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Abstract
The objective of our paper is to provide an explanation for the lack of joint adoption by
farmers of cleaner technologies in banana production, specifically fallow period (FP) and
disease-free seedlings (DFS). Our hypothesis is that while these technologies are synergistic
from an agronomic and environmental perspective, and thus efficient from a social interest
perspective, they are substitutable rather than complementary from a farmer’s private
interest perspective. In other words, farmers receive lower returns from adopting both
technologies together than from adopting them in isolation. To test this hypothesis, we
present a unified empirical framework for assessing complementarity. We estimate a
structural model of complementarity that overcomes the unobservable heterogeneity bias
found in previous models using a database of 607 banana farmers in the French West
Indies. Our results support our hypothesis, showing a substitution effect between FP and
DFS rather than a complementarity effect. Moreover, we observe a contrasting profile of
adopting farmers: smallholders who are reluctant to change adopt FP, while more
specialized farmers who anticipate a pesticide ban adopt DFS. A public policy that
promotes joint adoption should compensate smallholders for the cost of the DFS
technology, while compensating more productive farmers for leaving their land fallow.

Keywords: Agroecology; clean technologies; complementarity; joint adoption

Introduction

Intensive banana farming practices and monoculture in the French West Indies have
resulted in parasitic pressure, reduced soil fertility, and increased soil and water pollution
due to pesticides. These issues pose risks to human health (Bocquene and Franco 2005;
Cabidoche et al. 2009). The social and political crisis that followed the pollution caused by
chlordecone, a banana pesticide, and its consequences on human health, including a
dramatic increase in the number of cancer cases in the French West Indies population,
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have prompted the public policy and local agricultural research community to develop less
polluting crop sanitation technologies.

In the late 1990s, disease-free seedling technology (DFS) for bananas was developed.
The seedlings are produced in vitro, making them free of pests, mainly nematodes. This
new technology is efficient if the plantation is preceded by a fallow period (FP) of
12 months as it reduces the population of pests for several years without using pesticides
(Chabrier and Quénehervé 2003). To maintain the duration of the FP cleaning effect, it is
recommended to use DFS technology in conjunction with it. This is because DFS
technology prevents rapid re-infestation of the soil.

Although the technologies can be used separately, from an agroecological perspective,
they are synergistic and should be jointly adopted by farmers (Bonin and Cattan 2006).
However, even though joint adoption can increase social welfare by reducing nematicide
spraying by 50% and increasing yields, its adoption by farmers remains low (Blazy et al.
2009; Chopin and Blazy 2013).

Sustainable agroecological systems are the result of complex interactions at the local
level between technologies and biological components of agroecosystems (Duru et al. 2015;
Meynard et al. 2018). These systems are based on a bundle of technologies and practices
that lead to emergent and synergistic sustainable properties (Altieri 2002). In this case,
joint adoption ensures soil sanitation through nematode destruction by first implementing
FP and then DFS to avoid exogenous re-infestation after FP. The joint adoption of
synergistic technologies provides better control of pest pressure, resulting in a significant
reduction in pesticide use and lower production costs.

The joint adoption of synergistic technologies can result in an additional gain, known as
a (economic) complementary effect, compared to the adoption of each technology in
isolation (Edmeades et al. 2008; Lambrecht et al. 2014). If such a complementary effect
exists, then even a “selfish” farmer who maximizes her/his own utility may have sufficient
incentives to jointly adopt socially efficient technologies that drastically reduce pesticide
use. Without this additional gain, or in the case of a substitution effect, the joint adoption
rate may be low even though the two agroecological technologies can have synergistic
effects from an agronomic and environmental perspective by reducing the use of
pesticides, thereby inducing a large benefit to society.

To confirm this hypothesis, it is necessary to test the existence of such a complementary
effect between agroecological technologies in banana production.

To test for complementarity, we use a framework developed by Athey and Schmutzler
(1995) and Athey and Stern (1998). We implement a production approach by testing for
complementarity using ordinary least squares regression to estimate a banana production
function. This production approach tests the contribution of different combinations of
technologies, along with observable characteristics, directly on the performance measure
(farm income). However, OLS regression may produce biased estimates (endogeneity bias)
due to the co-movement phenomenon in the adoption decision, which may be caused by
unobserved heterogeneity.

To account for the correlation between decisions, we have recourse to a second
approach, known as the adoption approach, which uses a bivariate probit. The correlation
coefficient between the errors indicates the presence or absence of a complementary effect
in joint adoption decisions. However, the bivariate probit model may also be inconsistent
when unobserved heterogeneity is present (Miravete and Pernias 2010). To address this
issue, we estimate a structural model using an original multinomial probit model that
separate the complementary effect and unobserved heterogeneity.

Our paper is related to the emerging literature on the joint adoption of agricultural
technologies. The standard approach to innovation adoption in agriculture used to focus
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on a single technology (Qaim and de Janvry 2003; Foltz and Chang 2002; Adesina and
Zinnah 1993; Feder and Umali 1993; Nowak 1992; Marra et al. 2003; Feleke and Zegeye
2006; Duflo et al. 2008; Brown et al. 2016; Takahashi et al. 2020; Beaman et al. 2021;
Gedikoglu et al. 2023).

However, some papers have also considered the case where the farmer can choose a set
or bundle of technologies (Caswell and Zilberman 1985; Rauniyar and Goode 1992;
Dorfman 1996; Fares 2014; DeLay et al. 2022). Several estimation models have been
proposed to analyze the complementarity between decisions to adopt different
technologies, such as multinomial logit and probit (Caswell and Zilberman 1985;
Dorfman 1996) and bivariate/multivariate probit (Kassie et al. 2013; DeLay et al. 2022).

We also highlight the estimation bias that arises when using the other approach to
complementarity, the production approach, which is more widely used in innovation
economics. For example, Mohnen and Röller (2005) and Kamutando and Tregenna (2024)
directly estimate the objective function and investigate whether R&D make-buy decisions
are complementary. Lockshin et al. (2008) investigate the complementarity of product,
process, and organizational innovations and their impact on labor productivity.
Ichniowski et al. (1997) examine the complementarity of various human resource
management practices.

The remaining sections are organized as follows. Section 2 presents the context of
agroecological crop sanitation technologies in banana production in the French West
Indies (Guadeloupe and Martinique). Section 3 discusses the theory of complementarity
and the empirical models of the two approaches to testing for complementarity
(production and adoption approaches). In Section 4, we provide some details on our
survey and the variables used in the empirical tests. Section 5 presents the econometric
results, followed by a discussion. The paper concludes with section 6.

Background

Banana production is a significant economic activity in Guadeloupe and Martinique,
accounting for approximately 20% of their export earnings and providing a major source
of local employment. However, the liberalization of banana markets since the 1990s has
had a negative impact on banana exports from these two small Caribbean islands, as their
competitiveness is generally lower compared to Central American production. The lack of
competitiveness in the French West Indies banana industry can be attributed to higher
labor costs, limited farm size, and frequent natural disasters such as hurricanes.
Additionally, the control of black weevils and nematodes, which are the main pests of
bananas, presents a major challenge for banana growers.

To manage these pests, farmers have increasingly relied on nematicides and insecticides
since the 1980s. To maintain their incomes, farmers have intensified their systems with
chemical inputs, mainly to manage pests like nematodes (Blazy et al. 2009). However,
pesticides are only efficient in the short term and are responsible for dramatic soil and
water pollution in both islands (Cabidoche et al. 2009). The social and political crisis
surrounding the pollution caused by chlordecone, a banana pesticide, and its impact on
human health, including a dramatic increase in the number of cancer cases in the
population of French West Indies, highlights the urgent need for public policy and local
academic research to find less polluting solutions to manage pest pressure.

To address these challenges, the local agricultural research community has developed
various agroecological crop sanitation technologies. One such innovation is the banana
disease-free seedling, which was introduced in the late 1990s. These seedlings are produced
in vitro and are therefore free of pests.
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However, it is important to note that this technology is only efficient from an
environmental or social point of view (reduction of pesticide use) if the DFS plantation is
preceded by a fallow period. Otherwise, the alternative to the fallow period is to treat the
soil with nematicides before planting DFS. This DFS-only strategy, i.e. without a previous
fallow, can be efficient for farmers who only consider their “private interest.” This can be
the case for farmers highly specialized in banana production, for whom the opportunity
cost of a 12-month fallow may be too high.

It is possible to reduce nematode populations for several years without using pesticides
by implementing a fallow period of 12 months (Chabrier and Quénehervé 2003). To
maintain the duration of the fallow period cleaning effect, it is highly recommended to use
DFS technology. This technology helps to avoid rapid re-infestation of the soil by
producing nematode-free seedling in vitro. Therefore, from an agroecological perspective,
it is recommended that farmers adopt both technologies in conjunction. However, despite
the potential benefits of reducing nematicide spraying by 50% and increasing yields, joint
adoption rates among farmers remain low (Blazy et al. 2009).

Testing for complementarity: theory and empirical models

The complementarity approach used in our paper traces back to a mathematical theory of
lattices and supermodularity functions (2.1). This theoretical framework allows us to make
predictions about the complementarity of technology adoption strategies selected by
farmers (2.2). We test these predictions using two empirical approaches to complemen-
tarity: the production approach and the adoption approach.

Supermodularity and complementarity
The complementarity approach is based on the theory of supermodularity (Topkis 1978,
1998). To define the notion of supermodularity, suppose that the banana production
technology depends on two agroecological crop sanitation technologies (s1 for FP and s2 for
DFS) and a vector of exogenous production factors (X). If sj are discrete choices, i.e.
sj 2 0; 1f g with j � 1; 2, the farmer can combine both technologies differently, leading to
four exclusive, and therefore not collinear, combinations of strategies: sj � 0

� �
if neither

technology is used; s1 � 1; s2 � 0
� �

if FP is used but DFS technology is not (FP-only);
s1 � 0; s2 � 1
� �

if, symmetrically, DFS is used but FP is not (DFS-only); and sj � 1
� �

if
both technologies are jointly used (FP&DFS).

When the banana farmer chooses the optimal strategy to maximize the objective
function s1; s2;X

� �
, the latter is supermodular if the following inequality holds

F 1; 1;X� � � F 0; 1;X� � ≥ F 1; 0;X� � � F 0; 0;X� �: (1)

This means that there will always be increasing differences from not adopting any
technology to adopting both technologies. That is, the presence of one technology s1 � 1

� �
increases the marginal return of the other technology s2 � 1

� �
, when exogenous variables

are fixed. In other words, when the objective function is supermodular in technologies this
implies that the latter are complementary and are jointly adopted1.

1Symmetrically, a function f is said to be submodular and innovations are substitutes if -f is
supermodular, i.e. if the inequality ≥ in equation (1) is replaced by ≤ .
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Empirical models of complementarity
To test for complementarity, we use the two approaches suggested by Athey and
Schmutzler (1995) and Athey and Stern (1998).

The production approach
The production approach tests for complementarity consists of regressing a performance
measure on dummy variables representing the adoption of different combinations of
agroecological crop sanitation technologies, along with observable farm and farmer
characteristics. Supporting evidence for complementarity (or substitutability) is obtained
when the coefficient on the joint adoption dummy variable is significant and positive (or
negative).

The production approach is implemented by assuming as before that an individual
farmer i has agroecological strategies, denoted sji. The impact on production efficiency of
agroecological crop sanitation technologies (FP and DFS) carried out in farms is captured
by the log Cobb-Douglas production function

f � log F K; L;T; S;X� �� � � αki � βli � γti � θsji � ζXi � εi; (2)

where K; L;T are capital, labor and land inputs respectively and S � s1; s2
� �

. X is the
vector of exogenous variables and εi the error terms (unobserved characteristics) are i.i.d.
with zero mean and Var εi� � � σ2. θ is the vector of coefficients capturing the marginal

effect of the choice of strategy sji.
To test for complementarity, we estimate the production function with OLS on

mutually exclusive, and therefore not collinear, combinations of agroecological
technologies

f k; l; t; S;X� � �αki � βli � γti � 1 � s1i
� �

1 � s2i
� �

θ00 � s1i 1 � s2i
� �

θ10

� 1 � s1i
� �

s2i θ01 � s1i s
2
i θ11 � ζXi � εi (3)

where alternative combinations are included as explanatory variables through dummies:
θ11 is the productivity coefficient for joint adoption FP and DFS, θ01 the coefficient for
FP-only, θ10 for DFS-only and θ00 for adopting neither technology. The production
function is supermodular and s1 and s2 are complements only if θ11 � θ00 > θ10 � θ01.

We can simplify somewhat equation (3)

f :� � � αki � βli � γti � θ0 � s1i θ
F � s2i θ

DFS � s12i θ� ζXi � εi; (4)

where θ0 � θ00 θ
F � θ01 � θ00; θ

DFS � θ10 � θ00; θ � θ11 � θ00� � � θ01 � θ10� �. That is, θ0
is the intercept (neither adoption), θF captures the non-exclusive and therefore not
collinear partial returns of FP-only (FP adopted in isolation), θDFS captures the partial
returns of DFS-only (DFS adopted in isolation) and θ captures the returns of joint
adoption of both agroecological technologies (FP and DFS). The latter is exactly the
complementarity parameter we want to test. Thus, the condition for the above production
function to be supermodular and then generate a complementary effect can be simplified
as

θ � θ11 � θ00� � � θ01 � θ10� � ≥ 0: (5)

However, the estimates of the linear model (4) may be biased if the classical method of
ordinary least squares (OLS) is applied. Indeed, Athey and Stern (1998) explained that the
existence of unobserved heterogeneity (among farmers) may have an impact on the joint
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adoption of innovations. If the adoption of FP and DFS technologies is correlated with
unobserved elements in the error term (εi), then the OLS regression may also show
complementary effect while in reality there is no complementarity or vice versa. To
overcome this problem, they suggest the development of an adoption approach to take into
account correlations in joint adoption decisions.

The adoption approach
The adoption approach suggests that the co-movement phenomenon of two technologies
is the first indication of a complementary effect. This means that if the adoption of one
technology is likely to increase the marginal return of another innovation, then the joint
adoption of technologies can be efficient.

Co-movement can be measured by the positive correlation between pairwise
technologies using a Pearson correlation coefficient. One shortcoming of using a
Pearson correlation is that it can only provide preliminary results. This is because in the
Pearson correlation there is no control for heterogeneity in farm and farmer
characteristics, which is a source of noise in the adoption process.

Arora and Gambardella (1990) and Arora (1996) were the first to show that
complementarity can be tested based on a positive correlation between error terms using a
bivariate probit model. The bivariate probit model predicts the adoption of non-exclusive,
and therefore not collinear, agroecological technologies (FP and DFS) as a function of
exogenous control variables Xi� � but explicitly account for the correlation between them2.

Formally, suppose that farmer i chooses an innovation sji that maximizes her/his

(latent) utilityUj	
i � βjXi � ε

j
i, where the vector of parameters βj are unknown and are the

object of inference. Some of these characteristics are observed by the researcher and some
are not. The (latent) utility of adopting the non-exclusive technologies Fallow s1i

� �
and DFS

s2i
� �

can then be written as

U1	
i � β1Xi � ε1i ; s1i

� 1 if U1	
i > 0;

� 0 otherwise;

�

U2	
i � β2Xi � ε2i ; s2i

� 1 if U2	
i > 0;

� 0 otherwise;

�

where the error terms ε1i and ε2i are independent of Xi but not necessarily independent of
each other. That is, E ε1i

� � � E ε2i
� � � 0, Var ε1i

� � � Var ε2i
� � � 1, Corr ε1i ; ε

2
i

� � � ρ. If the
estimation with the bivariate probit shows a positive (negative) correlation coefficient, we
can conclude in favor of evidence of complementarity (substitutability).

However, it is important to note that a positive correlation does not necessarily indicate
complementarity. In fact, according to the adoption approach, a supermodular function
only implies a positive correlation between strategies if the strategic choices are continuous
(Arora 1996). For discrete choices, this approach leads to an inconsistent model3.

2Athey & Stern (1998) show that this reduced form or CORR approach can be easily derived from
supermodularity. Suppose that f s1; s2; X

� �
is supermodular in s1; s2 and X. Then S	 X� � �

s1
	
X� �; s2	 X� �� �

, the optimal choice of activities is monotonic and non-decreasing in X. This implies
that for cross sectional data, s1 X� � and s2 X� � will be positively correlated.

3To show this, let us define the subsets Si 1; 0� �, Si 0; 1� � Si 1; 1� �, and Si 0; 0� � of the error combination
ε1

	
i ; ε2

	
i

� �
leading to the adoption of FP only, DFS only, both, and no innovations respectively. Drawing the

associated four regions depicts overlapping for the subsets of Si 1; 1� � and Si 0; 0� �. This overlapping
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The bivariate model fails to provide consistent results because it relies only on the
correlation between the error terms to index complementarity. As previously mentioned,
this may result in unobserved factors in the error term that are correlated with the
adoption of non-exclusive, and therefore not collinear, strategies.

This can lead to either the acceptance of the complementarity hypothesis when there is
no actual complementarity, or the rejection of the complementarity hypothesis when the
technologies are, in fact, complementary (Athey and Stern 1998). A consistent model
involves estimating two parameters to separate the complementarity effect from
unobserved heterogeneity. This requires estimating a structural model.

The structural model: a Multinomial Probit approach
To solve the inconsistency problem, we first need to depart from the reduced form
approach of the bivariate probit model, which considers only two strategies (FP and DFS).
We then consider four possible exclusive strategies for the farmer: adopt neither
technology, adopt FP only, adopt DFS-only, and adopt jointly both technologies. The
utility of the farmer i choosing among the j alternatives j � 1; 2; 3; 4

� �
is

Uj
i � βjXi � ε

j
i: (6)

The vector of random terms εji � ε0i ; ε
1
i ; ε

2
i ; ε

3
i

� �0 represents the unobserved returns of the
decisions. It is assumed to be multivariate normal, distributed as identically and
independently across the n farmers, with zero mean and a covariance matrixP � σ

j
i > 0; 8j (positive definite) and σ11 � 1:

The utility function Uj
i in (6) is specified differently for the joint adoption alternative

U3	
i � U1	

i � U2	
i � δ; (7)

where δ captures the effect of complementarity between agroecological technologies. Using
(6), this becomes

U3	
i � β1	 � β2

	� �
Xi � ε1

	
i � ε2

	
i

� �� δ (8)

with the assumption that the utility of joint adoption is greater than that obtained with all
other strategies, i.e. U3	

i > U0	
i , U3	

i > U1	
i and U3	

i > U2	
i . Let us define ζj

	 � βj	Xi,
where ζj

	 � ζ1
	
; ζ2

	� �0 represents the observable characteristics along with ε1i ; ε
2
i

� �
as

unobserved returns. Identification of the error terms would result in variances σ2	
1 and σ2	

2 ,
and a correlation parameter ρ.

Since we also estimate a parameter δ that captures the complementary effect, a positive
value of ρ will only capture unobserved heterogeneity among farmers in the joint adoption
of technologies4. A positive (negative) correlation may imply unobserved gains from
adopting technologies jointly (in isolation).

This separation generates a consistent empirical model. To show this, let us rewrite the
conditions U3	

i > U0	
i , U3	

i > U1	
i and U3	

i > U2	
i so that we obtain the following

constraints on the error terms

intermingles the choices of adopting both and none of the technologies, which explains the inconsistency
problem of the bivariate probit model (Miravette & Pernias, 2010).

4In contrast, in a bivariate model where only a correlation parameter is estimated, a positive value of ρ
would indicate that farmer who gets a higher utility from adopting FP will also receive higher utility from
adopting DFS, even if there is no complementarity between the two technologies.
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ε1
	
i > � ζ1

	 � δ;
ε2

	
i > � ζ2

	 � δ;
ε1

	
i � ε2

	
i > � ζ1

	 � ζ2
	 � δ:

(9)

Using the system of constraints (9), we define the subset S3 of the combination of errors
ε1i ; ε

2
i

� �
, leading to the joint adoption strategy j � 3

� �
S3 � ε1

	
i ; ε2

	
i

� �
: ε1

	
i > � ζ1

	 � δ; ε2
	
i > � ζ2

	 � δ; ε1
	
i � ε2

	
i > � ζ1

	 � ζ2
	 � δ

� �
:

Similarly, we define the subsets S1; S2; S0 of error combinations that lead to the adoption of
the FP-only profile j � 1

� �
, the DFS-only profile j � 2

� �
, or no-innovation profile j � 0

� �
,

respectively. This produces a consistent model since we can easily show graphically that
there is no overlap between these different sets in either supermodularity �δ > 0� or
submodularity �δ < 0� configurations (see Fares 2014).

Survey and test variables

The data was collected from a survey conducted on a large network of 439 farms in
Martinique, representing 64% of the total population of banana producers in 2018, and 168
farms in Guadeloupe, representing 80% of the population. The survey was carried out by a
team of seven surveyors hired specifically for the needs of the study. Collective training
sessions were organized to ensure homogeneous farmer interviews.

For each face-to-face interview, the researchers spent an average of one hour and ten
minutes collecting data on three main points of the questionnaire: (i) the socio-demographic
characteristics and preferences of the farmers, (ii) the farm structure, and (iii) the banana
crop management system and production output. The sample of farms provides a
comprehensive representation of the agronomic and economic situation of the farms in both
islands, as well as the farmers’ choice of technology and the types of crops produced. The
sample was also designed to account for variability in farm size and spatial location.

Depending on our empirical model, we use one of two types of dependent variables. To
test the production approach with a regression model using OLS, we use farmer income
(Income) as the dependent variable. To test the adoption approach with discrete choice
models (bivariate probit, multinomial probit and logit), we use the different adoption
strategies as dependent variables: FP only strategy (Adopt_Fallow), disease-free seedling
only strategy (Adopt_DFS), joint adoption strategy (Adopt_both). The no-adoption
strategy (Adopt_none) is considered as the reference variable.

The adoption of synergistic agroecological innovations is not common among farmers
in our database, with only 25.1% reporting its use. In comparison, 37.1% of farmers
reported using fallow alone, and 32.6% reported using DFS alone. Each adoption strategy
has a different impact on farmers’ income (Blazy et al. 2010).

Information on agronomic practices and crop sanitation technologies was provided
directly by the farmers, while other performance parameters, such as the level of
production and the inputs used, were calculated from the information collected in the crop
management system survey and approved by the farmer. This makes it possible to calculate
the total income of the farm, i.e. the total annual sales in euros generated by the farm.

Farm-specific characteristics are usually used in the literature as explanatory variables
of the performance and adoption process (Feder and Umali 1993; Edwards-Jones 2006). In
the present study, we consider the level of specialization in banana production and the
percentage of mechanizable land (BLand, MLand, MBLand) as factors that may promote
technology adoption.
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Other important farm characteristics may also facilitate the technology adoption
process, such as flexibility in labor management (Fullfarm, IncomDecrease, Labor,
HouseSize) (Ayaz and Mughal 2024), access to credit (CAccess) (Batz et al. 1999; Dorfman
1996; Caffey and Kazmierczak 1994; Gomez and Vargas 2009), especially in Guadeloupe
and Martinique (Blazy et al. 2009; Bonin and Cattan 2006).

In addition to farm characteristics, human capital variables such as the farmer’s high
school education (High_S) (Bartel and Lichtenberg 1987; Foster and Rosenzweig 1995) and
her/his access to information and learning about new technologies (Crotation_tested;
Crotation_info; Info_intern; Info_research; Info_others and Implication) may also have an
impact on the adoption process (Conley and Udry 2010, Duflo et al. 2008; Lichtenberg &
Lleras-Muney 2006; Brown et al. 2016; Takahashi et al. 2020; Beaman et al. 2021;
Gedikoglu et al. 2023).

Farmers’ preferences about innovation and the future of the banana industry can
change their perceptions of technology benefits (Diederen et al. 2003). However, after
experiencing adverse economic and climatic conditions over the past decade, farmers’
perceptions of change are ambiguous. Some farmers may be reluctant to change their
production system and adopt innovative technologies during hard times or just after a
crisis, while others may seize the opportunity to drastically change their previous system,
especially after hurricane episodes.

Since risk aversion alone cannot explain farmers’ attitudes toward risk (Hellerstein et al.
2013), we try to capture the perception of the risk of change with a simple dummy variable
indicating whether the farmer is willing to adopt an innovation, regardless of the type of
innovation (Aversion_chg).

Farmers’ expectations about the future may also drive the adoption process (Nerlove
and Bessler 2000). We include dummies to capture different expectations about the future
of public policy on banana subsidies (Future_subsidies), market price (Future_price), and
pesticide bans (Future_Pest).

Finally, because environmental concerns and the presence of extension services may be
important factors in explaining adoption (Orr and Ritchie 2004; Bandiera and Rasul 2006),
we include a regional dummy variable indicating whether production takes place in
Guadeloupe (Gwada), where environmental concerns are higher than in Martinique but
extension services are less developed than on the island of Martinique.

The test variables and their descriptive statistics are presented in Table 1.

Results and discussion

Our methodology to test for complementarity between FP and DFS strategies consists of
estimating the production approach and adoption approach models. The results of our
empirical models estimation are presented in Table 2.

First, in the production approach, the estimates of the OLS model suggest a
complementary effect, as the coefficient of the joint adoption of agroecological crop
sanitation technologies increases farm income (Adopt_both=1.046*). In contrast, adopting
only fallow (Adopt_Fallow) or only DFS (Adopt_DFS) has no significant effect on total
farm income. When we perform the complementarity test, where the null hypothesis is the
binding inequality (5), we find evidence of a complementarity effect since the null
hypothesis is not rejected at the 1% level (LR Test =59.13***).

In addition to the technology adoption decision, other factors have an impact on total
farm income. First, the different land variables have a positive impact on total income.
Specialization in banana production seems to have a positive effect, as a higher percentage
of land devoted to banana (Bland) significantly increases income, as does a higher
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Table 1. Summary statistics

Variable Definition Mean
Std.
Dev. Min Max

Income Farm total income (log) 2.115 .154 0.583 2.317

Adopt_Fallow =1 if fallow is adopted alone 0.371 0.489 0 1

Adopt_DFS =1 if DFS is adopted alone 0.326 0.473 0 1

Adopt_both =1 if agroecological technologies are jointly
adopted

0.251 0.442 0 1

Adopt_none =1 if no agroecological technology is adopted
(reference)

0.052 0.499 0 1

Gwada =1 if production is located in Guadeloupe island 0.277 0.448 0 1

Labor Log number of full-time workers in the farm/ha 0.061 0.216 0 1.386

Fullfarm =1 if full-time farming 0.898 0.303 0 1

MLand % of mechanizable agricultural land (log) 4.116 0.695 0 100

BLand % of land dedicated to Banana production (log) 4.307 0.372 0 100

MBLand % of mechanizable land dedicated to Banana
production (log)

4.318 0.483 0 100

HouseSize Number of family members depending on the
farming activity

4.348 7.619 0 160

High_S =1 if the farmer has at least a high school
formation

0.208 0.406 0 1

Info_research =1 if the farmer information comes from
research institutions

0.165 0.371 0 1

Info_intern =1 if the farmer information comes from internet 0.163 0.37 0 1

Info_others =1 if farmer information comes from other
farmers

0.551 0.498 0 1

CrAccess =1 if the farmer has access to credit 0.484 0.5 0 1

Crotation_tested = 1 if crop rotation has been adopted 0.092 0.29 0 1

Crotation_info =1 if the farmer has information on crop
rotation

0.703 0.457 0 1

Obj_Ext =1 if the main farmer’s objective is farm growth 0.222 0.416 0 1

IncomDecrease = 1 if the farmer can accept a temporary
decrease of income

0.292 0.455 0 1

Future_Sub = 1 if the farmer expects that subsidies will be
eco-conditioned

0.194 0.396 0 1

Future_Pest = 1 if the farmer expects pesticide ban 0.496 0.500 0 1

Future_Price =1 if the farmer expects a banana price increase 0.201 .401 0 1

(Continued)
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percentage of mechanizable land. The number of full-time workers per hectare (Labor) has
a negative effect on income, as expected (Ayaz and Mughal 2024).

Other variables, such as the household size (Housesize) or having completed high
school (high_S), have no significant effect. The organizational and institutional
environment of the farmer also does not seem to have a significant effect, since having
access to credit (CrAccess) does not significantly increase or decrease income (Batz et al.
2009). On the other hand, the farmer behavior variable that captures the perception of
aversion to change (Aversion_chg) has a negative effect on total farm income (−0.669**
(−1.95)) (Hellerstein et al. 2003). Finally, the model shows that producing on the island of
Guadeloupe (Gwada) has a negative effect on farm income (−1.259*** (−3.31)), which
may be partly due to the difficulty in accessing extension services.

Second, knowing that the main shortcoming of the production approach estimates is
the unobserved heterogeneity bias, we use the adoption approach to circumvent this
problem. The important finding in the bivariate probit estimates is the significant positive
correlation between adoption decisions, as indicated by the positive and significant
correlation coefficient ρ � 0:635			� �. This suggests that FP and DFS are likely to occur in
combination, which is a first indication of complementarity.

However, the analysis of the drivers of adoption suggests a substitution effect, since the
“profile” of farmers adopting FP or DFS strategy is different. DFS adopters seem to be
more specialized farmers, i.e. those with a higher percentage of mechanizable banana land
(MBLand,MLand). They also do not seem to be averse to change (Aversion_chg), although
access to credit improves DFS adoption (0.814*(2.19)) (Gomez and Vargas 2009).

In contrast, FP smallholders with a lower percentage of mechanizable banana land
(MBLand, MLand) seem to be more averse to change. Access to credit (0.395*(1.56)) and
the expectation of higher future price (0.169*(1.10)) improve FP adoption. Even for
common drivers of adoption, such as access to agronomic information and extension
services, the source of information and advice is not the same for the two types of adopters.

For FP adopters, information comes mainly from “peers” in the farmer organization
(Implication) or from research institutes (Info-research and Crotation-info). In contrast,
DFS adopters seem to have access to a larger information network, as they receive
information and advice from research institutes (0.673***(3.28) (Gedikoglu et al. 2023),
but also from other stakeholders (Info_others) (0.596***(2.97))) (Duflo et al. 2008; Conley
and Udry 2010) and from the Internet (Info_Intern) (0.361*(1.82)).

This implies that the bivariate probit estimates give inconsistent results. Indeed, the
correlation coefficient suggests a positive co-movement between FP and DFS decisions and

Table 1. (Continued )

Variable Definition Mean
Std.
Dev. Min Max

Implication =1 if the farmer is member of an agricultural
professional group

0.366 0.482 0 1

Aversion_chg =1 if the farmer has aversion to change the
technology in place

0.239 0.427 0 1

Commercial
contacts

=1 if the farmer has at least one commercial
contacts

0.239 0.427 0 1

Number of observations 567
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Table 2. OLS, bivariate probit, and multinomial probit estimates

Bivariate Probit Multinomial Probit

Variables OLS Adopt_Fallow Adopt_DFS Adopt_Both Adopt_Fallow Adopt_DFS

Coef. (t -stat) Coef. (Z-stat) Coef. (Z-stat) Coef. (Z-stat) Coef. (Z-stat) Coef. (Z-stat)

Gwada –1.259*** (–3.31) 1.001*** (7.09) 1.338*** (8.26) 0.305* (1.84) 0.495** (2.36)

Labor –0.706*** (–2.49) 0.148 (1.26) 0.052 (0.38) 0.112 (0.87) –0.263 (–1.48)

MLand 0.025*** (3.42) 0.002 (0.71) 0.004 (1.18) 0.016 (0.43) 0.036 (0.91)

Bland 0.018*** (2.67) 0.008** (2.36) 0.051*** (7.56) –0.027*** (–2.76) 0.012*** (3.11)

MBLand 0.019*** (2.56) 0.005 (1.59) 0.069** (1.97) 0.04 (0.12) 0.001 (0.653)

HouseSize –0.001 (–0.01) 0.17 (1.34) 0.272 (1.26) 0.204 (0.85) 0.019 (0.38)

High_S –0.187 (–0.46) 0.202 (1.53) 0.112 (0.77) 0.0133 (0.073) 0.003 (0.07)

CrAccess 0.103 (0.32) 0.395* (1.56) 0.814** (2.19) 0.450 (0.643) –0.060 (0.214)

Implication –0.162 (–0.71) 0.056* (1.82) 0.195 (1.33) –0.109 (–0.71) 0.135 (0.72)

Info_intern –0.478 (–1.04) 0.316 (1.81) 0.361* (1.82) 0.053 (0.26) 0.149 (0.61)

Info_Research 0.02 (0.05) 0.533*** (2.85) 0.673*** (3.28) –0.131 (–0.58) 0.195 (0.76)

Info_others –0.36 (–1.22) 0.146 (1.18) 0.596*** (2.97) 0.048 (0.35) 0.05 (0.30)

Crotation_tested 0.252 (0.48) 0.247 (1.20) 0.245 (1.04) 0.189 (0.74) 0.011 (0.40)

Crotation_info –0.668** (–1.94) 0.281* (1.93) 0.146 (0.86) 0.115** (0.71) 0.107 (0.48)

Aversion_chg –0.669** (–1.95) –0.392* (–2.58) 0.04 (1.16) –0.173* (–1.96) –0.006 (–0.31)

Obj_Ext 0.367 (1.02) –0.117 (–0.77) –0.125 (–0.75) –0.03 (–0.54) –0.105 (0.212)

IncomDecrease 0.296 (0.93) 0.154 (1.17) 0.07 (0.614) 0.153 (1.01) 0.097 (0.51)

(Continued)
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Table 2. (Continued )

Bivariate Probit Multinomial Probit

Variables OLS Adopt_Fallow Adopt_DFS Adopt_Both Adopt_Fallow Adopt_DFS

Future_Price –0.006 (0.02) 0.169** (1.10) 0.118 (0.69) 0.096 (0.59) 0.078 (0.04)

Future_Sub –0.289 (–0.76) 0.108 (0.73) 2.658 (1.47) –0.029 (–0.18) –0.076 (–0.32)

Future_Pest –0.402 (–1.39) 0.128 (1.08) 0.322 (2.32) 0.059 (0.43) 0.303* (1.73)

Adopt_both 1.046* (1.67)

Adopt_Fallow –0.654 (–1.42)

Adopt_DFS 0.442 (0.75)

Intercept 6.181*** (8.70) –2.02*** (–4.39) –3.13*** (–5.74) �� � : –0.576* (–1.486) –1.492*** (–2.77) –2.870*** (4.12)

R2 0.089 � FP;DFS� � 0.635*** ρ(both,FP) –0.015 (–0.17)

F (22, 584) 3.12*** ρ(both,DFP) –0.409*** (–3.97)

LR Test 59.13*** ρ(FP,DFS) 0.184** (1.97)

*p< 0.10; ** p< 0.05; *** p< 0.01 (OLS: Heteroscedasticity-robust standard errors).
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thus a complementary effect, while the drivers of adoption suggest substitution effect
between agroecological technologies since the “profile” of farmers adopting both
technologies is not the same. This inconsistent result in our estimates is not really
surprising because, as noted in our discussion of the empirical models, the bivariate probit
can be an inconsistent model in the presence of unobserved heterogeneity.

Estimating a structural model of complementarity using a multinomial probit can
overcome the bias of unobserved heterogeneity (OLS) and the inconsistent estimates that it
can generate (bivariate probit). While OLS and bivariate probit models can only estimate
one parameter, a well-designed multinomial probit can actually separate complementarity
from unobserved heterogeneity by estimating two different parameters: (i) as in the case of
the bivariate probit case, a parameter ρ (the correlation coefficient) can capture the
unobserved heterogeneity among farmers; and (ii) as in the case of the OLS regression, a
constant θ associated with the decision to jointly adopt FP and DFS can capture the
complementary effect.

First, the separation ensures that the correlation coefficient between the two decisions
(parameter ρ) captures only unobserved heterogeneity. Indeed since the parameter
ρFP;DFS � 0:184		
� �

is significant and positive in the multinomial probit estimation, we
can infer that the co-movement phenomenon of the two technologies, observed in the
bivariate probit correlation coefficient estimation ρ � 0:635			� �, is caused by unobserved
heterogeneity and not by complementary effect. Second, the complementary parameter in
the multinomial probit estimation is significant and negative θ � �0:576	� �, suggesting a
substitution effect rather than a complementary effect between agroecological crop
sanitation technologies.

This substitution effect is consistent with the contrasting profiles of farmers adopting
DFS-only and FP only. A specialized banana farmer will be willing to adopt only DFS,
especially if he expects a regulatory change (pesticide ban: Future_Pest), while a less
specialized smallholder farmer with an aversion to change will adopt FP only.

It is worth noting that the expectation of a stronger regulation of pesticide use
(Future_Pest) does not lead the specialized farmers to choose the more socially efficient
strategy (Diederen et al. 2003), i.e. the joint adoption of FP and DFS, which reduces
pesticide use the most. This suggests that the threat of a pesticide ban is not credible
enough to align the “private interest” of the more specialized farmers with the “social
interest.” This can be partly explained by the fact that the implementation of a FP period of
12 months on different plots of the farm, in addition to the adoption of DFS, may generate
too high opportunity costs for farmers specialized in banana production. The fact that
farmers that adopt only DFS or only FP explains why there is no more joint adoption of
crop sanitation technologies.

The contrast between the two profiles is even more pronounced in the multinomial
results than in the bivariate results. For example, where previously the percentage of land
devoted to banana production increased the probability of FP adoption, its impact is now
negative, while it still increases the probability of DFS adoption. This reinforces the
evidence that FP adopters are smallholders with diversified farming systems (Blazy 2011).

In addition, the common factors that increased the probability of joint adoption of
agroecological technologies in the bivariate probit estimates (Credit-access, info-research) are
no longer significant in the multinomial estimates (Brown et al. 2016; takahashi et al. 2020;
Beaman et al. 2021). Therefore, our robust substitution effect result can explain why the
farmers adopt agroecological crop sanitation technologies in isolation rather than together
even though they are synergistic from an agronomic and environmental point of view.

This result clearly suggests that without the additional gain generated by a
complementary effect, the farmer’s “private interest” cannot be aligned with the “social
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interest,” and therefore the bundle of technologies that reduces pesticide use the most
cannot be adopted by farmers.

Conclusion
Agroecological sanitation systems are based on a coherent set of innovative technologies
that generate environmental and agronomic synergies (Altieri 2002). To see whether these
synergies also generate an (economic) complementary effect, whereby the joint adoption of
agroecological technologies generates a higher return than their adoption in isolation, we
need to test for complementarity.

Following the empirical framework developed by Athey and Schmutzler (1995) and
Athey and Stern (1998), we test for complementarity in two ways. First, we use the
production approach to estimate the contribution of different combinations of innovations
to farm income using linear regression with OLS method. Second, we use the adoption
approach to correct for unobserved heterogeneity bias with a structural model of
complementarity..

Using a database of 607 banana producers in the French West Indies, our
econometric estimates of the adoption of two agroecological technologies (fallow period
and disease-free seedlings) provide robust results. Although the two agroecological
technologies appear to be complementary in the production approach, after separating
complementarity from unobserved heterogeneity, we find evidence of a substitution
effect between the two agroecological technologies. That is, the complementarity
parameter shows a negative and significant effect, while the positive co-movement
phenomenon (correlation) of both agroecological technologies seems to be caused by
unobserved heterogeneity.

The analysis of the adoption drivers of both technologies confirms this result, as the
profile of farmers is contrasted. Farmers adopting only FP are smallholders with an
aversion to change, while more specialized farmers in banana production are willing to
adopt only DFS technology, especially if they expect a regulatory change (pesticide
ban). In addition, the two technologies do not share significant common adoption
drivers.

Therefore, this robust substitution effect may explain why the joint adoption rate of FP
and DFS is so low in the French West Indies, despite the agronomic and environmental
benefits of using both technologies together. This result clearly suggests that without the
additional gain generated by a complementary effect, the farmer’s “private interest” cannot
be aligned with the “social interest.”

Because of their agronomic and environmental synergies, which help to drastically
reduce the use of pesticides, a socially efficient public policy can aim to promote the joint
adoption of FP and DFS agroecological technologies. This policy can be implemented by
designing a menu of agri-environmental contracts so that: (i) small farmers adopting only
FP can be compensated for the cost of adopting DFS technology; (ii) more productive
farmers adopting only DFS technology can be subsidized to leave part of their
mechanizable land fallow for banana production.

In our research agenda, the next step is to empirically analyze the incentives provided
by such a menu of contracts using a choice experiment approach (DCE), which would
allow for a complementary effect between less polluting farming technologies; and
therefore, for a much greater benefit to society.

A possible limitation of our study is the lack of comparison of the FP&DFS bundle with
another bundle of agroecological technologies that may have a higher rate of joint
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adoption. Comparing the complementary/substitutable effect that may exist in these two
bundles may be another area of research for our study.
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