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Abstract

In this paper we propose an easy-to-implement algorithm for solving general nonlinear
optimization problems with nonlinear equality constraints. A nonmonotonic trust region
strategy is suggested which does not require the merit function to reduce its value in every
iteration. In order to deal with large problems, a reduced Hessian is used to replace a full
Hessian matrix. To avoid solving quadratic trust region subproblems exactly which usually
takes substantial computation, we only require an approximate solution which requires less
computation. The calculation of correction steps, necessary from a theoretical view point
to overcome the Maratos effect but which often brings in negative results in practice, is
avoided in most cases by setting a criterion to judge its necessity. Global convergence and
a local superlinear rate are then proved. This algorithm has a good performance.

1. Introduction

In this paper, we consider the optimization problem with nonlinear equality constraints

s.t. c(x) = 0, (1)

where f (x) : 3?" -» dV and c(x) : 9t" -> 9?m,m < n. Recently, there have been
several articles proposing reduced Hessian methods to solve this problem. Coleman
and Conn [7] and Nocedal and Overton [16] proposed separately similar quasi-Newton
methods using an approximate reduced Hessian. For example, in the latter paper, the
basic idea can be summarized as follows. Letg(x) = V/(JC) e 3in,A(x) = Vc(x) =
[Vd(;t) , . . . , Vcm(x)] € 9t"xm. Assuming A(x) has full column rank, then a QR
decomposition can be performed, that is,

A(x) = (Y(x) Z(x)) (R(^Y (2)
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where [Y, Z] is an orthogonal matrix, R(x) is a nonsingular upper triangular matrix
of order m and Z(x) e Wxl, where t = n — m. The column vectors of Z(x) form an
orthonormal basis for the null space N(A(x)T), that is,

A(x)TZ(.x) = 0. (3)

The columns of Y(x) e 3l"xm form an orthonormal basis of the range space R(A(x))
of A(x). Clearly

Y(x)TZ(x) = 0, Y(x)TY(x) = lm, Z(x)TZ(x) = I, and

Y(x)Y(x)T + Z(x)Z(x)T = /„. (4)

Let

L(x,X)=f(x)-XTc(x) (5)

be the Lagrangian function of problem (1), where X is the solution vector of the least
squares problem

mm\\A(x)X-g(x)\\.

From (2), we have

X(x) = (A(x)TA(x))-lA(x)TVf(x) = R(x)-lY(x)TVf(x). (6)

Therefore X can be obtained by solving the upper triangular equation

R(x)X(x) = Y(x)Tg(x). (7)

Let

2 ) (8)

be the Hessian of the function L(x, X) with respect to x. The main difference be-
tween the Nocedal-Overton method or the Coleman-Conn method and the usual
quasi-Newton methods is that in the former one the updating matrix B e 9J'X' is an
approximation of the square matrix Z(x)TW(x, X)Z(x) of order /, whereas in the
latter ones the updating matrix approximates W(x, X).

For simplicity, we denote / (xk) by fk, V/ (xk) by gk and V ^ / (xk) by V2/*, etc.
In each iteration, the Nocedal-Overton method solves the equations

RTkPyk=~Ck and (9)

BkP\ = -ZT
kgk (10)
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to obtain p\ and pz
k, respectively. Let

Pk = Zkp\ + Ykpl (11)

and

Xk+1:=Xk+pk. (12)

The whole computation will be terminated when ck — 0 and Z[gk = 0. At such a
point, the Karush-Kuhn-Tucker condition is satisfied. The matrix Bk is updated using
the BFGS or DFP formulas after each iteration.

Nocedal and Overton proved the local convergence and two-step superlinear con-
vergence rate for their method in [16]. Coleman and Conn also gave results of the
local convergence and convergence rate in their paper [7].

In order to ensure the global convergence of this method, Zhang, Zhu and Hou
[26,27], as well as Byrd and Nocedal [2] considered adding a one-dimensional line
search to this method. They all examined the global convergence and local two-step
Q-superlinear convergence rate of this method when Fletcher's differentiable penalty
function, the U exact penalty function, or the penalty function of Boggs-Tolle (see [1])
are used to make one-dimensional searches. The results were positive. Furthermore,
Zhang and Zhu considered the convergence of a modified method which uses the trust
region method along with the l\ penalty function as a merit function in [24].

There have been several publications on trust region methods for solving nonlinear
optimization problems in recent years. Examples are papers by Celis, Dennis and
Tapia [6], by Powell and Yuan [19] and by Byrd, Schnable and Shultz [4,5]. These
articles all considered the full Hessian. However in [6] and [19], an approximate
Hessian Bk was used, whereas the true Hessian Wk was employed in [4] and [5].

Most trust region methods request a monotonic decreasing of the merit functions,
that is, after each iteration the value of the merit function adopted in the method must
be reduced. For some problems whose objective functions or constraint functions
have sharp curves on their contour maps (such as the Rosenbrock function which has
banana-shape contours), this monotonic requirement may make each step move only
a very short distance, causing a huge number of iterations to be necessary in order
to reach their solutions. Grippo, Lampariello and Lucidi proposed a nonmonotonic
one-dimensional search technique for unconstrained optimization and got satisfactory
results (see [14]). This nonmonotonic technique has been extended from the one-
dimensional search to trust region type methods for solving unconstrained optimization
and nonlinear least squares problems as well as nonlinear equations (see [9,12,22,
23]). It is interesting to see if the technique can be extended to solve constrained
optimization problems and what improvement can be achieved in the constrained
case.
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In this paper we shall extend the nonmonotonic technique to trust region type
methods for constrained optimization problems. We are also going to improve the
algorithm proposed in [24] and make it more effective in practical implementation.
For the trust region subproblem in [24], an exact solution is required which may be
computationally expensive. Here we instead use the double dogleg method suggested
by [10] to obtain an approximate solution. In order to overcome the Maratos effect
and ensure a superlinear convergence rate, the algorithm in [24] had added to it a
correction step in each iteration. By doing so, the theoretical problem was solved
but at the expense of lowering the efficiency of the computation. Hence we consider
some rules to reduce the usage of the correction steps and in the meantime keep the
superlinear convergence property. Other modifications have been suggested in this
article to save computational effort.

The paper is outlined as follows. In Section 2, we state the revised algorithm;
the global convergence of the algorithm is proved in Section 3; a local two-step
superlinear convergence rate is established in Section 4; finally in Section 5 we report
some numerical results.

Throughout this paper, we use || • || to represent the Euclid norm; vectors are column
vectors unless a transpose is used.

2. Algorithm

At each iteration we shall solve a quadratic subproblem

(S*)min(Zt
T£t)V + ^(/>z)rfl^subjectto \\pz\\ < Sk,

where Sk is called the trust region radius. To solve this problem exactly may require
considerable computation. From practical considerations, we choose to solve this
problem approximately. Since we use the BFGS formula to update Bk, Bk will remain
positive definite (the DFP formula has the same property). With this condition,
the double dogleg method suggested by [10] and [11] is a good choice. Let the
approximate solution of (Sk) be p\ and gk — Z\gk. A brief description of the double
dogleg method is as follows.

(1) First, consider the Newton step pz
N = —B^xgk and take

p \ =pz
N, if\\pz

N\\ <Sk. (13)

(2) If | | p^ || > Sk, then calculate the best solution along the direction of — gk, this is,
the so called "Cauchy point" Pz

p= —(J-*gk, where

I n II2
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Take

p * i f l l p ' l l > «Hk~ • l l f t B ' " " "

(3) If \\pz
N II > Sk and \\pz || < Sk, then calculate

(14)

ift II4

It has been proved in [11] that ||/^p || < y||p^|| < llp^ll- Choose an intermediate
point

/>?.„. =
where X e (0, 1) (in [11] k = 0.8 was suggested). It is obvious that pz

p is a
point in the Newton direction and \\pz

cp \\ < \\pz
p || < ||p# ||. Take

or otherwise let

Pi =

=

In (15) and (16) a € [0, 1] is chosen such that \\p\\\ = Sk.

The formulas (13)—(16) give a complete method to solve the subproblem
approximately. From (13) it is known that when using this method, the following is
always true

In [10] and [11] it was also shown that the quadratic objective function value at the
point p\ will not be bigger than that of the best point along the steepest-descent
direction within the trust region. Consequently, it is not difficult to obtain

-(Zlgt)
Tpz

k - \{pz
k)

TBkP
z
k > X-\\ZT

kgk\\ • min

Powell proposed a single dogleg method for approximate solutions of the same
subproblem (Sk) (see [17] and [18]). His formulas also satisfy conditions (17) and
(18). Our algorithm can also adopt this method. In fact the convergence analysis
of this article is available to any approximate solutions which meet the above two
conditions.
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In order to decide the acceptance of the new point at each iteration and to adjust the
trust region radius, a merit function is necessary. Here we choose the /i exact penalty
function

m

J2 (19)

The main difference between this merit function and that in [24] is that different
penalty weights are used and adjusted separately for individual constraints. The
advantage of this modification is that it prevents the penalty weights from all becoming
unnecessarily large and thus allows the algorithm to take larger steps. Otherwise the
algorithm might be forced to follow constraint surfaces closely, resulting in slow
convergence. Now we describe the algorithm.

(1) Choose parameters 0 < rj < r]i < t)2 < 1, <5max > 0, 0 < yi < ^,Yi > 1. e ' >
0,0 < co < 4=, a positive integer M and p > 0. Pick a starting point x0, an
initial positive definite matrix Bo, an initial trust region radius So < Smax and a
penalty weight vector 0 < r0 e 9fm. Let m(0) = 0 and set k = 0. Introduce a
Boolean variable named revised.

(2) Calculate fk, gk, ck and Ak, make a QR decomposition of Ak to get Yk, Zk and
Rk (see (2)). Compute

uk = -Rk
Tck (20)

and the multiplier

Xk = R;lY*gt. (21)

Let

,*+1, = h if* >!*,! +P. (22)
[ ma\{rki, \Xk. |} + p otherwise,

where rk. and Xk. are the i-th components of the vectors rk and Xk, respectively.
(3) If||ct| | + | |2 t

rft | |<6',stop.
(4) Solve subproblem (Sk) approximately by using one of the two dogleg methods

to get p\.
(5) Let

«* = ik " * " (23)
otherwise,
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and compute

pl = akuk, (24)

(25)

Let revised = .FALSE, and

xk+i = xk + pk. (26)

(6) Calculate the predicted reduction

«*

4>k(xm) = max <pk(xk-j),
0<j<m(k)

(8) Compute Qk = A^/Ai /^ and 6k = A<pk/Afk.
(9) If 9k > fj, then accept xk+i and let

Go to (12).
(10) If 0* < fj, \\py

k\\ < <u||pt|| and revised = .FALSE., then solve

(7) Compute

(28)

- <f>k(xk+i),

where

m

Mx) =f(x) + ^2rik+i)i\Ci(x)\. (29)

h ifrl2>ek>rh, (30)

y,6t otherwise.

k (31)

to get the correction vector dk. Let

**+i = ^* + Pt + Ykdk (32)

and revised = .TRUE.. Go back to (7).
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(11) Let Sk <- Y\h and go to (4).
(12) Choose

m(k + 1) < min[m(k) + 1, M).

Obtain Bk+i by updating Bk using the BFGS formula (see [16]). Set k <— k + 1
and return to (2).

In this algorithm, the way to obtain the moving vector p\ in the space R(Ak) is the
same as that in [24], that is, p{ is determined by (20), (23) and (24). The motivation
of producing p\ this way can be found in [24].

An important feature of this algorithm is that we decide whether to accept xk+ pk

or xk + pk + Ykdk as xk+x by the ratio 6k, not by 6k. Therefore, it is allowable that
4>k(*k+\) > <Pk(Xk) and thus this is a nonmonotonic sequential technique. It is seen
from the algorithm that

k-M < l(k) < k, m(k + 1) < m(k) + 1.

Another major difference between this algorithm and the one in [24] is that only
when xk + pk cannot satisfy 0k > fj while \\pk\\ < co\\pk\\ holds, will the correction
step be considered. The reason for this idea is as follows: to reduce the value of
the penalty function <f>, we must pay attention to the feasibility at each iterate point.
As pointed out in [24], the main purpose of p\ is to reduce the value of ||C(JC)||.

The correction step also aims at reducing the violation of the constraints (see (71)
in Section 4), thus improving the feasibility. However, it will be shown later on that
114II = 0(||p*||). Hence, if ||p£|| is a significant part of ||p*|| (it is measured by
llPitll > a>llp*ll).tnen compared with ||p£||, ||4tll will be negligible. Therefore there
is no need for the correction step. Only when \p\ || makes very little contribution to
forming ||pi||, in other words, only if pk «a p\, can introducing a correction step dk

to improve the feasibility be justified. In fact if the parameter co is chosen to be very
small, then in this algorithm the need for computing the correction step should not
often occur.

3. Global convergence

We make the following assumptions in this section.

ASSUMPTION HI. The sequence of points [xk] generated by the algorithm is contained
in a compact set X; f (x) and c(x) are twice continuously differentiable on X; the
matrix A(x) has full column rank over X, thus the matrix R(x) e SRmxm in (2) and
its inverse ^(JC)"1 are defined and continuous on X; {Bk} is a sequence of positive
definite and uniformly bounded matrices of dimension n — m.
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According to the assumptions, there are constants r and b, such that

l l * r ' l l < r , Bk\\<b, V*. (33)

The following two properties have been proved in [24].

PROPERTY 3.1.

\\dk\\ = O(\\pk\\
2), (34)

(see Lemma 3.1 of [24]).

PROPERTY 3.2. For any k, the condition

m f 5 1
a* £ |C,(JC»)I > min ||ct| |, - (35)

i=i I r >

holds (see Lemma 3.3 of [24]).

LEMMA 3.1. When xk+i =xk + p k ,

|A0t-A^|=O(| |p t | |
2 ) , (36)

where A<pk = 4>k(xk) - (pk(xk+i).

PROOF. It is clear that

/* -f(xk +Pk) + gT
kpk = O(\\pk\\

2). (37)

From (2), (25), (4) and (24), we know that

AT
kpk = RT

kYk
Tpk = RT

kpl = -cxkck. (38)

Then for / = 1,2, . . . , m,

Ci(xk+Pk) = ct(xk) + VCi(xk)
Tpk + 0(||ptll2)

= (l-ak)ci(xk)+O(\\pk\\
2),

that is,

k ( J c t + p t ) | = ( l -a t ) | c 1 - (x t ) | + O(||pt | |
2), i = l , 2 , . . . , m . (39)

Thus for each k we have
tn

- Ax}rk\ = \fk -f(xk +pk) + ̂ r{t+1),(|c,(JC*)| - \c,(xk+pk)\)

= O(\\Pk\\
2).
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COROLLARY 1. When xk+l = xk + pk, there exists a positive constant I such that for
allk,

|A& - A^*| < ISJ. (40)

PROOF. It is not difficult to see that if xk is contained in the compact set X and /
and c, are twice continuously differentiable on X, then the O(\\pk ||

2) term in (37) and
(39) is independent of k. Furthermore, from Assumption HI and (6), we know that
the sequence of vectors kk is bounded and formula (22) shows that every time the
penalty weights change, their values have to be increased by at least p. Therefore, for
sufficiently large k, rk. > \kk.\ + p must hold for each i. This means that for large k,
the penalty weights will remain the same:

/•(*+]),. = rk.=rh Vj, V sufficiently large k.

So, for all k, r(k+l)! is uniformly upper bounded. Due to the above facts, we know that
the term 0(||/?*||2) in (36) is independent of k, that is, there is a constant / > 0 such
that

\A<pk -Afk\< l\\pk\\
2.

But from (25), (4) and the way we calculate p\ and p{, we have

I M I 2 = I IPZII 2 +I I^I I 2 <2S 2 . (41)

Letting / = 21, we have (40).

COROLLARY 2. When xk+l =xk + pk+ Ykdk, Lemma 3.1 and Corollary 1 still hold.

Reference [24] contains a proof for this corollary. In fact, an even stronger result can
be established (see Lemma 4.1 in Section 4).

Let Q( = {x : \\c(x)\\ + ||Z(;t)rg(;O|| < <?}. In particular, if we take € = 0, then

= 0, and | |Z(JC)^(JC)|| = 0} (42)

is the set of Karush-Kuhn-Tucker points of problem (1).

LEMMA 3.2. For an arbitrary € > 0, there is a 8e such that for all xk & fif, when
&k < S(> if we take xk+x = xk + pk, then A<pk = <pk(xk) - <t>k{xk+x) satisfies 6k =

> 7?,.

PROOF. From (25), (7) and (38),

= {ZT
kgk)

Tp\ - akk
T

kck.
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Using this fact and (27), we know

1
= -{Z[gkfp\ - -(pz

k)
TBkpl + at^(r(t+1)/|cl-(jct)| + kklc,(xk)).

From (18), (22) and (35), we have

| | Z t f t
1=1

||Ztgt||min{«t, ||Ztgt||/6} + /omin{||ct||,5t/T}. (43)

Now, if

(i) l|c*|| > f, then when 8k <
 T-f, from (43) we know that

AV* > pmin{||Q||, Sk/z} = p8k/r; (44)

otherwise, if
(ii) ||ct|| < f, then because xk $ Qe, ||Zj"^|| > | must hold. Thus from (43), we

know that when 8k < ^ ,

A^* > ^I |Z[^ | | min{3,, \\ZT
kgk\\/b}

= \\\2T
kgk\\-8k>Uk. (45)

Combining cases (i) and (ii), we know that when

the condition
Afk > £Sk

must hold. Here i. = min{p/r, e/4}. On the other hand, from Corollary 1 of
Lemma 3.1, for all xk,

|A& - AV*| < lS2
k.

Therefore

lim

This shows that there exists S( < S'e, such that when Sk < 86, A<t>k/A.ijfk > r)x.

COROLLARY. For each xk g £20, after reducing the trust region radius a finite number
of times, one must have an xk+l — xk + pk satisfying 9k > fj and hence the k-th
iteration is finished by accepting this xk+l.
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PROOF. Since xk <? Qo, \\ck\\ + \\ZT
kgk\\ ^ 0. Let

^ = \\ck\\ + HZfoH
2

so that xk & S2€. Using Lemma 3.2 we know that there exists S( such that 9k > r)\
if h < $c As <j>k(xm) > 4>k(xk), we see that 0k > 8k. Therefore 0k > rjt > fj for

In the rest of this article, we assume that in step 3 of the algorithm, e' = 0 so that
an infinite sequence of xk is produced.

THEOREM 3.1. Under Assumption HI,

k—

PROOF. If the result of the theorem does not hold, then there exists an e > 0 such that

Ik*ii + iiz;ftn > e, v*

that is, JCA £ fif.
As rk. = r, for all large k, without loss of generality, we can assume the penalty

function 4>k(x) defined by (29) is independent of k. We use (/>(x) to represent it:

1=1

By Lemma 3.2 there exists Se = min{<S0, yi<5f} such that

8k>8t,Vk.

As9k > fj, we have

(46)

From the definition of </>Ct/(t+i)), the fact that m(k + 1) < m(k) + 1 and inequality
(46), we know that the sequence {0 (*/(*>)}£l0

 IS non-increasing and hence convergent.
But according to (46),

Therefore

"*• 0 ' when k -*• oo. (47)
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On the other hand, due to (43) and the fact that Sk >8e, we know that

-X\\ m i n

So (47) means that
-> Oand cm-i -> 0,

which contradict the assumption that*;(*)_

COROLLARY. 7/ze iterative sequence generated by this algorithm has at least one
accumulation point which is a Karush-Kuhn-Tucker point.

PROOF. From Theorem 3.1, there is a subsequence [xki], such that

ck, -» 0,

Zlgk. —> 0, when i —>• cx>.

Without loss of generality, we can assume

Since C(J:) is continuous, it is clear that

cfo) = 0. (48)

Multiplying both sides of the equation

YkJl + ZkiZl = I

by gt. and using YYTg = Ak (see (6)), we obtain

Ak,Xkl + ZkXZT
k.gk.) = gkr

Using the continuity of A(x), X(x) and ^(x) and that \\Z(x)\\ = 1 (see [21, Theorem
5.1.5]), we have

= g(xj. (49)

Equations (48) and (49) show that xt is a Karush-Kuhn-Tucker point.

LEMMA 3.3. There is an I' such that

-xk\\<l%, Vk. (50)
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PROOF. From (41), we know

IIP* II < V2«t (51)

and it is known from (34) that there is a / such that

II4II < i\\Pk\\2, v*.

Hence

IIP* + 1W* II < U P * 11 + I I * II
< V2Sk + 2lS2

k <l'Sk, (52)

where /' = -Jl + 2/5max. Since xk+y may be either xk + pk or xk+pk + Ykdk, (51) and
(52) prove (50).

Now we consider the question: can the global convergence result be strengthened
so that all accumulation points are K-K-T points? The answer is positive, but we need
to make an assumption.

ASSUMPTION H2. {Bk
1} is bounded: there is V > 0 such that

\\B?\\<bf, V*.

Due to (17), this assumption implies

llp|ll<*'l|Z*rftl|. (53)

LEMMA 3.4. Under Assumptions HI andH2, [<j>{xk)} converges and pk —> 0.

PROOF. We first show that for any subsequence [x^} of [xk],

if Arjrt -*• 0, then pv -> 0. (54)

In fact from (43) and Sk < S ^ we have

I | Z ; ^ | | ^ - • 0, and minfllQ-H, <5̂ } - • 0, when k' - • CJO. (55)

Hence by (53),

that is, p\, -+ 0. On the other hand, by (20) and (23)-(24), the second limit of (55)
means p\, —• 0 and therefore pv —»• 0.
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As we already proved that A^/m-i -*• 0 (see Theorem 3.1), the above conclusion
shows that

p / w _ , -»• 0 and dm_x = O(||p/W_, ||2) -> 0, (56)

resulting in xtw — */(*)-1 —> 0. As </>(*) is Lipschitz continuous over the compact
region X,

that is,

Jhn <j>(xm_i) = Um <f>(xm). (57)

Based on this fact, we can use the method of mathematical induction (see [14] for
details) to confirm that [<p(xk)} converges:

lim <j)(xk) = l im <f>(xiik\)
k-*oo k-*co

and by the algorithm, A\jsk —> 0 which, according to (54), proves pk -> 0.

THEOREM 3.2. Under Assumptions H1 and H2, for each accumulation point obtained
by this algorithm, if Z(x)Tg(x) is continuous at that point, then that accumulation
point must be a Karush-Kuhn-Tucker point.

PROOF. Let x be an accumulation point of {xk} and Z(x)Tg(x) be continuous at x.
Now we prove that x must be a K-K-T point by contradiction. Assume x is not a
K-K-T point. Then taking a sufficiently small positive constant e, we have

Therefore x g £22f • By continuity, there exists 8 > 0 such that

\\Z(x)Tg(x)\\ + ||C(JC)|| > e, Vx e N(x,8).

On the other hand, by Theorem 3.1, there must be another accumulation point,
x* € £2o- So {xk} has two subsequences [xkl] and {**,+;,} such that

*k, —*• x, when i —>• oo

**,. eN(x,8/2), i = 1 ,2 , . . .

https://doi.org/10.1017/S0334270000010626 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010626


[16] A nonmonotonic trust region method for constrained optimization problems 557

and after x^ the first point of [xk] which does not belong to N(x, 8) is **,.+/,, whereas
xk.+l is behind xkj+li and within N(x, 8/2):

xk € N(x, 8), if k,<k< ki + /,-, * = 1 ,2 , . . .

kt + /, < kj+u i = 1 ,2 , . . .

Let

A f 8" 8
f i £' ^^ J (58)

where

(60)

/' is given in Lemma 3.3 and r and b are used in (33). As {</>(**)} converges, there
exists k > 0 such that

\<t>(xk) - <p(xj)\ < ^, VkJ>L (61)

Due to (40),

(62)

Now for & satisfying kt < k < ki + /,, as *i e N(x,8), at least one of

\\c{xk)\\ > €-

holds. Thus by (43),

or
• f * St)

Aw* > p mm { - , — > .
[2 r J

In other words,

Afo > min{/3', £"<$*} (63)

must be true, where /}' and 0" are given by (59) and (60). Now (62) and (63) mean

lim 6k = 1.
*•<*<*<+'.

1-»OO

https://doi.org/10.1017/S0334270000010626 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010626


558 Jianzhong Zhang, Detong Zhu [17]

So we can find i0 such that kh > k and

6k > rj, if i > i0 and k,< k < k, + /,,

that is,

Adding these inequalities provides

<£(**,) -
k=k,

[ k=k; J

By Lemma 3.3,

'v~̂  x ^ ' \^ ^ ^
/ Of -̂ * / M^tJ.1 Xh I ^ I Xjt-i-7- Xb. I ^

£_^ "• If £_^ " IVT» «• II y^ II * |T^i Î J II ~i,

so that

y3', — | = a, Vi > i0- (64)

On the other hand, when i > i0, as kt > ^, by (61),

<j){xkj+i) — 0(JC^+I) > . (65)

Inequalities (64) and (65) show

(p(xki) — 0(x^.+l) > —, Vi > io,

which leads to the conclusion lim^oo^Oc*.) = -oo, a contradiction to the conver-
gence of I

There are several methods to compute the QR decomposition of the matrix A(x).
In general, Z{x) is not unique. Byrd and Schnable in [3] showed that it is possible
for Z(x) to be discontinuous. The global convergence result in this section, that is,
Theorem 3.1 and its corollary, does not depend on the continuity of Z(x). If one uses
the methods proposed in [8] or [13] to calculate Y(x) and Z(x), then Z(x)7g(x) is
likely to be continuous. If so, Theorem 3.2 implies that every accumulation point of
[xk] would be a Karush-Kuhn-Tucker point.
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4. Superlinear convergence rate

In order to analyze the convergence rate of this algorithm, more assumptions are
needed.

ASSUMPTION H3. Assume xk ->• xt; ZfW*Zt is positive definite, Z{x)Tg(x) is con-
tinuous at xt and

l|(Bz^.Z.)p;i|=0

JCi||

The first two conditions of this set mean that xt is a minimum point which satisfies
the second-order sufficient condition for optimality. Property (66) is equivalent to the
sufficient condition of the two-step superlinear convergence required in [16]. By (66),

(pl)TBkpl = (pz
k)

T(ZT
kWkZk)p\ + o(||pj||||p*||). (67)

LEMMA 4.1. Under Assumption HI and condition (66), when xk+i = xk + pk +Ykdk,

|A& - A^*| = o(\\py
t\\) + o(\\pl\\2). (68)

PROOF. From (7), (31) and the second-order expansion of c(xk + pk), we have

= -kT
k[c(xk+pk) - (1 -oek)ck]

= -kT
k[ck + A[Pk - (1 -ak)ck] - \

+ o(\\pk\\
2),

where the last step has used (38). From (34), (8) and the above equation, we have

/ {xk + Pk+ Ykdk) -fk = gT
kPk + (Yk

Tgkfdk + l-pT
kV

2fkPk + o(\\Pk\\
2)

\ + o(\\pk\\
2). (69)

Using (31) and (2), we have

c(xk + pk) = (1 - ak)ck - RT
kdk = (1 - ak)ck - AT

k(Ykdk).
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Hence, for / = 1 , . . . ,m,we have

Ci(xk + Pk + Ykdk) = c,(xk + Pk) + VCi(xk + pk)
TYkdt + 0{\\dk\\

2)

= (1 - ak)c,{Xk) - [Vc,-(xt) - Vc,(xk + pk)]
TYkdk + O(\\dk\\

2)

= (l-ak)cl(xk) + o{\\pk\\
2) (70)

and then

\c,(xk +Pk + Ykdk)\ = (1 - ak)\c,{xk)\ + o(\\pk\\
2), i = 1 , . . . . m . (71 )

Therefore, according to (28), (29), (69) and (71), we have

A& = -glPk ~ -jPlWkPk + a*£r(t+I,,|cl-(ACt)| + o(llp*ll2)- (72)

Because

from (72), (27) and (67), it is not difficult to get

|A</>* - A ^ l = o(||pt||
2) + 0(||p>||) = o(\\p\\\2) + o(\\py

k\\), (73)

where the last equation comes from the fact that \\pk\\
2 = \\py

k\\
2 + \\pl

k\\
2-

THEOREM 4.1. Under Assumptions H1-H3, this algorithm is two-step Q-superlinearly
convergent, that is,

\\*lc+l — X*\\ n , , , _ . .
> 0, when k -> oo. (74)

\\xk-i -xt\\
Further, the sequence {xk + pk] converges to xt superlinearly, that is,

I I * * + P * - * I I „ , . ,_-,
0, when k -*• oo. (75)\\xk-i+pk.i -xt\

PROOF. We first prove that there is a 5 such that

Sk > 8, Vk. (76)

As we know that

\\pl
k\\<\\B;lnzJgk\\<b'\\zlgki
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from (43) we have

j ^ j (77)
where

From (24) and 0 < ak < 1, we know that

The above inequality together with (41) and (77) implies

> V\\p\t + ^min jll^H, HMJ . (78)

Now we consider the following two cases.

1) If \\p{\\ > &>||/?*||, then from the above inequality, we know that

, (79)

where

K =
(we choose co < 1/V2 in this algorithm). But when xk+i = xk + p k ,

\A<pk - Ax/fk\ = O(\\pk\\
2). (80)

Therefore when Sk -> 0 and so ||p*|| -> 0, we must have

A(f>k — i±y^

That is, there is a 8' > 0, such that for all the iteration satisfying ||p£ || > a>\\pk \\, when
&k < S',6k > rji must hold. As 0k > 6k, the criterion for accepting xk+i is satisfied.

2) If \\py
k II < co\\pk ||, then from (78) we know that

(81)
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where

In this situation, if xk+l = xk + pk cannot satisfy 6k > f), then this algorithm would
consider xk+i — xk + pk + Ykdk. And now from (68) and (81) we know that when
8k —> 0 and hence p \ and p \ also approach 0,

Ad>k — Axlrk
> 0.

This shows that there exists 8" > 0, such that for all the iteration satisfying \\py
k\\ <

te\\Pk\\, when 8k < 8", we have 6k > 9k > rji.
Combining the above two cases, we know that

8k > 8 = min{50, yi8', y\8"}, Vk,

which satisfies (76).
Because Zfgt = 0, from assumptions H2-H3 and (76), we see that for sufficiently

large k,
<8<8k,

which means (see (13)) for sufficiently large k,

Pk. — ~Bk i^kSk)- (ol)

On the other hand, from c, = 0 we know that uk —• 0 (see (20)). Therefore, (76) and
(23) imply that ak = 1 so that

p \ = -R~Tck. (83)

Equations (82) and (83) are the same as (10) and (9). They are the iteration steps
chosen in [16].

So, according to the conclusion in [16], we have

(84)
* - I

Also, by the conclusion (i) of Theorem 4.1 in [16], there exists a positive constant C\
such that for sufficiently large j ,

ll*/+ft-*.ll<C,||*;-Jc,||. (85)

Hence

(86)
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If xk = xt_, + pk_u then by (85),

l l * t - * • II < C , ||JC*_,-jc.il; (87)

otherwise, xk = **-i +pk-\ + Yk-\dk-\ and thus

\\xk -JC.H < Cllx*-, -JC.H + ||<*4_, ||. (88)

We now need to estimate ||<4_i ||. By (34) and (86), there exists a constant C2 > 0
such that

Substituting this result into (88), we obtain

It**-Jt, II <(C, + qz)||jct_,-jc.il. (89)

Inequalities (87) and (89) show that no matter whether a correction step is taken in the
£-th iteration, inequality (89) is always true. Taking this result into (86), we see that

- , - j c . i l

and hence by (34)

l l*l l=o<ll**-i-Jc . l l ) . (90)

Using (84) and (90), we know that

\\Xk+Pk + Ykdk-xt\\ < | | jc t+pt-jc. | | + \\dk\\ ^ Q

||jCt_i - J t , | | ~ ||jti_] - J f . H ||jCt_i -JC.H

Since xk+1 has only two possible choices xk + pk or xk + pk + Ykdk, (84) and (91)
together prove (74).

In an manner similar to that used in the proof of Theorem 4.11 of [25], we can
prove that (75) also holds.

5. Numerical experiments

Numerical experiments on the method given in this paper have been performed
on a 486 personal computer. In this section we present the numerical results of the
proposed algorithm.
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Since the double dogleg method requires the matrix Bk to be positive definite, we
apply Powell's modified BFGS update to ensure this requirement. Here we describe
the formula for this update. First, we choose

sk = Zl+l(xk+1 -xk)

a n d

+ - (gk - Akkk)).

There are other possible choices, for more details, see [16]. Now, we compute

where
i yT

ksk >
e =

s[Bksk - yksk

and update the Bk by

otherwise,

Bksks
T

kBk r)kr)T
k

ok+i *- ifk f= 1 j—•

sk Bksk r)'k sk

This formula will always meet the condition r)lsk > 0.2^Bksk. With a positive
definite Bk and a 5* ^ 0, we have

njsk > o,

which is the condition for the positive definiteness of Bk+l.
We compare numerical performance of the proposed algorithm under three different

values for parameter M: M = 0, M = 4 and M — 8, respectively. In fact a monotonic
algorithm is realized by taking M — 0. The nonmonotonic control function m(k + 1)
is chosen as

m{k +\)- min{m(k) + 1, M],

that is, we let the two sides of the inequality in Step 12 be equal. The selected
parameter values are:

fj = 0.01, 77, =0.001, ??2 = 0.75, y ,=0 .5 , y2 = 2,

S0 = l, <5max = 10, p = 0.3, a; = 0.4, r0 = (1, 1, . . . , l ) r € K™.

The computation terminates when one of the stopping criteria

\\ZT
k8k\\ + ||c*|| < 10-4 or \A<pk\ < 10-6max{l, |0t|}
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TABLE 1. Experimental results

565

Problem

Name

HS006

HS011

HS026

HS027

HS028

HS039

HS049

HS050

HS060

SC216

SC219

SC220

SC235

SC252

SC316

SC317

SC318

SC319

SC320

SC321

SC322

SC336

SC338

NIT
10
14
16
21
29
38
14
6
7
38
25
101
16
32
13
15
16
18
21
26
298
17
8

M=0

NF
14
15
16
39
57
43
14
6
8
91
51
179
31
71
13
15
16
18
24
27
325
28
8

NG
10
14
16
21
29
38
14
6
7
38
25
101
16
32
13
15
16
18
21
26
298
17
8

NIT
10
12
14
16
29
33
14
6
7
36
17
97
15
28
11
12
12
16
17
21
285
14
8

NF
14
12
14
34
57
38
14
6
8
84
40
157
29
65
11
12
12
16
17
23
301
23
8

M=4

NG
10
12
14
16
29
33
14
6
7
36
17
97
15
28
11
12
12
16
17
21
285
14
8

NOP
0
3
1
1
0
3
0
0
0
1
3
5
1
2
2
1
2
2
3
2
11
2
0

NIT
10
10
14
18
29
26
14
6
7
30
16
91
15
28
11
13
12
14
18
21
275
12
8

NF
14
10
14
36
57
32
14
6
8
82
37
132
29
65
11
13
12
14
19
23
292
19
8

M=8
NG
10
10
14
18
29
26
14
6
7
30
16
91
15
28
11
13
12
14
18
21
275
12
8

NOP
0
4
1
1
0
5
0
0
0
1
2
6
1
2
2
2
2
1
2
2
12
5
0

is satisfied.
The experiments are carried out on 10 standard test problems which are quoted

from [15] and [20] (HS: problems from Hock and Schittkowski [15], and SC: from
Schittkowski [20]). NF and NG stand for the numbers of function evaluations and
gradient evaluations, respectively. The number of iterations is not presented in the
following table because it always equals NG. NMD stands for the number of iterations
in which the situation of nonmonotonic decreasing occurs, that is, the number of times
that A(pk < 0.

The experimental results, under the headings of M = 0,4 and 8 in the table
respectively, illustrate that for many test problems the nonmonotonic technique does
produce some noticeable improvement.

We also tested the effect of using different penalty weights for individual constraints
against taking a unified weight for all constraints. For some of the test problems, the
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new strategy does improve the algorithm, whereas for the rest of the test problems the
performance is indifferent to the change. But this change never worsens the iterative
process. So, the advantage of the change is still not apparent, but it at least will not
do any harm to the algorithm.
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