x > xi,( dUT e )

(13)

when b̂i = 0,5 and

F̂i (x) =


∑T
t=1 I (xi,t≤x)

T , x ≤ xi,( dUT e )

1 − (1 − U)
(
1 + b̂i

V̂i
(x − xi,( dUT e ) )

)
, x > xi,( dUT e )

(14)

when b̂i ≠ 0.
We set the thresholdU = 90% (cf. [24]), and then use MLE to estimate parameters b i and Vi, i = 1, 2, 3

of GPDs. MLE estimations b̂i and V̂i of b i and Vi for three CCs are shown in Table 3. The QQ plots based
on the GPD and the normal distribution for all three CCs are provided in Figure 5, which illustrates that
the GPD provides significantly better fits for the tails of the data than the normal distribution.

It must be pointed out that GPD degenerates to exponential distribution when b = 0, according to (12).
Hence, the expressions of estimated marginal distributions depend on whether the values of b i are
nonzero or not, for i = 1, 2, 3. Based on the method developed in [41], we carry on testing bi ≠ 0 by
applying the principle that 0 is not in the 95% confidence interval [b̂i − 1.96× SE(b̂i), b̂i + 1.96×SE(b̂i)]
of the estimation b i, where SE(b̂i) denotes the standard error of b̂i.6 As shown in Table 3, we find out that
with a significant level 5%, the parameter b1 of BTC is not significantly nonzero. In the remainder of
this section, we will use the parameters in Table 3 to carry out parameter estimations and the calculation
of risk measures.

5 dke denotes the ceiling of k, i.e., rounding k up to the nearest integer.
6The test can be also implemented for the case b1 = 0. The results, which can be provided upon request, show that the computed values of

various risk measures are very close, and thus we do not show them repeatedly here.
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Table 3. MLE results for the three cryptocurrencies.
CC Parameter Estimation Std. error

BTC b1 0.083 0.051
V1 2.841 0.214

ETH b2 0.171 0.067
V2 3.757 0.325

XMR b3 0.136 0.056
V3 3.612 0.283

(a) (b) (c)

(d) (e) (f)

Figure 5. QQ plots for all three cryptocurrencies. (a) QQ plot for BTC based on GPD. (b) QQ plot
for ETH based on GPD. (c) QQ plot for XMR based on GPD. (d) QQ plot for BTC based on normal
distribution. (e) QQ plot for ETH based on normal distribution. (f) QQ plot for XMR based on normal
distribution.

By employing the marginal distributions F̂i’s given in (13) and (14), for each i = 1, . . ., n, we can
convert observations

{
xi,k

}
1≤k≤N into pseudo-samples

{
Ûi,k

}
1≤k≤N , where

Ûi,k = F̂i
(
xi,k

)
, 1 ≤ k ≤ N . (15)

Figure 6 shows the scatter plot of pseudo-samples for different pairs of CCs.

4.2. Parameter estimation of the mixed copula

As per Table 2, it can be noted that the correlation coefficients between CC pairs are different, indicat-
ing that the interdependence among CCs is significantly asymmetric. Hence, the dependence structure
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(a) (b) (c)

Figure 6. Scatter plots of Lt for three paired cryptocurrencies. (a) BTC VS ETH; (b) BTC VS XMR;
(c) ETH VS XMR.

between these CCs cannot be characterized by symmetric copulas. Besides, Figure 6 shows that any pair
of these three CCs have a strong positive dependence at extreme values (for both of the left and right
tails). Take these observations into consideration, we ought to use an asymmetric copula with nonzero
left and right tail dependence coefficients to model the dependence structure between these CCs. As a
result, we employ a mixed copula model to characterize the dependence structure. The mixed copula
model is widely used in the existing literature, like [8] and [47].

We use the mixed Copula model

CM (u) = a1CGau (u) + a2CGum (u) + (1 − a1 − a2)CCla (u), 0 ≤ a1, a2 ≤ 1, a1 + a2 ≤ 1, u ∈ [0, 1]3
(16)

as the dependency model, where the Gaussian copula is used to capture the correlation between vari-
ables, the Gumbel copula models upper tail dependence, and the Clayton copula models lower tail
dependence. We estimate these parameters using command “fitCopula” in R package “copula”.
There are seven parameters

(
dM

12, dM
13, dM

23, \M
G , \M

C , a1, a2
)

to be estimated, where dM
12, dM

13, dM
23 are the

correlation coefficients in the Gaussian copula CGau, \M
G is the parameter in the Gumbel copula CGum,

\M
C is the parameter in the Clayton copula CCla, and a1, a2 and 1−a1−a2 are the weights of the Gaussian

copula, Gumbel copula, and Clayton copula, respectively. We performed MLE on the pseudo-samples
derived in (15) using seven different mixed Copula models and selected the most suitable model based
on the Akaike information criterion (AIC) and Bayesian information criterion (BIC). The seven mixed
Copula models are as follows:

• Model 1: Gaussian copula CGau;
• Model 2: Gumbel copula CGum;
• Model 3: Clayton copula CCla;
• Model 4: Gaussian–Gumbel mixed copula, formulated by setting 1 − a1 − a2 = 0 in (16);
• Model 5: Gaussian–Clayton mixed copula, formulated by setting a2 = 0 in (16);
• Model 6: Gumbel–Clayton mixed copula, formulated by setting a1 = 0 in (16);
• Model 7: Gaussian–Gumbel–Clayton mixed copula, formulated as in (16).

The mixed copula model with the smallest AIC and BIC values is selected as the most suitable model.
The estimated parameters of the seven mixed copula models are shown in Table 4. The results in Table
4 show that the mixed copula model with the smallest AIC and BIC values is Model 7, which is
the Gaussian–Gumbel–Clayton mixed copula. Then, we use the estimated parameters of Model 7 to
calculate the risk measures in the following analysis.
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Table 4. Performance of various mixed copula models.
Estimated parameters AIC BIC

Model 1 d̂M
12 = 0.630, d̂M

13 = 0.560, d̂M
23 = 0.567 −3,349.372 −3,331.136

Model 2 \̂M
G = 1.727 −3,911.606 −3,905.527

Model 3 \̂M
C = 0.806 −2,202.380 −2,196.302

Model 4 d̂M
12 = 0.140, d̂M

13 = 0.095, d̂M
23 = 0.076, −4,603.278 −4,566.805

\̂M
G = 2.650, a1 = 0.314, a2 = 0.686

Model 5 d̂M
12 = 0.5675, d̂M

13 = 0.5288, d̂M
23 = 0.4962 −3,608.101 −3,571.629

\̂M
G = 7.7034, a1 = 0.8287, a2 = 0

Model 6 \̂M
G = 2.559, \̂M

C = 0.005 −4,595.905 −4,571.591
a1 = 0, a2 = 0.2770

Model 7 d̂M
12 = 0.104, d̂M

13 = 0.061, d̂M
23 = 0.048, −4,619.705 −4,571.076

\̂M
G = 2.583, \̂M

C = 9.465, a1 = 0.299, a2 = 0.670

4.3. Empirical results

Based on the respective marginal distributions and the selected copula, a range of risk measures are
provided in Table 5, where we take the confidence levels p1 = p2 = p3 = 0.957. More collected values
under the settings of p1 = p2 = p3 = 0.975 and p1 = p2 = p3 = 0.99 can be found in Appendix B.4. The
following observations can be noted8:

(i) Conditional risk measures, such as MCoVaR, MCoES, and MMME, consistently surpass their
unconditional counterparts, namely VaR and ES. This discrepancy underscores the heightened
potential risk of individual assets when systemic risk is taken into account. These systemic risk
measures capture the essence of how the performance of interconnected assets during periods of
market extremity can amplify the risk profile of individual assets, thereby highlighting the risk
co-movement effect. The implications are profound: there exists a pronounced risk interaction in
the currency market, characterized by robust correlations among various currencies. Relying on
unconditional risk measures in isolation may lead to an underestimation of the true risk exposure.

(ii) Under majority risk measures, ETH emerges with the highest risk profile, while BTC exhibits a
comparatively lower risk level, with XMR occupying an intermediate position. This indicates that
within the CC market, ETH is more susceptible to systemic risk impacts, marked by notably higher
price volatility and risk exposure in comparison to the other two digital assets. Conversely, BTC
displays relative stability, with a lower risk exposure and spill-over effects, underscoring its status
as the CC with the largest market share and its perceived stability.

(iii) Across a spectrum of risk measures, the risk ranking among the three currencies exhibits a notice-
able consistency. This uniformity in risk perception across different CCs indicates a stable market
assessment of risk. It implies that within the currency market, relative measures such as ratio-based
risk contribution measures (ΔR and ΔR−med) can effectively capture the systemic risk’s relative
change. These measures offer a nuanced approach beyond the reliance on absolute risk metrics
like MCoVaR, MCoES, and MMME.

7The market capitalization ratio among BTC, ETH, and XMR is approximately 9:3:1, considering the fluctuations in total market capitalization
over time. We use this ratio as the reference weight for the calculations of MMME. Taking the MMME value of BTC as an example, the weight
vector is set as a = (0, 0.75, 0.25) .

8The specific definition s of ΔMCoVaR and ΔmedMCoVaR can be found in the Appendix B.1.
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Table 5. Values of some systemic risk measures of the three cryptocurrencies (p1 = p2 = p3 = 0.95).
VaR-based BTC ETH XMR

VaR 5.727 7.892 8.084
MCoVaR 17.151 26.614 24.552
ΔMCoVaR 11.424 18.722 16.468
ΔRMCoVaR 1.995 2.372 2.037
ΔmedMCoVaR 8.951 15.140 13.202
ΔR−medMCoVaR 1.092 1.320 1.163

ES-based BTC ETH XMR

ES 8.973 12.915 12.617
MCoES 21.427 35.450 31.652
ΔMCoES 12.454 22.535 19.035
ΔRMCoES 1.388 1.745 1.509
ΔmedMCoES 9.740 18.194 15.242
ΔR−medMCoES 0.833 1.054 0.929

MMME-based BTC ETH XMR

MMME 2.166 7.539 6.798
ΔMMME 2.082 7.166 6.457
ΔRMMME 24.678 19.240 18.940

(iv) For the difference-based risk contribution measures (Δ and Δmed), the indicators derived from ES
surpass those predicated on VaR. Conversely, for the ratio-based risk contribution measures (ΔR

and ΔR−med), the scenario inverts, with VaR-based measures taking precedence. This suggests that
ES-based measures confer a higher significance to individual assets’ role in the distribution of sys-
temic risk, while VaR-based measures accentuate the individual assets’ proportional contribution
to systemic risk as a whole. The disparity underscores the imperative to strike a balance in the
selection of risk metrics, contingent upon the goals of risk management and the prevailing market
conditions.

(v) The ratio-based risk contribution measures (ΔR and ΔR−med) offer a advantage over other risk
metrics by virtue of their capacity to articulate the systemic risk’s relative co-movement effect on
individual assets via relative ratios. This methodology provides clarity on the comparative risk
contributions of various assets within systemic risk frameworks. It affords a perspective that not
only uncovers potential market extreme losses but also equips investors with a deeper compre-
hension and management of relative risk exposures across diverse market conditions. This is in
contrast to the sole assessment of an asset’s absolute risk level.

5. Conclusion

Systemic risk plays a significant role in financial markets and portfolio management. This article delves
into new tools for quantifying and analyzing systemic risk, with a specific emphasis on the absolute
and relative spillover effects induced by systemic risk. Some comparison results are conducted based
on these proposed measures for two different sets of multivariate vectors with the same or different
copulas. The theoretical findings have been validated through numerical examples, demonstrating the
applicability and effectiveness of the proposed measures. Furthermore, we implement these measures
as well as some known ones to quantify the interaction effect in CC market by considering three typical
CCs.
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Appendix A. Proof of the main results

For a random variable X with distribution function FX, if h is continuous, then h
(
FX (x)

)
= h ◦ FX (x)

applied to the tail function FX (x) = 1 − FX (x) results in a new tail function. This new tail function
corresponds to a random variable Xh, which is derived from X by applying the distortion function h.
The following lemma derives the distorted function of X1 given that the remaining entities are in distress,
as discussed in [39] and [34].

Lemma A.1. Let X = (X1, . . ., Xn) be an n-dimensional random vector with copula C, joint distri-
bution function F, and marginal distributions F1, . . ., Fn. Assume that (X2, . . ., Xn) ↑SI X1. Then, for

(p2, . . ., pn) ∈ (0, 1)n−1, the conditional random variable

[
X1

���� n⋂
j=2

{
Xj > VaRpj [Xj]

}]
is a distorted

random variable induced from X1 by the concave distortion function

hp(t) =
C(1 − t, p2, . . ., pn)

C(0, p2, . . ., pn)
, t ∈ [0, 1] . (A.1)
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A.1. Proof of Theorem 3.4

Proof. Let Xh,p be defined as the conditional random variable

[
X1

���� n⋂
j=2

{
Xj > VaRpj [Xj]

}]
for p =

(p1, . . ., pn) ∈ (0, 1)n. Assuming Xh,p ∼ FXh,p , it follows that

MCoVaRp [X1 |X2, . . ., Xn] = F−1
Xh,p

(p1).

By applying Lemma A.1, we find that FXh,p (x) = 1 − hp

(
F1(x)

)
, where hp(t) is given by

hp(t) =
C(1 − t, p2, . . ., pn)

C(0, p2, . . ., pn)
.

Setting FXh,p (x) = 1 − hp (F1(x)) = p1, we obtain F−1
Xh,p

(p1) = F−1
1

(
1 − h−1

p (1 − p1)
)
. Hence, we have

ΔRMCoVaRp [X1 |X2, . . ., Xn] =
F−1

1

(
1 − h−1

p (1 − p1)
)

F−1
1 (p1)

− 1.

Similarly,

ΔRMCoVaRp [Y1 |Y2, . . ., Yn] =
G−1

1

(
1 − h′−1

p (1 − p1)
)

G−1
1 (p1)

− 1,

where h′p(t) =
C
′ (1−t,p2,...,pn )
C
′ (0,p2,...,pn )

. Without loss of generality, we assume that (X2, . . ., Xn) ↑SI X1. The proof
for the other case is similar. Lemma A.1 indicates that hp is a concave distortion function, satisfying
hp(t) ≥ t, which leads to t ≤ 1 − h−1

p (1 − t). By applying X1 ≤★ Y1, it follows that

F−1
1

(
1 − h−1

p (1 − p1)
)

F−1
1 (p1)

≤
G−1

1

(
1 − h−1

p (1 − p1)
)

G−1
1 (p1)

.

Utilizing the definition of C ≤whr C′, we directly obtain that

C
′ (0, p2, . . ., pn)

C(0, p2, . . ., pn)
≤ C

′ (1 − t, p2, . . ., pn)
C(1 − t, p2, . . ., pn)

,

which leads to hp(t) ≤ h′p(t) for all t ∈ (0, 1). Hence, G−1
1

(
1 − h−1

p (1 − p1)
)
≤ G−1

1

(
1 − h′−1

p (1 − p1)
)
,

confirming that (6) is valid. This completes the proof. �

A.2. Proof of Theorem 3.6

Proof. Given Definition 3.2 and the proof of Theorem 3.4, the MCoES can be reformulated as:

MCoESp [X1 |X2, . . ., Xn] =
1

1 − p1

∫ 1

p1

F−1
1

(
1 − h−1

p (1 − t)
)

dt =
∫ 1

0
F−1

1 (s)dAp(s),
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where Ap(s) is specified as

Ap (s) =


0, s ≤ 1 − h−1
p (1 − p1),

1 − 1
1−p1

· C (s,p2,...,pn )
C (0,p2,...,pn )

, s > 1 − h−1
p (1 − p1),

for p ∈ (0, 1)n. Hence, it follows that

ΔRMCoESp [X1 |X2, . . ., Xn] =
∫ 1
0 F−1

1 (s)dAp(s)∫ 1
0 F−1

1 (s)dB(s)
− 1,

where

Ap (s) =


0, s ≤ 1 − h−1
p (1 − p1),

1 − 1
1−p1

· C (s,p2,...,pn )
C (0,p2,...,pn )

, s > 1 − h−1
p (1 − p1),

for p ∈ (0, 1)n, with hp(t) = C (1−t,p2,...,pn )
C (0,p2,...,pn )

and B(s) = max
{
0, s−p1

1−p1

}
. Similarly,

ΔRMCoESp [Y1 |Y2, . . ., Yn] =
∫ 1
0 G−1

1 (s)dA′
p(s)∫ 1

0 G−1
1 (s)dB(s)

− 1,

where

A′
p(s) =


0, s ≤ 1 − h′−1

p (1 − p1),
1 − 1

1−p1
· C

′ (s,p2,...,pn )
C
′ (0,p2,...,pn )

, s > 1 − h′−1
p (1 − p1),

for p ∈ (0, 1)n, with h′p(t) =
C
′ (1−t,p2,...,pn )
C
′ (0,p2,...,pn )

. Since (X2, . . ., Xn) ↑SI X1, it can be inferred from Lemma

A.1 that Ap(s) is convex, and thus Ap
(
B−1(s)

)
is also convex in s. By Lemma 3.5, it follows that

∫ 1
0 F−1

1 (s)dAp (s)∫ 1
0 F−1

1 (s)dB(s)
− 1 ≤

∫ 1
0 G−1

1 (s)dAp(s)∫ 1
0 G−1

1 (s)dB(s)
− 1.

Besides, the condition C ≤whr C′ ensures that hp(t) ≤ h′p(t), which further implies Ap(s) ≥ A′
p(s).

Using integration by parts, we obtain

∫ 1

0
G−1

1 (s)dAp(s) −
∫ 1

0
G−1

1 (s)dA′
p(s) =

∫ 1

0

(
Ap(s) − A′

p(s)
)

dG−1
1 (s) ≤ 0.

which establishes (8) and completes the proof. �
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A.3. Proof of Theorem 3.9

Proof. Define Ui = Fi (Xi) for i = 1, . . ., n. The MMME is then expressed as

MMMEp[−1] [X1 |X2, . . ., Xn] = E
(X1 − AX,p[−1] )+

���� n⋂
j=2

{
Xj > VaRpj [Xj]

}
=

∫ ∞

AX,p[−1]

©­«1 − F
U1 |

n⋂
j=2

Uj>pj
(F1(t))

ª®¬ dt =
∫ 1

F1

(
AX,p[−1]

) ©­«1 − F
U1 |

n⋂
j=2

Uj>pj
(u)ª®¬ dF−1

1 (u)

=

∫ 1

F1

(
AX,p[−1]

) (F−1
1 (u) − AX,p[−1]

)
dhp(u),

where hp(t) = 1 − hp(1 − t). We have

ΔRMMMEp[−1] [X1 |X2, . . ., Xn] =

∫ 1
F1

(
AX,p[−1]

) (F−1
1 (u) − AX,p[−1]

)
dhp(u)∫ 1

F1

(
AX,p[−1]

) (F−1
1 (u) − AX,p[−1]

)
du

− 1,

where hp(t) = C (1−t,p2,...,pn )
C (0,p2,...,pn )

and hp (t) = 1 − hp(1 − t). Similarly,

ΔRMMMEp[−1] [Y1 |Y2, . . ., Yn] =

∫ 1
G1

(
AY ,p[−1]

) (G−1
1 (u) − AY ,p[−1]

)
dh

′
p (u)∫ 1

G1

(
AY ,p[−1]

) (G−1
1 (u) − AY ,p[−1]

)
du

− 1,

where h′p(t) =
C
′ (1−t,p2,...,pn )
C
′ (0,p2,...,pn )

and h
′
p (t) = 1 − h′p(1 − t). Given that Xi =st Yi, it suffices to demonstrate

that ∫ 1

F1

(
AX,p[−1]

) (F−1
1 (u) − AX,p[−1]

)
dhp(u) ≤

∫ 1

F1

(
AX,p[−1]

) (F−1
1 (u) − AX,p[−1]

)
dh

′
p(u),

which follows from C ≤whr C′. This completes the proof. �

A.4. Proof of Theorem 3.11

Proof. By the proof of Theorem 3.4, it follows that

ΔR−medMCoVaRp(X1 |X2, . . ., Xn) =
F−1

1

(
1 − h−1

p[−1]
(1 − p1)

)
F−1

1

(
1 − h−1

1
2
(1 − p1)

) − 1,
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where hp̂(t) =
C (1−t,p2,...,pn )
C (0,p2,...,pn )

with p̂ =
{
p[−1] , 1

2
}
, p[−1] = (p2, . . ., pn) ∈ (1/2, 1)n−1 and 1

2 =(
1
2 , . . ., 1

2

)
∈ Rn−1. Similarly,

ΔR−medMCoVaRp [Y1 |Y2, . . ., Yn] =
G−1

1

(
1 − h−1

p[−1]
(1 − p1)

)
G−1

1

(
1 − h−1

1
2
(1 − p1)

) − 1.

Given that X1 ↑RTI (X2, . . ., Xn), it follows that hp[−1] (t) ≥ h 1
2
(t), which implies 1 − h−1

1
2
(1 − p1) ≤

1 − h−1
p[−1]

(1 − p1). Hence, X1 ≤★ Y1 implies that

G−1
1

(
1 − h−1

1
2
(1 − p1)

)
F−1

1

(
1 − h−1

1
2
(1 − p1)

) ≤
G−1

1

(
1 − h−1

p[−1]
(1 − p1)

)
F−1

1

(
1 − h−1

p[−1] (1 − p1)
) ,

which confirms that (10) is satisfied. This completes the proof. �

A.5. Proof of Theorem 3.12

Proof. By the proof of Theorem 3.6, we obtain

ΔR−medMCoESp [X1 |X2, . . ., Xn] =

∫ 1
0 F−1

1 (s)dAp[−1] (s)∫ 1
0 F−1

1 (s)dA 1
2
(s)

− 1

and

ΔR−medMCoESp [Y1 |Y2, . . ., Yn] =

∫ 1
0 G−1

1 (s)dAp[−1] (s)∫ 1
0 G−1

1 (s)dA 1
2
(s)

− 1,

where

Ap̂ (s) =


0, s ≤ 1 − h−1
p̂ (1 − p1),

1 − 1
1−p1

· C (s,p2,...,pn )
C (0,p2,...,pn )

, s > 1 − h−1
p̂ (1 − p1),

for p1 ∈ (0, 1) and p̂ ∈
{
p[−1] , 1

2
}
, with p[−1] = (p2, . . ., pn) ∈ (1/2, 1)n−1 and 1

2 =

(
1
2 , . . ., 1

2

)
∈ Rn−1.

Given that C is MTP2, and (X2, . . ., Xn) ↑SI X1, Lemma A.1 implies that hp̂ is a concave distor-
tion function, making Ap̂(s) a convex distortion function. To apply Lemma 3.5, we demonstrate that

Ap[−1]

(
A−1

1
2
(s)

)
is convex, equivalent to showing that

(
Ap[−1] (s)

) ′
/
(
A 1

2
(s)

) ′
is increasing in s, where

(
Ap̂(s)

) ′
=

mAp̂(s)
ms

=
1

1 − p1
· P(U2 > p2, . . ., Un > pn |U1 = s)

C(0, p2, . . ., pn)
,
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with Ui = Fi (Xi). Using C being MTP2, we have

(U2, . . ., Un |U1 = u1) ≤whr (U2, . . ., Un |U1 = u′1), ∀u1 ≤ u′1,

which implies that(
Ap[−1] (s)

) ′(
A 1

2
(s)

) ′ =
C(0, 1/2, . . ., 1/2)
C(0, p2, . . ., pn)

· P(U2 > p2, . . ., Un > pn |U1 = s)
P(U2 > 1/2, . . ., Un > 1/2|U1 = s)

is increasing in s. It has been shown that Ap[−1] (s), A 1
2
(s), and Ap[−1]

(
A−1

1
2
(s)

)
are convex func-

tions. Therefore, applying Lemma 3.5 and X1 ≤ps Y1, we deduce that (11) holds. This completes
the proof. �

Appendix B. Supplementary materials

B.1. Risk measures

The contribution measures employed in Tables 5 are presented, as detailed in [38] and [34].

Definition B.1. For any p1 ∈ (0, 1), the difference-based contribution MCoVaR with systemic risk
event is defined by

ΔMCoVaRp [X1 |X2, . . ., Xn] = MCoVaRp1,p[−1] [X1 |X2, . . ., Xn] − VaRp1 [X1], (B.1)

and

ΔmedMCoVaRp [X1 |X2, . . ., Xn] = MCoVaRp1,p[−1] [X1 |X2, . . ., Xn] − MCoVaRp1, 1
2
[X1 |X2, . . ., Xn],

(B.2)

where p[−1] = (p2, . . ., pn) ∈ (1/2, 1)n−1 and 1
2 =

(
1
2 , . . ., 1

2

)
∈ Rn−1.

Definition B.2. For p1 ∈ (0, 1), the difference-based contribution MCoES with systemic risk event is
defined by

ΔMCoESp [X1 |X2, . . ., Xn] = MCoESp1,p[−1] [X1 |X2, . . ., Xn] − ESp1 [X1], (B.3)

and

ΔmedMCoESp [X1 |X2, . . ., Xn] = MCoESp1,p[−1] [X1 |X2, . . ., Xn] − MCoESp1, 1
2
[X1 |X2, . . ., Xn], (B.4)

where p[−1] = (p2, . . ., pn) ∈ (1/2, 1)n−1 and 1
2 =

(
1
2 , . . ., 1

2

)
∈ Rn−1.
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B.2. Copula

Definition B.3. Setting the generating function to k(u) = (−ln u) \ , thus k−1(u) = exp
(
−u

1
\

)
. The

n-dimensional Gumbel copula is defined as follows:

C\ (u1, . . ., un) = exp
−

[
n∑

i=1
(−ln ui) \

] 1
\
 , \ > 1, 2u ∈ [0, 1]n.

Gumbel copula exhibits different dependency properties in the left and right tails. Typically, it
demonstrates positive right-tail dependency, implying that when one variable exhibits an extreme value
in the right tail, there is a higher probability for the other variable to also have an extreme value in the
right tail.

Definition B.4. Setting the generating function to k(u) = u−\ − 1, thus k−1(u) = (u + 1) 1
\ . The

n-dimensional Clayton copula is defined as follows:

C\ (u1, . . ., un) =
[

n∑
i=1

u−\
i − n + 1

]− 1
\

, \ > 0, 2u ∈ [0, 1]n.

The Clayton copula exhibits significant dependency in the left tail, meaning that when one variable
exhibits an extreme value in the left tail, there is a higher probability for the other variable to also have an
extreme value in the left tail. Therefore, the combination of the Gumbel copula and the Clayton copula
can simulate asymmetric upper and lower tail dependencies.

In addition to Archimedean copulas, there is another class of copula functions called elliptical cop-
ulas, such as the Gaussian copula. The Gaussian copula exhibits a certain degree of symmetry in terms
of its dependence properties in the left and right tails, which is defined as follows.

Definition B.5. Let R be a symmetric, positive definite matrix with diag(R) = (1, . . ., 1)′ and ΦR the
standardized multivariate normal distribution with correlation matrix R. The multivariate Gaussian
copula is defined as follows:

CR(u1, . . ., un) = ΦR

(
Φ−1(u1), . . .,Φ−1(un)

)
,

where Φ−1 is the inverse of the standard univariate normal distribution function Φ.

B.3. Tail dependence coefficient

The tail dependence coefficient is a measure of the dependence between random variables in the tails
of their joint distribution. It is divided into the upper tail dependence coefficient and the lower tail
dependence coefficient, which describe the dependence of random variables in the upper and lower
tails of their joint distribution, respectively. Based on this concept, the notion of multivariate upper and
lower tail dependence coefficients is introduced.

Definition B.6. For a random vector X = (X1, . . ., Xn), let S be a randomly chosen subset of {1, . . ., n}
with |S | = k, and let S̄ = {1, . . ., n} \S. The multivariate upper tail dependence coefficient is defined as:

_
S |S̄
U = lim

u→1−
P
©­«
⋂
i∈S

{Fi (Xi) > u}
����⋂

j∈S̄

{Fj (Xj) > u}ª®¬ .
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Table B1. Values of some systemic risk measures of the three cryptocurrencies (p1 = p2 = p3 = 0.975).
VaR-based BTC ETH XMR

VaR 7.874 11.003 10.968
MCoVaR 23.078 38.473 34.230
ΔMCoVaR 15.205 27.470 23.262
ΔRMCoVaR 1.931 2.497 2.121
ΔmedMCoVaR 12.571 23.417 19.659
ΔR−medMCoVaR 1.196 1.555 1.349

ES-based BTC ETH XMR

ES 11.313 16.657 15.948
MCoES 27.880 49.701 42.822
ΔMCoES 16.567 33.044 26.873
ΔRMCoES 1.464 1.984 1.685
ΔmedMCoES 13.680 28.139 22.694
ΔR−medMCoES 0.963 1.305 1.127

MMME-based BTC ETH XMR

MMME 1.943 8.100 7.195
ΔMMME 1.907 7.913 7.025
ΔRMMME 52.467 42.147 41.358

The multivariate lower tail dependence coefficient is defined as:

_
S |S̄
L = lim

u→0+
P
©­«
⋂
i∈S

{Fi (Xi) ≤ u}
����⋂

j∈S̄

{Fj (Xj) ≤ u}ª®¬ .
B.4. Additional tables under different confidence levels

Tables B1 and B2 summarize the computed values of some systemic risk measures of the three CCs
under p1 = p2 = p3 = 0.975 and p1 = p2 = p3 = 0.99, respectively. It can be noted that the overall
trend of these risk measures in the two additional tables is similar to the one for p1 = p2 = p3 = 0.95.
Moreover, as pi (i = 1, 2, 3) increases, the risk measures generally show an upward trend. This indicates
that as the extremity of the conditional events increases, the value of co-risk measures also grows.

Table B2. Values of some systemic risk measures of the three cryptocurrencies (p1 = p2 = p3 = 0.99).
VaR-based BTC ETH XMR

VaR 10.908 15.723 15.222
MCoVaR 31.983 59.056 50.088
ΔMCoVaR 21.075 43.333 34.865
ΔRMCoVaR 1.932 2.756 2.290
ΔmedMCoVaR 18.217 38.570 30.770
ΔR−medMCoVaR 1.323 1.883 1.593

ES-based BTC ETH XMR

(Continued)
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Table B2. (Continued.)
VaR-based BTC ETH XMR

ES 14.618 22.333 20.862
MCoES 37.578 74.451 61.134
ΔMCoES 22.960 52.117 40.272
ΔRMCoES 1.571 2.334 1.930
ΔmedMCoES 19.829 46.355 35.523
ΔR−medMCoES 1.117 1.650 1.387

MMME-based BTC ETH XMR

MMME 1.619 10.394 8.464
ΔMMME 1.607 10.294 8.385
ΔRMMME 137.496 103.021 105.524
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