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ABSTRACT. Numerical solutions are found for the steady rec ti li near flow of ice, o beying Glen's non-linear 
:flow law, down uniform cylindrical channels of rec tangular, semi-elliptic a nd parabo lic cross-section. Th e 
r esults a re a lso direc tly applicable to the pumping of a non-Newtonian Auid down a pipe. There is assumed 
to be no slip of the ice on the channel surface. Certa in resu lts on the centre-l ine veloc ity in symmetrical 
c ha nnels may be derived purely from dimensional and symme try principles. An analyti cal solution due to 
Dr. W. Chester is g iven for a semi-elliptic channel section wh ich departs on ly slig htl y from a sem i-circle. 
Contrary to a view sometimes held, the m aximum shear stress at the ice surface in a parabolic channel and 
in some elliptica l channels does not always occur at the edge. With the Aow law, strain-rate proportional to 
(stress)l, the velocity averaged across the ice su rface, which is easil y measured with a line of stakes, is close 
to the average velocity over the who le sec tion for a wide range of parabo lic sec tions ; the hydrological 
importance of this result is that the discha rge may be inferred without the need to m easure the velocity at 
d epth . Arguments are g iven to show that the result still holds when there is slipping on the bed and when 
the power in the Aow law d iffers somewhat from 3. Depending o n the amount of bed slip and the shape of the 
c hannel section, the kinematic wave velocity fo r a ra nge of parabolic chan nels is be tween 2·0 and 2 ' 3 times 
the centre-l ine velocity o f the ice, and be tween 2' 0 and 3' 5 times the mean surface ve locity of the ice. 

R ESUME. L'ecoulement d' 11I1 glacier dalls fill canal de section droite rectallglllaire, elliptique 011 parabolique. On a 
trouve d es solutions pour I'ecoulement perma nent rec tilineaire d e la glace o beissant a la loi non lineaire 
d'ecoulement de G len, le long d 'un canal regulier cylindrique d e section druite rec tangu la ire, semi-e lliptique 
ou pa rabolique. Les resultats sont aussi di rec tement applicables a u pompage d ' un fluide non newtonien a 
trave rs une conduite . 11 est suppose que la g lace ne g lisse pas a la surface du canal. Certains resultats d e la 
v itesse d e la ligne centrale peuvent etre deduits des considerations de dimension e t d e symetrie. U nesolution 
analy tique du Dr. W. Chester est donnee po ur un cana l de sect ion semi-elliptique qui ne differe que d e p eu 
d'un !'" sec tion semi-c irculaire. Con trairement a une opinion enoncee parfois, le maximum de la tension d e 
c isa illement dans un canal pa rabolique o u e lliptique ne se manifes te pas toujours sur le bord pour la surface 
d e la g lace. Avec la loi d 'ecoulement, vitcsse de deformation pro portionnelle a u cube de la cuntrainte, la 
moyenne de la vitesse super ficie ll e le long d ' un profiltransversal, faci lemelll mesuree par une ligne de bal ises, 
es t proche de la vitesse moyenne pour toutc la section pour biefl des sections pa raboliqlles; une conclusion 
h ydro logique importante en deCOll le, a savo ir que le debit peut e tre obtenu sans mesure des vitesses profond es. 
D es a rg uments sont presentes pour monu'er que ccs resulta ts sont va lables meme lo rsqu ' il y a glissemen t sur 
le lit e t lorsque la puissance de la loi d 'ecoulemelll differe q uelque peu de trois. D ep enda nt du gli ssement sur 
le lit et de la form e d e la section du cana l, la vit esse de la vague cinema tique p our un ensemble de sect ions 
paraboliq ues es t com prise entre 2 , 0 e t 2,3 fo is la vitesse de la lig ne centrale de la g lace, e t entre 2 ,0 et 3,5 fois 
la v itesse moyen ne superfi ciell c. 

ZUSAMMENFASSUNG. Das Fliessen eilles Cle/sellers ill eillem S ett mit rechleekigem, elli/l tisehem oder parabolische7ll 
QJlersehlli/t . FLir das s tet ige, geradlinige Fliessen von Eis nach G len 's ni chtlinearem F licssgesetz in gleich­
formi gen zy lindrischen Bellen mit rechteckigem, ha lbelliptischem und pa rabo lischem Querschnitt werden 
numeri sche Liisungen gegcben. Die E rgcbnisse sind auch unmittelbar auf d as Pumpen ein er ni cht­
Newton 'schen Flilss igkeit durch ein R ohr anwendbar. Es wi rd angenomnwn, dass cl as Eis am Unterg rund 
nicht g leitet. Gcwisse Ergebnisse llber d ie achsiale Gcschwindig keit in sym metrischen Bcttell kii nnen a ll ein 
a us Dimcnsions- und Symmet ri everha ltni ssen a bgelei tet werden. Filr cin Belt, d essen ha lbelliptischer 
Querschnill nur wenig vO n einem Halbkre is abweicht, wird e in e analytische L osung nach Or. VV. Chester 
gegeben. Im Gegcnsatz zu e iner manchma l geausserten Ans ich t tritt die maxima le Scherspannung a n d e r 
Eiso be rAache in parabo lischen und in e inigen el lip tischen Betten nicht immer am Eisrande auf. Setzt ma n 
im Fliessgese tz d ie Verformungsgeschwindigkeit proportional zur dritten Potenz d e l' Spannung, so ko mmt 
die mittlere Flicssgeschwindigkeit quer libe r di e EisoberAache, die leicht durch e ine Pcgdreilw gf:messen 
werden kann . der mittl eren Geschwindigkc it im ganzen Querschnitt filr einen we ite n Bereich pa rabo lischer 
QuerschnittSformell sehr na he. Die hydrologische Bedeutung d icses Ergebnisses licgt in der Tatsache, class 
d er DurchAuss ohne Geschwindigkeitsmessungen in der T iefe e rmittelt we rden kann. Es werden Crilnde filr 
di e Gu ltigkeit di eses Ergebnisses auch bei G leiten am U ntf" rg rund und be i leichtem Abweichen d es 
F liessgese tz-Exponenten von 3 a ngefuhrt. In Abhangigkeit von d em Betrag des G le itcns am Untergrund und 
von d er Form des Bettquerschnitts bet ragt die Geschwindigkeit kinemati schcr \"'c ll e n flir eine R eih e von 
parabo li schen BCltcn zwischen dcm 2,0 bis 2,3-fachen der achs ialen Eisgeschwindigkcit und zwischcn d em 
2 , 0 bis 3,5-fachen de r mittlcren OberA iichengeschwindigkeit d es E ises. 

I. THE PROBLEM 

The theory of the flow of a valley glacier (Nye, 1951, 1952, 1957) I S notably incomple te 
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in a certain respect: that it fails to d eal satisfactori ly with the pmblem of drag b y thc valley 
sides . This m eans, in particular, that the theory in its present state cannot explain quanti­
tatively how the ice velocity varies a long a transverse line drawn on the glacier surface. The 
problem is an old one. M easurem ents of the distortion of transverse lines have proliferated 
since Forbes made the first observations 120 yr. ago, yet none of them has been fully explained 
on a q uan ti tative basis . 

This paper tries to impmve our understanding of the pmblem by findin g numerical 
solutions for the steady rectilinear flow of ice down uniform cylindrica l channels of various 
prescribed cmss-sections- rec tang les, ellipses and pa ra bolas. Somigliana studied this problem 
in a series of well-known papers ( 1921 ) on the assump tion that ice behaved as a Newtonian 
viscous liquid. Experiments on the creep of ice in the laboratory now show that it is more 
a ppropriate to use a flow law in which the strain-rate is proportional to the nth power of the 
stress, where n is not I , as it would be for a Newtonian liquid , but has a value in the range 
2 to 4. Our obj ect is to so lve the problem of steady flow in a ch a nnel under a non-lin ear flow 
law of this type. 

Glen's exper iments ( 1955) on steady creep in the laboratory under uniaxial compressive 
stresses between T and 10 ba rs gave a good fit with a power law, n having a value of 3 ' I 7± 0' 2 
or 4 ' 2 according to how the results were ana lysed . Steinemann ( 1958, p. 25), on the other 
hand, found that 11 varics from slig h tly less tha n 2 at a shear stress of I bar to about 4 at T 5 bars. 
Voytkovskiy ( 1960) finds 11 between 1·6 and 2'2 for shear stresses between 0'25 and about 
I bar, but he agrees with G len that 11 is about 3 a t higher stresses . It is still a debatabl e question 
how closely laboratory creep tests such as these, which m ay las t for up to 7 months 
(Voytkovski y, 1960), represen t the deformation of the ice within a g lacier, wh ich may continue 
for hundreds of years with continuous recrysta llization of the polycrystal line m ass. There is 
a lso the problem of the stress range. The shear stress in our problem ranges from zero, on the 
centre-line of the ice surface, to a maximum value tha t depends on the slope and cross-section 
of the channel , but which in glaciers is often about I bar. Thus our calcu lations involve some 
extrapola tion of the laboratory results (lowest shear stress o' 25 bar) to low stresses. There is 
indirect evidence that the ex trapolation is va lid fmm observations of the closing up of tunnels 
in g laciers (Nye, 1953; Glen, 1955). In tunnel closure the shear stresses range from (ideall y) 
zero fa r from the tunnel to a maximum on the tunnel wall. If a p ower law of flow with IZ close 
to 3 is assumed to apply over the whole stress range there is good agreement between theory 
and observation. 

The laboratory evidence thus suggests that, while n is pmbably not trul y constant, never­
theless a calculation with n taken as constant and equa l to 2, 3 or 4 is worth making. In fact 
we take n = 3 [or the numerical work; otherwise we keep the val ue of 11 general. 

In ass uming a stress- stra in-rate relation that is uniform over a cross-section we are ignoring 
the fact that the ice in glaciers can show a marked degree of preferred orientation in its 
crystals- and that both the degree and nature of the preferred orientation are non-uniform 
over a cross-section. U ntil more is known expe rimentall y about the distribution of preferred 
orientations and the corresponding distribution of parameters in the flow law, there seems 
little that can be done to m eet this complica tion . W e may noti ce, however, that the nature 
of the preferred orientation is su ch as to make the ice weakest at the places where the stress is 
highest, near the channel boundary. This will make the effective value of n higher than that 
found in laboratory tests of randomly oriented polycrystalline specimens. 

It is natural, perhaps, to assume that with some suitable boundary condition on the 
channel surface, such as no slip, it is a lways possible to have a steady rectilinear motion down 
the channel of the sort we h ave d escribed. But a paper by Green and Rivlin (T 956) warns us 
that, when the material obeys certain kinds of flow law, this assumption can be false. There 
are certain flow laws that in these conditions necessarily entail transverse circulations . 
Fortunately for us the flow law for ice does not fall in to this category, if we make the usual 
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assumption that onl y the second invariant of the strain-ra te, a nd not the third , is significant in 
determining the stresses . So we may safel y postul a te rectilinear flow witho ut inconsistency. 

Consider now the bounda ry condition on the channel surface. For a liquid one would 
na turally a ssume tha t the re is no slip . But for a solid the situa tion is different. The m eagre 
observati ona l evidence is that tempera te g laciers, where the ice is a t the m elting point, do in 
fact slip on their beds, but tha t a glacier whose bottom ice is be low the melting point proba bly 
does not slip . Weertma n' s theory ( 195 7) expla ins wh y this is so. Therefore, to se t up a good 
model for a tempera te glacier one should put in a bounda ry condition tha t allows slip . I have 
not been a ble to do this, n o t primaril y because of the additiona l complexity it brings in to th e 
ma them a tics- it would m erely make the computer programme longer- but because a t 
present there is not eno ugh informa tion on the proper form of the slip law or on the numerical 
pa ram e ters it conta ins. Instead J have had to assume no slip . This would m a ke the calcula tion s 
m ore appropriate to those regions of a tempera te glacier w here slip on th e bed is onl y a sm a ll 
pa rt of the tota l motion , o r to g laciers wi th bottom tempe ra tures below th e melting poin t. 
Unfortuna tely for our purpose, such non-tempera te glaciers are not no rma ll y iso therm a l 
(there is no reason wh y they should be) a nd so, for this reason iffor no other , they do not obey 
the assumption that the rela ti on between st ra in-ra te a nd shear stress is the same all over the 
cross-section . 

T he limi ta tions of the calculation thus a ppear to be : (a ) th e poss ible in accuracy of a simple 
power law of flow; (b) th e non-u niformi ty of the stress- stra in-ra tc rela tion, whi ch a ri ses from 
preferred orientation a nd other inhom ogeneities in a ll g laciers, and a lso a rises in non­
temperate g laciers from the temperature distri hution ; (c) the assumption of no slipping . In 
addi tion , th e calcul a tion assumes that a ny longitudina l st ra in- rate directed al ong the channel 
ax is is sm a ll. I t is known (Nye, 195 7) th a t, because of the non-linearity of the flow law, a 
longitudi na l stra in-ra te will interact w ith th e ma in fl ow a nd can change it profound ly. This 
occurs whereve r the long itudina l stra in-rate is com para ble with or grea te r tha n the shear 
strain-rates aris ing from the m a in rec tilinear fl ow. T here will a lways be such a region close 
to the cen tre-line on the surface , where the shear stra in-ra te is zero, bu t if the longitudina l 
stra in-rate is sma ll the di sturbed region will be sma ll . 

In view of these limi ta tions some furth er ex plana ti on is perha ps required for wh y the 
calculations a re presented at a ll . First and foremost, they a t leas t ma ke a sta r t on thc prob lem . 
Second , a part from the pt·efer red orien ta tion difficulty, they should be qua ntita tively a pplic­
a ble to ce rta in regions of tempera te g laciers w here bed-slip is unimporta nt. Third , it turns 
out, rather un expectedl y, that certain results are apparentl y not much a ffected by whether 
there is slip on the bed o r not. Lastly, we no te that a more exact computa tion could onl y be 
made for a tem perate g lacier if the sli p law on the bed were full y known , a nd fo r a cold glacier 
if th e temperature di stl ·ibu tion were full y prescri bed . In such cases the numerica l method we 
describe cou ld serve as a basis for developi ng the more elabo ra te method tha t would then 
have to be used. 

2. T H E MODEL 

The theoretical m odel is th e following. I ce, obeying Gl en 's flow law a nd incompressible, 
flows under gravity down a channel o f uniform cross-section a nd uniform slope cx . 'vVe use 
Cartesia n coordina tes as sh own in F igure I a a nd b. T he upper surface of the ice is the pla ne 

) 1 = o. T he (tensil e) stress components a re a .'C, ay, a z , T yz, Txy, T XZ . On y = 0 we ta ke 
ay = T yz = T xy = o. A ll elem ents move steadil y a long lin es pa ra ll el to Ox, so tha t the 
onl y velocity component is u, which is a fun ction of y a nd z . On the lower surface of the ice 
we ta ke u = o. In these circumstances a ll elements defo rm by simple shear. 

If we assume a pressure di stribution 

ax = a y = az = - pgy cos ex , 
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where p is the d ensity and g the acceleration due to gravity, and that T yz = 0, we find that 
the equilibrium equations reduce to the single one 

ch xy OT xz - - +-- = - pg sin ex. ( I) ay oz 
The two stress components tending to deform the material are T xy and T XZ, which constitute 
the y and z components of a vector 't in the yz plane. Thus ( I) may be a lternatively written 

div 't = - pg sin ex. 

Glen's flow law for simple shear gives the equation 

grad u = AT n- J 't, 

/ 

/' 

, , 
\ 

/ \ 
/ \ 

-~ \:;t1 
(a.) (b) 

Fig. I 

(3) 

where A and n are constants and T is the modulus of 't, for the strain-rate is grad ll, it is 
proportional to T n , and takes place in the direction appropriate to the vector 'to In component 
form equation (3) is 

a ll ou 
- = ATn- I T - = ATn - I T (4) ay xy, oZ XZ, 

where T = +(Tiy+T~Z): ' W e have to solve equations ( I) and (4) for the unknowns u, T x y, 

T XZ in the plane yz, with the boundary conditions Txy = 0 on the upper ice su rface y = 0, 

and u = 0 on the lower ice surface. 
We have intentiona lly not invoked the Levy- Mises equations or a full three-dimensiona l 

flow theory in the above formulation . Since each element d eforms by simple shear there is no 
need to generalize G len's flow law to a full three-dimensional stress situation. Equations ( I) 
and (4) d etermine a stress and strain-rate distribution that satisfi es the boundary conditions 
and the equations of equilibrium, in which each elem ent deforms in simple shear, and in 
which Glen's flow law for simple shear is obeyed. 

3. SOLUTIONS I N SPECIAL CASES 

There are three channel shapes for which equations ( I) and (4) have simple solutions. 

(i) Infinitely wide channel oj uniform depth a 

H ere the solution is 

':' : :;~', _ ( ~;::) ,0, } 

where k = pga sin ex; k may be thought of as a characteristic stress for the problem. 

(5) 
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(ii) Semi-circular channel of radius a 

} (6) 

where r = +(f + z 2
), . 

(iii ) Infinitely deep channel of uniform width 2a 

TT: ~ ~!~(,:i~I.=)k~' } 
Case (ii ) may be thought of as intermediate between (i ) and (iii ). Notice that in all three 

cases the shear stresses are linear iny and z. It is interesting to see how good an approximation 
this is in other cases. 

4. GENE RAL R ESULTS FOR SYMMETRICA L CHANNELS 

For certain shapes of channel one can learn something about the velocity at the origin 
b y using nothing more than dimensional arguments and principles of symmetry . First notice 
the close relation between the present problem of flow in an open channel under gravity and 
the problem of flow in a pipe under a uniform pressure gradient without gravity . R eflect the 
channel in the plane y = 0 (Fig. I b) so that it becomes a pipe fill ed with ice, or other similar 
non-Newtonian fluid. Put g = 0 in the equations of equilibrium, and replace the pressure 
distribution by U x = Uy = U z = yx (x < 0); y is thus the longitudinal pressure gradient. 
There is now a term oux/ox in the equations of equilibrium, which has the effect of replacing 
the constant - pg sin 0: on the right-hand side of equation ( I) by - y. Otherwise the equations 
a re the same. The boundary condition on the pipe wall is u = 0, and there is no shear stress 
on the plane y = 0, by symmetry. Thus the flow in the pipe under the pressure gradient 
y = pg sin 0: is exactl y the same as it was in the channel. * 

Now consider flow under gravity in an open channel whose cross-section is a semi-ellipse 
(Fig. n ), of depth a and half-width Wa. The ve locity is the same as that in an elliptic pipe 
under a pressure gradient y = pg sin 0:. If we turn the pipe on its side (Fig. '2b) the velocity 
at 0 is clearl y unchanged, and is the same as it would be in a channel of semi-elliptic cross­
section wi th d epth Wa and half-width a. Now suppose we reduce the linear dimensions of 
the cross-section by a factor W , so that it becomes of depth a and half-width W - 1a (Fig. '2c). 
The shear stresses at corresponding points will diminish by a factor W, by equation ( I); 
the velocity grad ients will therefore diminish b y a factor Wn, by equation (4) , and so the 
velocities will diminish by a factor Wn+T. Thus the velocity at 0 in Figure '2a equals the 
velocity at 0 in Figure '2b , which equals Wn+, times the velocity at 0 in Figure '2 C. For the 
se t of semi-elliptic channels of depth a we have by this argument related the velocity at 0 
for half-width Wa to the velocity at 0 for half-width W- 1a. Symbolically we may write 

uo( W) = Wn+, uo ( W- J), (8) 

where uo( W ) is the velocity at 0 for half-width Wa and depth a. 

* For a Newtonian Auid (n = , ) the velocity distr ibution obeys Poisson 's equation 

\1 '11 = - yA. 
The distribution of 11 may be helpfully visualized by a soap-film analogy. Imagine the pipe cut by a p lane perpen­
d icular to its ax is, and span the cross-section by a soap-film . If a small pressure difference yA is se t up across the 
fi lm, the small disp lacement 11 of the film obeys the above equation , with bounda ry condition 11 = 0, a nd therefore 
g ives a pictu re of the veloc ity di stribution in the pipe, o r in the open channel. 
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This functional equation enables us to deduce a good dea l about the form of lto( W ). First 
let W be very la rge. The velocity at the origin for the infinitely wide elliptic channel is 
presumably the sam e as for an infinitely wide channel of uniform depth a, for which we a lready 
know the result by putting y = 0 in (5) : 

Uo( 00) 
n+ I' 

For W = I the channel is semi-circular and we know by putting r = 0 in (6) that 

lto(r) = ~(!...k)n = (!...)n lto(oo). 
n+ I 2 2 

For W small we use (8) and find 

lto( W) = Wn+I lto( 00) ex: wn+l. 

Thus, in Figure 3, we know the form of the curve near 0, we know the point P, and we know 
the asymptote. W e can also find the slope of the tangent at P. For this purpose differentiate 
(8) with respect to W, 

and put W = r to give 
u~ ( r ) = t(n+ r) uo ( r). (9) 

- - - - -- - -----

~ 

p P 
tio (I) - --

/ 

/ I 
W I 

0 Q. 1 

Fig. 3. The veiocil)' at the origin Uo as afllnction of W , the ratio of half-width to depth, in afami(v of symmetrical channels 
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This shows that the tangent at P m eets the W axis at the point Q" say, which divides the interval 0 to I in the ratio n- I to 2. 

Let us pause to emphasize this remarkable result. Points near P correspond to slightly ellip tic channels. The velocity at the centre of a slightl y elliptic cha nnel may be found merely by using symmetry, a dimensiona l a rgument, and the known result for a semi-circula r channel- without solving the differentia l equations. 
If n = 3, as we shall assume later, the results are as follows : uo ( W ) ex W4 for small W; 

Uo( l ) = l2aAk3; U~ ( I ) = 2Uo( I ) , so that Q, bisects the in terval 0 to I ; Uo( oo) = iaAk3. By further differentia tion of (8) and setting W = I it is possible to derive conditions on som e of the higher deriva tives of Uo with respect to Wat W = I (a curious result is that the (n+ 2)th d erivative of Uo at W = I is a lways zero) . But it is not possible to d etermine the entire function in this way. Physicall y this is rather obvious. Mathematically it may be seen by first writing (8) as 
W - Hn+l l uo( W) = W!(IH 1 l uo( W- I) 

and then making the substitution W = eP • The left-hand side becomes a fun ction of p, namely 
e - !( n+ llp Zlo(P), 

which we may call J (p). The r ight-hand side becomes 

e!(n+ l lp uo( - p), 
which is simply J ( - p). Thus with this substitution the fun ctiona l equation (8) reduces to 

J (p) = J (-p), 
which is satisfied by any even fun ction. This shows conclusively (if any proof were needed ) that we cannot expect to deduce the entire function uo ( W) simply from (8). 

The reader may have no ti ced that, in d educing equation (8) , we did not make full use of the fact that the cha nnel was elliptical. W e onl y used ce rtain symmetry properties . In fact the equation is true for other families of cha nnels. An example is the channel which is given in the fi rst quadra nt, y ~ 0, z ~ 0, by 

(y)m ( z )m - + - = I a Wa (m = 1,2,3, ... ), 

and which is completed by refl ecting this curve in they axis. m was 2 in the previous argument, but it does not need to be. The requirem ent for equation (8) to hold is that, after reflexion in the z axis, the curves should form a one-parameter fami ly passing th rough the points (0, ± Wa) and (±a, 0) such that any member is specified by the value of W. They must a lso be such that rotating a curve a bout the origin through goo, a nd then decreasing the scale by a factor W, gives a curve of the original famil y. Notice that a triangula r cross-section (m = I ) satisfies these conditions, but the parabolic cross-section 

~+ (_z )2 = I 
a Wa 

that we use later does not. 

5. SOLUTION FOR A SLIGHTLY ELLIPTIC CHANNEL 

If n = I, as assumed by Somigliana, the basic equa tions ( I ) and (4) reduce to Poisson's equation for u, but when n of=. I the problem is essentia ll y non-linear and ana lytical solutions, other than the three simple ones in §3, a re hard to find. Dr. W. C hester has succeeded in find ing a solution for a semi-elliptic channel that departs on ly sligh tly from a semi-circle- the derivation of his solution, which he has kindly a llowed me to reproduce, is given in an 
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Appendix. The boundary is the semi-ellipse of depth a and half-width a( I + E) (Fig. 4) . The 

solution, valid for small E and obtained by a perturbation method, is, in cylindrical polar 

coordinates r, 6, x, where r, 6 are in the plane yz and Ox is the cylinder axis, 

k{r EC(r)C-n } 
7 1"X = - - -+- - cos 26 

2 a 2n a 

I (r) c-n 
7 0X = "2 Ek ~ sin 26 

u = n~IGr[I-(~r+I+;E (n+ I ) {I - (~r cos 26}] 

( 10) 

where c = t(n - I)+ t (n2 + 14n+ I):. The solution satisfi es the differential equations and the 

boundary conditions to the first order in E. 

\ 
\ 
\ a. 

\ 

~a.(I+f.)~ 

r / 

/ 
/ 

/ 

/ 

I 

I 

Fig. 4. Semi-circular channel perturbed slightly into a semi-eliij)tic shape 

The velocity at the ongm (r = 0) may be found directly from equation (9) without 

recourse to the full solution. Thus 

uo ( W ) = uo(I + E) = Uo ( I ) + EU~ ( I ) = {I + tE (n+ I)} uo( I ) 

by equation (9), which agrees with the value obtained by putting r = 0 in the third of 

equations ( 10) . These last equations show that, ifn = 3, incl'easing the width of the channel 

by a factor ( I + E) increases the velocity at 0 by a factor ( I + 2E). 

For 12 = 3 Chester's solution is 

Trx = -~{~+o. 768 E(;r
606 

cos 26} 

U = ;2 aAk3 [I - (~r + 2E{ 1-Gt606 

cos 26}] 

Notice how the variation of tr x with r departs from linearity by the addition of a term 

proportional to Erl o

606 . This means that OTrx /or at the origin is unchanged by the perturbation 

and re tains the value -tpg sin a appropriate to a semi-circle. 

I have tried to repeat this perturba tion calculation taking as the unperturbed state the 

solution for an infinitely wide channel of uniform depth, instead of a semi-circular channel. 

But the m ethod fails to produce a complete solution- a lthough certain results may be derived. 

The reason for the failure is that ony = 0 the strain rate in the unpertu rbed state is zero, so 

that if n #- I any perturbation on y = 0 is essentia lly non-linear. Thus the equations cannot 

be linearized over the whole fi eld. It might be thought that the sam e difficulty would have 
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occurred with the semi-circle at r = 0, but here, a lthough the unperturbed strain-rate is 
zero, the perturbed strain-rate is a lso zero. So the m ethod succeeds for a semi-circle . 

The difficulty with perturbing the solution for an infinitely wide plane bed may be 
avoided by a ltering the flow law so that it is Newtonian (n = I) for sm a ll stresses, for example, 
E = AT+BT3, where E is the strain-rate and T is the stress . Then the perturbation from zero 
strain-rate on y = 0 takes place in the Newtonian range and linearity of the perturbation 
equations is preserved. Some of the results are of interest but the analysis is rather too long 
to report here. 

This is as far as it was possible to take the problem by purely analytical m ethods. To make 
further progress we solve the equations numerically as d escribed in the next section. 

6. NUMERICAL SOLUTIONS 

The equations to be so lved a re 

aTXY aTxz 
~+Tz = - pg S111 iX, 

where T = +(T~y +T~z ) l, with the boundary conditions: 

Txy = 0 on y = 0, 

U = 0 on the channel. 

To express the equations in dimensionless form, let a be the depth of the channel a t z = 0, 

and define a stress k = pga sin iX as before. Write 

T hen we have 

r = y/a, Z = z/a, 
T y = Txy/k, Tz = Txz/k, T = T/k, 

U = u/(aAkn). 

au 
ar T n- r T y , 

au 
az = T n- r T z, 

where T = + ( T~. + T~ ) 1, with boundary conditions T y = 0 on r = 0 and U = 0 on. 
the channel. W e shall take n = 3. 

After experimenting with several unsuccessful (because non-convergent) schemes for 
solving these equa tions by iteration , the following workable numerica l m ethod was found. 
In troduce a stress function f which is such that 

af J 
Ty = - - -Y az 2 ' 

Equation (11 ) is then automatically satisfi ed. Differentiate equations ( 12 ) with respect to 
Z and r respective ly and subtract to eliminate U. Now substitute for the stress components 
in terms of f and finally obtain the following equation for f: 

{( af I )1 (af 1 )2}a2f {( af r )2 (af I )2}a2f az - ; r +3 ar+; Z ar2+ 3 az- ; r + ar+; Z aZ2 
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This is the differential equation that we solve numerically. The boundary condition on 
r = 0 is T y = 0, which in terms of.p is a.p/az = 0, or .p = constant. Since .p as d e termined 
by (13) contains an arbitrary additive constant, we may as well fix the boundary condition 
on r = 0 as .p = O. 

On the channel boundary we wish to know the condition on .p that corresponds to 
U = o. If the angle of the boundary is rp as shown in Figure 1 b , dU = 0 in the direction 
defined by dY/dZ = - tan rp. Since 

we have 
au/ar dZ 
au/az = - dr = cot rp, 

or, by equations (12), 

Ty 
Tz = cot rp. 

Substitution from equations (13) finall y gives 

a.p/aZ- t r 
a.p/a y +tZ - cot rp 

(15) 

as the boundary condition on .p on the channel. (I t may also be expressed as a condition on 
a.pjan, the derivative of.p a long the outward normal to the boundary, 

a.p [ 
-:;;- = - (Ysin rp - Z cos rp ), 
un 2 

but we shall use the Cartesian form (16) in preference.) 
Equation (14) is of the form known as quasi-linear, that is, it is linear in the second-order 

derivatives of.p. It is this feature that makes possible the iterative m ethod that we use. W e 
take a rectangular m esh of which a pa rt is shown in Figure 5. The centra l point numbered 2 

is any point of the m esh inside the boundary, and its eight neighbours are numbered as shown . 
If equation (14) is now written as a finite difference approximation at the point 2, centra l 
differences may be used for the first derivatives, and the important point is that these will 
not involve .p2, the value of.p at m esh point 2 . .p2 will only appear in the finite difference form 
of the second derivatives, which occur linearly. The result is that (14) becom es an equation 
involving .p2 and the values of .p at the eight neighbouring m esh points, and that in this 
equation on ly the first power of .p2 occurs. Thus .p2 is readily expressed in terms of the eight 

6 4 7 

2 l 
3 

11. 

8 5 9 

Fig. j 
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neighbouring values. Specifically, the finite difference equations fo r t/;2 in a form suitable 
jor machine computation in succession are: 

F = { ( ~J6 + t/;9 ) - (t/;7 + t/;s)}/hl 

E = ( ~J 5 -· t/;4 )/2h+ t< 

D = ( .p3 - ~J,) /2l - t Y 

C = DEF 

B = (D2 + 3£2) /h2 

A = (3D2+ E2 )W 

.p2 = {A ( .p ' + ~J3) + B (.p4 + .pS )+C} /{2 (A+ B)} 

( 17) 

where hand l are the m esh interva ls pa rallel to OY and 0< respective ly. When approximate 
values are known for t/; at the surrounding points these equations may be used to improve the 
value t/;2 at the central point. The technique is therefore to start with a trial solution, and then 
systematicall y to use ( 17) to improve t/; a t each interior point in succession until further use of 
the formulae produces no change, to the number of significant fi gures used- in fact 7 or 8. 
Improved values are used in (17) as soon as they are obtained . When th e point 2 in Figure 5 
is on or near a boundary some of its neigh bours may be on or outside th e boundary. The values 
of.p at these peripheral points are found by using a finite difference approximation of the 
boundary condition. In fact the first trial solution was a lways taken as ~J = 0 everywhere; 
this corresponds to T y = - tY, T z = - tZ, and is the solution for a semi-circular boundary. 

Having found .p( Y, Z ) we may ob tain T y and T z from equations ( 13) by differentiation , 
and then U(Y, <) {i'om equations (12) by integration , using the condition U = 0 on the 
cha nnel boundary. 

To begin with , a rectangular boundary was taken so as to estab lish the technique without 
the complication of a curved boundary. Then, as a first curved boundary, a semi-ellipse 
was tri ed ; this had the advantage that the results for small eccentri cities could be checked 
against Chester's perturbation solu tion. When the programme was satisfactory for an ellipse 
it was slightly modified for a parabolic boundary, which is more like a real g lacier channel, 
but fo r which fewer checks are avai la ble . There is nothing to prevent a programme being 
written fo r a channel shape meas ured on a rea l glacier if it were thoug ht worth while. 

(i ) R ectangular channel 

Consider the rectangular boundary Y = I , < = ± W. The symmetry in the Y-axis m eans 
tha t the equations need only be so lved in the first quadrant. On < = 0, T z = 0 by symmetry, 
and h ence .p = o. On Y = I we have 4> = 0 in (16) ; hence o.p/a y = - t<. On Z = W 
we have 4> = t 7T in (16) ; hence at/; /a z = tY. Finite difference forms of these boundary 
conditions are easy to write down. The m ethod was programmed for an LB.M. 1620 digital 
computer with W as a variab le parameter. It was found bes t to stal·t with a 6 X 6 m esh 
covering the first quadrant. The result was then used as the starting trial solution for an 
I I X I r m esh, and the result from this was used in turn as the first trial for a 2 r X 2 I m esh. 
The symmetry of the boundary, as discussed in §4, means that the solution for half-width W 
is readil y converted into the solution for ha lf-width W- I. Therefore onl y the values W ~ I 

need be considered . 
With W = I the values of .p were improved systematica lly row by row. The solution 

converged on ly slowly. So, instead, the points were taken first row by row, then column by 
column, then row by row again , and so on (the alternating direction m ethod) . The rate of 
convergence improved greatly, but eventually settled down to a slow rate with successive 
so lutions showing a lightly damped osci llation. This tendency was cured by improving the 
treatment of the corner point Y = I , Z = W. It is readily shown from the boundary conditions 
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that a t this corner point C the gradient of.p along the diagonal oc is zero, for all values of W. 
W e therefore used this fact to improve the value of.p at C when its turn came. The rate of 
convergence was then acceptable, but it was further improved by using a technique of over­
relaxation , the factor of over-relaxation being controlled by the operator and varied as 
judgement dictated during the computation. The LB.M. 1620 is relatively slow ; with a 
faster machine it would not h ave been necessary to resort to all these ways of speeding up 
convergence. For all-night runs no over-relaxation, or only a mild amount that did not 
require the operator's presence, was used. 

'P was found on a 2 I X 2 I m esh for rectangles with W = I , 2 and 3. The stresses T y , T z 
were computed £i'om (13), and so automatically satisfy the equilibrium equation (11 ). U 
was found by integrating the second of equations (12) in horizontally from the wall Z = W 
by Simpson's rule, which is much more accurate than the difference formulae used in other 
parts of the computation . If the equations are satisfied, these values of U should agree with 
those obtained by integrating the first of equations ( 12) vertically up from the bed Y = I. 

This gives a check on the accuracy of the solution (column 4 of Table I ) . The mean of the two 
integrations was taken as giving the best value of U. An indication of the accuracy is also 
given by comparing the result for the 11 X 11 m esh with that for the 21 X 21 m esh (columns 
2 and 3 of Table I ). 

Figure 6a shows the distribution of velocity over the cross-section for W = I, 2 and 3, 
and Figure 6b shows the distribution of the shear stress magnitude T. Thus Figure 6b a lso 
shows how the rate of shear (which is proportional to T 3) is distributed over the sections. 
Figure 6c shows, at lower right, the distribution of the shear-stress components T y (that is 
Txy in units of pga sin ex) down the Y-axis, and shows, a t lower left , the distribution of 
TZ (TXZ) on the Z-axis. Figure 6c also shows the distribution of velocity down the Y-axis 
(upper right) and along the Z -axis (upper left ) . W e shall return to these results later. 

U ·12 

.04 

y 
.01 

'00 
W= I W= 2 

U 
· 15 

.06 

·03 / 

·00 

W = 3 

Fig. 6a. Velocity distribution in rectangular channel sections (n = 3). Only olle half of each channel is shown, the complete 
channrl being ob tained by ref/exion in the left-hand boundary. Solutions are givenfor W , the ratio oJ ha(t:width to depth, 
equal to I , 2 and 3. U is a dimensionlcss measure of velocity . 
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Fig. 6b. D istribution of the shear-stress magnitude T (dimensionless ) in rectangular channel sections. n = 3 

00 Recrangl es 
'2 

u 

3 

2 
·1 

3 

3 

-I -I 

Fig. 6c. Rectangular channels (n = 3) . Top left: velocifY distribution along a transverse lille (Z-axis ) on the sll1face. T O/J right: 
velocity distribution down the Y -axis. Bottom left : distribution of shear-stress com/Jonent Tz (a dimensionless measure of 
the shear-stress com/Jollent Tz X) on the Z axis. Bottom rzght: distribution of shear stress com/Jonellt T y (a dimensioll less 
measure of T .ry) down the Y -axis. Numbers 011 curves are vallles of W , the ratio qf haif-width to depth 
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T A BLE I. RECTANGULAR CHANNELS 

n = 3 
W = half-width /d epth 

Vo = velocity at 0 in dimensionless form 

= uo/{aA(pga sin u)l} 

(2) (3) 
Vo E rror in V 

11 X 11 21 X 21 

0 

0 .0428 0·0433 0·0002 

o · 126 0. 123 0·001 

o · 187 0·173 0·003 
0.2500 

Time for one traverse over 2 I X 2 1 mesh on I.B.M. 1620 was 6 min . 

(4) 
T ime 
hr. 

Error shown in column 4 is one-half of the maximum discrepancy in V between the results of horizon tal and 
vertical integration on the 2 I X 2 I mesh. 

Solutions for W = t and t are not shown in the figures, but they can be readily found by 
the similarity arguments of §4. For example, the distributions of U and T z on r = 0 for 
W = } are obtained from the distributions of U and T y on Z = 0 for W = 3: linear 
dimensions are divided by 3, shear stresses are divided by 3 and the velocity is divided by 
34 = 8r. 

Fig. 7a. Velocity distribution infour semi-elliptic channels. To obtain the complete channel reflect each diagram in the lift-hand 
boundary. n = 3 
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-7 
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Fig. 7b. Distribution of shear-stress magnitude T (dimensionless) in semi-elli/ltic channels. n = 3 

Se.mi -e.llipses 

4 

3 

2 

4 3 z - z 

4 
3 

Fig. 7C. Semi-elli/l!ic channels (n = 3) . TO/l left: velocity on a transverse line (the Z -axis) 011 the surface . TO/l right: velocify 
distribution down the Y -axis. BoUolll leji: shear stress T Z all the Z -axis. Bottom right: shear stress T y all the Y-axis. 
Numbers all curves are values of ~v 
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(ii ) Semi-elliptic channel 

The next a ttempt was on a seri es of semi-elliptic channels of depth I and half-width W. 
The n ew feature is the curved boundary. The rectangular mesh was retained, some points 
n ow, of course, being outside the boundary. In principle the method was to use ( 17) at all 
interior m esh points. This required that values of .p be assigned to certain exterior mesh 
p oints close to the curved boundary, a task which was d one by writing the boundary condition 
( 16) in an appropriate finite difference approximation. (In fact there were three different 
-classes of exterior m esh points to deal with , and specia l consideration was needed for exterior 
points near the corners (0, W) and ( [,0). Certa in ways of treating the exterior points led to 
instability in the solutions. ) The storage capacity of the I.B.M. 1620 used ( 20,000 d ecimal 
digits) was such that b y breaking up the programme into severa l parts it was just possible to 
accommodate a rectangular mesh of [ [ X I [ points in the first quadrant. 

For a semi-circle ( W = I) the programmes gave Uo = o· 03 I 24, truncated to five d ecimal 
places, compared with the theoretical value of i2 = o· 03 I 25. Next, the value W = [ . 0 [ was 
t ried fo r comparison with Chester's p erturbation so lution . The stresses agreed to I part in 
10 4 and the velocities to 10-5, which is within the accuracy of the perturbation method itself. 
The programmes were therefore assumed to be free from mistakes . 

Table 11 and Figures 7a, b, c show the computed results for ellipses with W = 2, 3 and 4. 
The numbers and curves for W = 0, I and et) are from exact formulae. W e shall discuss the 
results below. 

The solutions for W = t, }, t are not shown, but, as with rectangles, they are r eadily 
d educible by similarity arguments. 

(iii ) Parabolic channel 

The programme for a parabolic channel of depth I a nd ha lf-width W was a lmost identical 
to that used for the ellipse. Again, an I [ X J I mesh was the fin est that could be accommoda ted 
on the machine. Some results are in Table IlIA. 

When the values of U found by horizontal and by vertical integration were compared it 
was found that the values on the line r = 0 by hori zonta l in tegration were unreliable for 
W = I. This is because the in tegration starts in the top right-ha nd corner where T z is 
cha nging rapidly. The result from vertical integration was taken as the fin a l result for U in 
this case. In other cases the mean of horizontal and vertical integrations was taken. T h e error 

Notes : 

o 

2 

3 
4 
00 

TABLE 11. SEMI-ELLIPTIC C I-I ANNELS 

n = 3 
W = h a Ir-w idth/depth 

Uo = velocity at 0 in dim e-l1sionless rorm 
= llo/{aA (pga si n all} 

Q = discharge in d imensio nless rorm 
= q/{al A (pga sin all} 

(2) (3) (4) 
Uo Error in U Time 

hr. 

0 
0'03 125 
0' 089 1 0 ' 0004 5 
o · 1277 0·00 1 I 3 
o · 153 0 ' 002 4 
o · 2500 

T im e ror one traverse over I I X 11 mesh on I.B. l\1. 1620 was I' 3 m in . 

o 
o· 03272 
o· 1826 
0'379 
0 ' 587 

00 

Error shown in column 3 is one-haIr or the maximum discrepancy in U bel\veen the resu lts or horizonta l a nd 
ver ti cal in tegrat ion. 
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shown in column 3 of Table IlIA is one-ha lf of the maximum discrepancy between the two 
integrations for U (excluding the line r = 0 when W = I ) . The distributions of the velocity 
and shear stress are shown in F igures 8a, b , c; they are discussed in the nex t section . 

Since measurem ents taken from the fi gures wi ll be less accurate than the computed 
resu lts, copies of the results for rec tangles, ell ipses and parabolas in numerical form have 
been deposited in the Library of the G laciological Society and in the W orld Data Centres 
(G lacio logy) . 

( I) (2) 
W Uo 

0 0 
0'022 1 

2 0 ' 06 75 
3 o· 104 
4 o · 131 
et:) 0 ' 2500 

TAilLE IlIA. P ARABOLIC CIIA. NELS 

11 = 3 
W = hair-width /d epth 

Uo = veloc ity a t 0 in dimensionless ro rm 
= lIo/{a.4 (pga sin a) l} 

Q = discha rge in d im ension less fo rm 
= q/{al A (pga sin a) l} 

[J = mean veloc ity over the sec tion in dimension lcss rorm 

Us = mean veloc ity o n th e surrace in dimension less rorm 

(3) 

Error ill U 

0 ' 0007 
0 ' 00 16 
0'002 
0'004 

(4) 
Estimated 

lime 
hr. 

~3 

3 
-"':1 
~3 

(5) 
Q 

0 
0' 0199 
o · I 172 
0 ' 255 
0'404' 

et:) 

(6) 
(J 

0 
0' 0 149 
0'0440 
0 ' 0637 
0'0757 
o· I 108 

• Improved rrom o· 4 1 by using asympto ti c slope o r Q: W gra ph. 

W 

o 

2 

3 
4 
et:) 

o 

2 

3 
4 
tIJ 

o 
I 

2 

3 
4 

CXJ 

r 
I 

1 
r 

li /uu j 
l 

r 
i 
l 

TAilLE III u. VELOCITY R ATI OS IN P ARABO LI C CHANNELS 

u = m ean velocity over the sect ion 

lis = m ean velocity on the surrace 

11 0 = ve locity at centrelin e or surrace 

D. /H.O. = diffe rent ia l mOlion on ly 

8.S. 0. = bed sli p only 

Il = 2 11 = 3 
D.M.O. B.S.O. D.M.O. 8.S. 0 . 

0 '50 0'429 
(0·80) 0·837 
(0'9 1) 0 ' 980 
(0-93) 0 -997 
(0'93 ) 1 -005 
1· 00 1-09 1 
0'38 o· 34.3 

(0- 67) 0- 674 
(0- 65) 0- 652 
(0·61 ) 0 -612 
(0- 58) 0'578 
0-46 0-443 
o· 75 0-800 

(0-8) 0- 805 
(0' 71) 0- 665 
(0·66) 0- 6 14 
(0-62 ) 0 -575 
0-46 0'4°6 

D .M.O. 

0'38 
(0 ·86) 
( I '03) 
( I '05) 
( I -06) 
1-15 
0-3 1 

(0- 67) 
(0 -64) 
(0-60) 
(0 -56) 
0-42 
0·83 

(0·8) 
(0- 63) 
(0- 58) 
(0' 54) 
0'37 

(7) 
Us 

0 
0 ' 0 178 
0'0449 
0' 0639 
0 ' 0753 
o · 10 16 

11 = 4 
B.S.O . 

https://doi.org/10.3189/S0022143000018670 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000018670


JO U R NAL OF GLAC I OLOGY 

( iv ) Discussion of results 

Let us look first at the curves at the lower righ t in Figures 6c, 7c and Sc, which give the 
behaviour of T y on the r axis . They are interesting because they show to what ex tent the 
linear variation for an infinitely wide channel (aTy ja r = - I) and for a semi-circular 
.channel (a T y ja r = - t ) still holds good for other channel shapes. All the curves, except that 

TABLE IIlc. KINEMATIC W AVE VELOCITIES IN PARABO LIC CHANNELS 

C = kinematic wave veloc ity 

fi = mean velocity o r ice over the sect ion 

li s = mean velocity or ice on the sUI-race 

110 = velocity or ice at cent rcl ine or sUI-race 

D.M_O . = differentia l mot ion only 

B.S_O. = bed sli p on ly 

1Z = 2 11 = 3 n = 1-

HI D.M.O . B.S_O. D .M.O. B.S.O. D.M.O. B .S.O_ 

0 ( 2·00 I' 50 2'33 1· 67 2- 67 1· 83 
I 

{ 
(2' 51) 1'74 3'0 1 1' 99 (3' 51 ) 2 -23 

2 c/u (2 ' 71) 1-88 3' 28 2 - 18 (3 . 85 2 '47 

3 (2 · 83 ) 1- 94 3 -44 2 -25 (4'05) 2'56 

4 (2-88) 1'96 3'5 1 2'28 (4'14) 2 ·60 
.C1J 3'00 2·00 3. 67 2'33 4'33 2·67 

0 r 0- 75 I, 50 0·80 1· 67 0·83 1·83 
I ( I -67) 1'74 2'°3 1'99 (2 ' 34) 2 ' 23 
2 C/lIo 1 

( I' 75) 1- 88 2· 14 2 - 18 (2 ' 48) 2 ' 47 

3 ( I ' 73) 1'94 2· I I 2 ' 25 (2 ' 44) 2 ' 56 

4 ( I ·67) 1'96 2- 03 2 ' 28 (2'34) 2·60 
C1J l I , 37 2·00 1-63 2 -33 1·85 2·67 

0 r 
1- 00 I -50 1-00 1· 67 1,00 1·83 

I (2-0 1) I , 74 2'52 1' 99 (3'03) 2'33 
2 

C/Us 1 
(2-47) 1·88 3'21 2· 18 (3-95) 2'47 

3 (2 ·62 ) 1' 94 3 ' 43 2'25 (4'24) 2'56 

4 (2·69) 1' 96 3'53 2-28 (4' 37) 2·60 
C1J l 3 ' 00 2·00 4 ' 00 2-33 5 ' 00 2·67 

TABLE llID. RATIO OF PROPORTIONAL CHANGE IN VELOCITY TO PROPORTIONAL CHANGE IN 
THICKNESS FOR P ARA130LIC CHANNELS 

a = ice thickness at centre or sec tion 

n .M.O. = differen tia l motion only 

B.S.O. = bed sli p onl y 

/1 = 2 11 = 3 Il = 1-

W D .M.O . B.S. O. n.M.o. B.S_O. D.M.O. B_S.O. 

0 ( 1'50 o· 75 2,00 1- 00 2 ' 50 1,25 

{ 
(2' 26) 1' 12 3 ' 02 1-49 (3' 77) 1·86 

2 a dli (2' 57) I, 32 3'42 I, 77 (4' 27) 2'2 1 

3 u da (2' 74) 1' 4 1 3. 66 1- 88 (4 ' 57) 2'35 

4 (2 · 82 ) 1'44 3' 77 1- 93 (4- 71) 2'4 1 
.C1J 3'00 I, 50 4- 00 2·00 5'00 2'50 

0 r I' 50 o· 75 2·00 1'00 2'50 I' 25 
I (2 ' I ) 1'1 2 2·80 1- 49 (3- 5) 1·86 
2 a duo 

1 
(2- 54) I· 32 3 '39 1 '77 (4'24) 2 · 21 

3 ;;' Ta (2 · 65) 1' 4 1 3'54 1·88 (4'42) 2'35 

4 (2' 77) 1'44 3. 69 1' 93 (4. 61 ) 2'4 1 
.C1J 3- 00 I· 50 4 ' 00 2-00 5,00 2'50 

0 ( 1'50 0'75 2,00 1-00 2-50 1'25 
I 

{ 
(2'4) 1,12 3'2 1'49 (4'0) 1·86 

2 a dus (2- 58) I, 32 3'44 I, 77 (4 '30) 2 ' 21 

3 u.Ta (2- 74) 1 ' 41 3. 65 1· 88 (4' 56) 2-35 

4 (2 ·81 ) 1' 44 3' 75 1 ' 93 (4. 69) 2'4 1 
·00 3'00 I, 50 4,00 2·00 5'00 2'50 
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for fill ---7 00 , start out from the orig in with aT y jay = - t, a fact that experimenters using 
bore holes should note; Ch es ter's perturbation solu tion a lso g ives this resul t, as we have 
a lready seen . T h e curves then bend over, but for rectangles they a ll meet the b ed , Y = I , 

with the same slope aT y jaY = - I (since the boundary condition U = 0 here implies 
aTz /2< = 0) . 

For rectangles the curves of T z: < on the Z -ax is (Fig. 6c, lower left) also have slope - t 
at the origin a nd - 1 at the edge, for the sam e r eason. The T z: < curves for ellipses and 
parabolas will be discussed in a momen t. 

For some purposes it may be useful to app roximate the curve of Ty ( Y) on the Y-axis by 
t he straight line 

T y = - fY, 

.choosing the constantfso as to g ive the true surface velocity if integration is made with this 
a pprox imate shear stress up the Y-ax is. The va lu es off, which is a shape factor, are given in 
Table IV. 

TABLE IV. THE SHAPE F ACTORJ I N THE ApPROXIMATE FORM ULA T Y 1/ = - Jpgysin a 

w = haJf~width !d cplh 

W f 
ReclangL. Ellij'se Parabola 

0 0 0 0 
± o· 134 
J. O' 204 o · 185 3 
I 0'3 13 0 ' 28 1 '[ 

I 0'558 0'500 0'445 
2 O' 789 o· 709 0 .646 
3 0·884 0'799 0'746 
4 0·849 0·806 
ex; 1' 000 1·000 1' 000 

T he velocity curves in Figures 6c, 7c, Sc at uppe r left show th e di stortion of a transverse 
line drawn on th e g lacier surface a long the < -ax is. There are inte res ting differences between 
the results fo r rectangles, ellipses and parabolas. For rectangles (Fig. 6c) the line is a lways 
convex down glacier. For parabolas (Fig. Sc) it is convex down g lacier in the centre but 
concave at the edges- the curvature reverses and there is a point of inflexion. This is read il y 
expla ined by the behaviour of th e shear-stress component T z( T ZX ) on the < -ax is, wh ich is 
plotted immediate ly below the veloci ty curves. T z is ze ro at the cen tre of the g lacie l", Z = 0, 

b y symmetry. For a parabo la it is a lso ze ro at the edge < = fill for the following reason. At 
the top right-hand corner poin t of the cross-section (0, fill ) T y = 0, because the upper 
surface is free; but the other boundary condition U = 0 on the channel wall leads to equation 
(15), which is 

Tz = T y tan cp. 
H ence, unless cp = t7T, the fact that T y = 0 implies T z = 0 at the corner (0, W ). For a 
parabolic bed cp # t7T and so T z = 0 at the corn er'. But for a recta ngular or semi-e lliptic 
bed cp = ~ 7T at th e corner, and so there is no restriction of this sort on T z. It follows that for 
a pa rabol ic ch a nnel I T zl must pass through a m aximum at som e point between the centre 
and the edge. T his accounts for the reversal of curvature in the velocity curves for parabolas . 

For the parabola with fill = I (Fig. Sc) there is a part icul a rl y ra pid change of T z near 
the edge < = W. It is also consp icuous in the distribution of T ( Y, Z) in Figure 8b. The effect 
is caused by the steepness of the boundary wa ll. As we have just remarked, if the angle cp of 
the boundary is not t7T, T z must be zero; but, if cp = t7T, T z need not be zero. If cp is close 
to t7T, it is therefore quite understandable that T z will change rapidly fi"om a comparatively 
high va lue a short distance from the edge to zero on the edge itself. 
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o ,--__ -----,-_ ';--,,-, 

u 

y. ·01 

Fig. 8a. Velocity distribution in jOllr parabolic channels. To obtain the complete channel reflect each diagram in the left-hand 
boundary. n = 3 

·2 

- I 

. 4 

W = 4 

Fig. 8b. Distribution oJ shear-stress magnitude T (dimensionless) in parabolic channels. n = 3 
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If one were tempted to guess from the above arguments that there would be no maximum 
in I Tz l on the surface for semi-elliptic channels, one would be wrong. Figure 7c shows that 
I Tz l does go through a maximum for elliptic channels when W = 3 and a lso when W = 4. 
For W = 2 it probably does not. For W = 1 it certainly does not, and Chester's solution 
shows that it does not for small departures from W = I. Why should IT zl behave like this 
for elliptic channels? The reason is seen by letting W become very large. Th en on any line 
,( = constant in the rz plane, not too close to the edge, the velocity distribution will be that 

Parabolas 

4 2 

4 

-I -I 

Fig. 8c. Parabolic channels (n = 3) . TOj) left: velocity Oil a transverse lille (the Z -axi.r ) all the sll~race . Tol) right: velocity 
distribution down the Y-axis. B ottom I~rt: shear stress T z on the Z -axis. B ottom right: slzear stress T,. on the Y-ox is. 
JVumbers Oil C/lrves are values of W 

of an infinitely wide channel of appropriate d epth. The surface velocity U is therefore pro­
portional to H 4, where H is th e depth below th e point in ques tion. If we plot the curve of U 
against ZI W on th is basis for a semi-ellipse (F ig. 9) it is found to have an inflexion at 
ZI W = 1 h l3 = o· 577 (shown by an a rrow) . The corresponding curve for a parabola has 
an inflexion at ZI W = r 1 V 7 = 0.378. The curve for a rectangle is simpl y the stra ight line 
U = t and has no inflex ion. An inflex ion in the U curve m eans a maximum of I T zl. The 
fact that IT zl shows a m aximum for elliptic channels at the higher va lues of W is thus 
understandable. * 

The cha nnels of real glaciers are nearly a lways sloping, not vertical, at the edges. To the 
ex tent tha t there is no slip on the bed the arguments for T Z X = T z = 0 at the ed ge will there­
fore a ppl y. So we must expect that the maximum shear stress in the surface of a glacier will 
not occur precisely at the edge but at a certain distance in. If there is a gap between the 
glacier a nd the rock wall T z will certainly be zero at the extreme edge. Thus, curiously 
enough, no slip and free slip g ive the same result. 

Observation confirms that the maximum shear stress is not a lways a t the edge. To give 

* An extension of the argument shows that I Tz l wi ll a lways have a maximum for very w ide ellip ti c channels 
if 11 > I. 
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one example: at a transverse line of stakes on Austerdalsbreen, Norway, over three different 
periods of observation, 195 7- 58, 1958-59 and 1958- 63 a reversal of curvature (point of 
inflexion) occurred consisten tly at Z = -0 ·7 W. The slope of the side wall on that side was 
~ = 33°. At the other end of the same line ~ was much greater, 62 °; for 195 7- 58 no inflex ion 
was detected, but there was an observable inflexion for both 1958- 59 and 1958- 63 between 
Z = 0 · 9 Wand Z = W. In other words, the steeper the side wall the closel- is the inflexion, 
as the theoretical discussion leads us to expect. Since it occurs ra ther close to the glacier edge, 
perhaps in a lateral moraine, the inflexion phenomenon may often pass undetected. Figure 10 
shows evidence of the sam e effect on U ltramarine Glacier, Kenai Mountains, Alaska, in the 
form of a zone of margina l crevasses which occur a short distance in from the ice edge (the 
photograph is by Austin S. Post, who has kindly given permission to reproduce it) . This 
phenomenon explains why one can sometimes find a way down a glacier by going to the 
extreme margin when progress a short dista nce in from the edge is blocked by crevasses . 

• 2 

u Semi-ellipse 

Paro.bola 

o zjw ' 8 

Fig. 9. Velocity U (dimensionless) on a transverse line (Z -axis) on the surface for ve,y wide channels of rectangular, semi­
elliptic and parabolic cross-sections. n = 3 

Let us now look at the distributions of T ( Y, Z ) in Figures 6b, 7b, 8b. The fact that, for 
W > I, IT zl may have a maximum on the Z-axis, but tha t IT yl has no maximum on the 
Y-axis, accounts for the general nature of the distributions. For the rectangles with W = 2 

and 3 the pattern of T ( Y, Z) near the side wall is very similar; it suggests that there is a rather 
constant " edge effect" for wide channels. An invariable rule fo r all the channels is that the 
highest shear stress occurs at the point of the bed closest to the origin . For W > I this point 
is always the centre of the bed, except in the one case of parabolas with W near to I ; Figure 8b 
( W = I) illustrates this. 

Figure I I shows the centre-line velocity Uo plotted against W for all three channel shapes. 
The curves for rectangles a nd ellipses, but not parabolas, should obey the similarity principles 
of §4. The tangents at the points W = I on the curves are drawn through the point W = t 
on the Waxis, and it is interesting to see how closely the curves follow the tangents even up to 
W = 2. In closing this discussion let us emphasize the great effect that the drag of the valley 
sides has on the cen tre-line velocity . In a pa rabolic valley with a ratio of width to depth of 
8( W = 4) the centre-line velocity is approximately half what it would be in an infinitely 
wide valley of the same d epth (Fig. I I) ; Table IlIA gives the factor as 0· 131 /0 . 250 = 0.524. 
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Fig. 10 . Uliramarine GLacier, Kenai N/olllztains, ALaska. The ZOlle of crevasses a short distallce infrom the edge of the gLacier 
indicates that the maximum shear stress does /lot occur at the edge itself. (Photograph b), Austill S. Post, 12 August (961 ) 

7. DISC H ARGE AND MEAN V ELOCITI ES 

By integrating the velocity over the cross-section we m ay find the discharge q. This IS 

gwen in the d imension less [arm 
( 18) 

in Tables II and IlIA. Since the parabolic bed is closest to the real situation 111 glaciers our 
furth er discussions a re concerned with this case. 
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2 

/ 
/ 

/' 
/' 

Asymptote 

3 w 4 

Fig. I I. Velocity Vo (dimensionless ) at the origin as afulZctiolZ of W, the ratio if half-width to depth , for rectangular, semi­
eUi/Hic and /Jarabolic challl!elr. IZ = 3 

Q)s plotted against W in Figure 12 for n = 3. The two extreme cases W -+ 0 and W -+ ro 
may be treated analytically. As W -+ 0 the velocity distribution on any horizontal line becom es 
the same as that in an infinitely deep channel of appropriate width. By thi s principle we find, 
for a parabolic bed, as W -+ 0, 

or, for n = 3, Q, -+ (4/35) W5. On the other hand, as W -+ 00 the velocity distribution on 

Q 

- 5 r-----------.------------,------------.------------,------~--_, 

o 
/' 

/' 
~Asymptote 

/' 

2 4 3 w 
Fig. 12. D ischarge Q (dimensionless ) for parabolic channels as afunction if w. 11 = 3 

5 
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a ny vertical line where the d epth is H , say, is the same as that in an infinitely wide channel 
of uniform depth H. By this principle we obtain for a parabolic bed, 

w here 1(1' ) 

formula 

with 

Q 2 
Lim - = - 1(2n+ 5), 
IV co W n+ 2 

1f7T 

.f cos" (}dB . When r is a positive integer the integral is given by the recurrence 
o 

d (1' ) = (1' - 1) 1(1' - 2) (r ~ 2) 

1(1) = 1 and 1(0) = t7T. 
Putting n = 3 we find 

1( 11 ) = ( lo x 8 x 6 x 4 X 2)/(9 X 7 X 5 X 3) = 0 ' 3694. 

H ence the Q: W curve has a n asymptotic slope of ~ X o· 3694 = o' 1478. This slope is in fact 
reached to at least two-figure accuracy between W = 3 and W = 4 (thereby affording a 
furth er check on the computer programmes) , and enables us to infer that 

Q = o· 1478 W - o ' 187 ( W ~ 3). 

(The Q val ue for W = 4 is thereby improved from o · 4 1 to o· 404. ) 
The m ean velocity over the section, ii, is g iven in dimension less form 

a = ii /{aA (pga sin ex) n} 

b y a = i (Q/ W). 

As W -+ 0, U -+ {3 /( n+ 2)(n+ 4)} W n+l, and, as W -+ co, a -+ {3 /2(n+ 2)} 1(2n + 5). 
U is listed , for n = 3, in co lumn 6 of Table IlIA. 

The m ean velocity along a transverse line drawn on the g lacier surface is a lso of interest 
because it is relatively easy to m easure. Call it Us, or in dimensionless form 

Us = lls/{aA (pga sin ex ) '"}. 

It is given, for n = 3, in co lumn 7 of Table IIlA. The principles used above lead to the result 
that as W -+ 0, V s -+ (n+ 2)- ' W" +' , and , as W -+ co, V s -+ (n+ 1)- 1 1(2n+ 3). 

T able IlIA shows that, for W > 2 and n = 3, V s is quite close to U. The ratio 
a /V s = ii/us, the ratio of m ean velocity over the section to mean surface velocity, is listed 
in Table IIlB, column 4, under the heading n = 3, D.M.O. (differential motion on ly). For 
values of W between 2 a nd 4 this ratio is unity to within 2 per cent (fi gures in bo ld type) . 
(In fact the error in computing the ve locity distribution is a lso about 2 per cent, so it is not 
certain that we can detect a ny departure from unity in thi s range.) Even for W infinite the 
ratio differs from 1 by onl y 9 per cent. This seems to be a n important resu lt from a hydro­
logica l point of view, for it m eans that the m ean velocity of a glacier, and therefore, if the 
cross-section is known, the d ischarge, may be inferred purely from measu rements on the 
glacier surface, without the need for bore-hole experiments. On e simply m easUl'es the mean 
surface velocity by means of a line of sta kes, a nd then the m ean velocity over the sec tion is 
taken to have the same va lue. Note that thi s result has only been derived for parabolic sec tions. 

What effect will slip on the bed have on th is last result ? Apparentl y, very lit t le. For 
suppose tha t the entire m otion consisted of bed slip, so tha t the glacier moved fo rward as a 
rigid body. T hen certainly the ratio ii /us = I. T hus the result is true at both ex tremes- a ll 
differenti a l motion with in the ice, and a ll bed sli p. It is therefore presumabl y a good a pproxi­
ma tion for intermed ia te cases. 

It m ay be asked how sensitive this result for n = 3 is to the value ofn. V elocity distr ibutions 
for n i= 3 have not been computed , but nevertheless some informa tion on the n dependence 
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may be obtained by the following argument . In the extreme case W -+ 0 we find from 
previous resul ts 

and for W -+ CIJ 

a 3(n+ I) 1(211 + 5) 3(n+ l ) 
Us 2(n+ 2) 1(2n + 3) 2n + 5 

by the recurrence relation ( 19) . Thus, for th ese two ex treme cases we know precisely how the 
ratio ii/us dep ends on n. In Table IIIB, columns 2 and 6 show the values calcu lated for the two 
extreme cases with n = 2 and 4. T he variation of a/us with n thus revealed enables us to make 
an estimate, or a good guess, at a/us for n = 2 and n = 4 for intermediate values of W. 
I n these estim ates, which are shown in parentheses, the second decimal place is doubtfu l 
since it d epends on the inte rpolation method used. 

T h e values of a/us that would occur if motion cons isted en tirely of bed slip are a ll equal 
to 1 a nd are shown in Table IIIB under the heading B.S. O . (bed slip only) . W e conclude from 
the tab le tha t a equa ls U s to within a few p er cen t for 2 < W < 4 regard less of the amount 
of bed slip, and even when n differs a li ttle from 3. 

T h e ratios a/uo and us/uo are a lso shown in Table IIIB for n = 3 for differen tial motion 
on ly and [or bed slip on ly. The va lues for W 0 a nd W -+ CIJ are respec tively 

ii 3(n+ l) 3(n+ I) 
and 1(2n + 3), 

Uo (n+ 2) (n+ 4) 2n + 5 

and 
Us n+ 1 

Estima tes [or n = 2 and 11 = 4 a t intermediate values of W have been made according ly. 
It will be seen that the ratios are quite insensitive to the value o[n, but, un like a/us, they m ay 
be expected to vary signifi cantly with the amount of bed slip. 

8. K INE MATIC W AVE VELOCITY 

I t is shown in Ligh thi ll and Whitham ( 1955) or Nye (1960) that for unstead y slow flow 
in a cha nnel the velocity of kinematic waves o[ constant q is given by 

dq 
c = dS' 

where S is the area of cross-section. T his m eans that if the level of the ice in a fi xed parabolic 
channel changes so as to increase the cross-sectiona l area of the ice by dS, the discharge will 
increase b y dq , and the ra tio gives the kinematic wave ve locity. C learl y, our computations on 
paraboli c sections conta in the necessary info rma tion to find c [or n = 3, but a litt le further 
thought is needed becau se the calcu lations h ave exp li cit ly referred to a channel of fi xed depth 
and variable width, rather than a variable height of ice surface in a fixed cha nnel. 'vVe proceed 
as follows, for general n, remembering that differentiations with respect to S are for a fi xed 
parabola. 

By the definition of 0.. = o..( W ) in ( I8) we have q = o..( W ) y(a), wh ere y(a) oc a n +3• 

T herefore 
c S dq S d W do.. S dy 
a = qdS = Q dS dW+ ydS 

= (!...- dW ) (W do..) + (~da) (::. dy
) . 

W dS 0.. d WadS y da 
But, for a fixed parabola, TV oc S- A and a oc S~ . Therefore 

c 

a 
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F or n = 3 we take the values of dQ) dW from the graph of Q: W (Fig. 12) and so ca lcu late 
cia (Table lIIc, under the head ing n = 3, D.M.O., cia). As W -+ 0 we have seen that 
Q -> {4 /( n+ 2) (n+ 4)} wn+\ which leads to cl ii = ,Hn+ 4). On the other ha nd , as W CD 

we have dQ ldW -+ Q I W, which gives cia = ;\- (2n+ 5). 
Let us now consider the effect on the ra ti o cia of bed slip a nd of changing n. To es timate 

th e effect of bed slip it is instructive to think once again about the case where m o tion is. 
entirely due to slip on the bed, there being no d iffe rentia l motion within the ice at al l. We 
ass ume tha t slip occurs according to the law 

u ex T'~ 

where Tb is the sh ear stress on the bed, and m = ·,Hn+ J). (For a bed of uniform ro ughness. 
Tb must be unifo rm around the p erimeter of the parabolic section because u is uniform .) 
The expression for m is taken from Weertman ( r 957) . Simple sta ti cs gives Tb = pg (S//J ) sin IX, 

where S is the a rea of cross-sec tion a nd jJ is the perimcter in contact with ice, a nd then some 
straightforward calcu lation shows that 

clll = (m+ I ) - m(Slp ) (dp ldS ). 

"' Ill calculated with this fo rmu la a nd n = 2 , 3 a nd 4 is g iven in Table lIIc under the h eading 
cl fl , B.S.O. It seem s p lausib le to ex pect that wh en m otion is par tl y due to bed slip and partly 
to differenti a l mo tion within the ice the ratio cl ii will lie betwee n the ex tremes calcu la ted 
for D.M.O . and B.S .O. 

The effect on th e ratio clll of changing n is es timated by the m e thod used before: we know 
precise ly how th e ra tio depends on n for W -> 0 a nd W 00, so we use this information to 
make a rough estima te of the effect at intermedia te W. The va lues of clzl in Table lIIc show 
how this ratio is affected both by bed slip a nd by a change of n. 

The values of cluo and clus in Table IIIc now fo llow in a straightforwa rd way. The fo rms 
fo r '·V -+ 0 and W -+ 00 respective ly are 

and 

c n+ 1 
- -> - - and (Il + I ) J(2n + 3) 
Uo n+ 2 

C 
- -+ I and (n+ r) . 
Us 

or the three ratios, clii, cl Un a nd c(us, the one sh own by Table IIl c to be leas t affccted by 
thc a mount of bed slip is c(uo. ] t ha ppens that thi s is a lso th e ratio that is leas t d ep endent on 
WoveI' the practicall y importa nt range J < W < 4. Indeed for thi s range of Wand for 
n = 3 c(uo li es be tween 2 ' 0 a nd 2' 3 regardl css of the amount of bed slip. The ratio goes 
up o r down by abou to ' 3 as n inc reases or decreases by J. I n practical cases where the a moun t 
of bed slip is unknown this ratio C(llo seems to be the most useful. 

EJJect qf changes ill thickness on the velocity. Onc furth er type of ra tio may be conside red. Sin ce 
C(ll = (dq(q)((dSIS ), c(ii gives immed iately the fra ctiona l change of d ischa rge, in a fi xed 
cha nnel, due to a g iven fractiona l change in the c ross-sectional a rea. Glaciologists a re often 
more interested to know the fractio nal change of velocity that is caused by a g iven fractiona l 
cha nge in the ice th ickness. For this we calcu late (diilii )/(da(a) by the following steps: 

a da 3 S dll 
- - - - - - since, for a fi xed pa rabola, S ex a31 >, 
ii da - 2 iidS 

__ ~ (:... dq _ r) 
2 ii dS since dq = ii dS + S da, 
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Since c/ii is alread y known, this formula enables us to find (a/u)(du /da ) ; the results a re shown 
in Table IIlo. 

The fractional change in the centre-line velocity is a lso of in terest. R emembering that the 
changes are those for a fixed channel, some differentiation similar to that used above in 
finding c/u shows that 

a duo I W dUo 
- - = (n+ I)-- --. 
Uo da 2 Uo dW 

For n = 3, dUo/dW is taken from the graph of Uo : W in Figure I I, and the resulting values 
of (a/uo ) (duo/da ) are shown in Table HID under the h eading n = 3, D .M.O. The values when 
there is bed slip only (B.S .O. ) are of course the same as those of (a/ii ) (dii /da ). 

The ratio (a/us) (dus/da ) is formed in a similar way. For the case of differentia l motion 
·onl y it is notable that the formulae for W -+ 0 and W -+ 00 a re exactly the sam e for ii, Uo 

a dii a duo a dus I 
and Us, namely -= -d = - -d = - -d = - (n+ I) and (n+ I) respectively. As might be 

u a Uo a Us a 2 

expected from this resu lt, the fractional change of velocity with thickness at intermediate W 
d oes not depend very much on which particula r velocity, ii, Uo or us, is specified. An examina­
tion of Table IIlo makes this clear. T he ratios in Table IIIo evidently depend considerably 
upon the amount of bed slip ; they increase or decrease by between o· 5 a nd I . 0 as n increases 
or d ecreases by J . 

By way of summary we may pick o ut the following leading results from Tables IIIB, C and o. 
( I) The average surface velocity U8 is equal to the average velocity over the section ii to within 
.a few per cent for 2 < W < 4 regard less of the relative contribution of bed slip. T his resu lt 
is most exact for n = 3 but is not sensitive to the precise value of n. (2) For I < W < 4 and 
n = 3, the kinematic wave velocity c is between 2 ' 0 and 2' 3 times the centre-line ve locity of 
the ice uo regardless of the amount of bed slip. This ratio goes up or down by about o· 3 as n 
increases or decreases b y I . (3) For 1 < W < 4 a nd n = 3, c is between 2' 0 and 3 ' 5 times 
the m ean surface velocity of the ice Us. The exact value depends on Wand on the amoun t of 
bed slip, and cha nges by up to 0·8 as n changes by I. (4) The ratio of the fractional change 
in ve locity to a g iven fractional change in ice thi ckn ess is on ly lightly d ependent on which 
velocity is specified; but it can take values ranging from 1 ' 1 to 4' 7 d epending on the amount 
-of bed slip, the width- d epth ra tio ( I < W < 4), and the value ofn (2 < 11 < 4) . 
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A PPE DIX 

CHEST E R 'S S O LUTION FOR A NEARLY S E MI-CI RCU LAR C H ANNE L 

W e sta rt with the solution for a sem i-circula r cha nnel of radius a, a nd perturb the bounda ry 
slightly into a semi-ellipse with horizonta l semi-axis a( I + E) and d epth a (Fig. 4), E being 
sma ll. In pola r coordina tes r, e, x (Fig. 4) the two shear-stress components in the plane of the 
cross-section a re TT.'t, TI!X, which we m ay denote for brevity Tr, TO' T he equa tions a re 

I a(rT ,.) I aTO . 
~~+-;: aB = - pg S1l1 cx (18) 

T = 
T he unperturbed solution, with flow independent of e, is 

kr 
T ,. = - 2a = To, say, 

U = 1!~ 1 (~rl -Ur+l} 
where k = pga sin cx . For the pertu rbed solution put 

T 'r = To+ EG,", 

TO = Eao, 

U = (U)O+ EV, 

(U)o, say, 

1 
J 

( Ig} 

where a,., Go and v a re fun ctions to be determined , a nd substi tu te into the differenti a l 
equa tions, retaining only terms up to order Eo T he ze ro-order terms cancel, and we fin d 
from ( Ig) and (20) 

cv 
- = nA IToln- 1 a,· er ' 

I cv 
r ae - A ITol " - J Go· 

Subs ti tuting for the stress componen ts in (18) then gives 

e2v oV 02V 
r2 -;;-:; -(n- 2) r-a + n<1e' = 0, or r u -

as th e di ffe rentia l equa tion to be satisfi ed by the per tu r ba tion in velocity v. 
To the fi rs t order in E the chann el boundary is 

r = a (1+ ESin2 e) . 
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On the boundary (u)o is found from (22) to h ave the value 

(u)o = - w A (tk )n sin 2 
() 

to order E. To make u zero on the boundary we therefore choose v so that, on r = a, EV is the 
negative of this value; thus 

v = B ( I - COS 2()) on r = a, 

where B = taA (tk )n. Notice tha t it is sufficient to set this boundary condition on v at r = a 
rather than at the perturbed boundary. Thus (25) has to be solved for v with the boundary 
condition (26) . 

For a solution put 
v = B{fo(r ) - f, (r ) cos 2()}, 

where]o(r ) and], (r ) are fun c tions to be determined. Then, b y substitution int o 

, (fo dJo 
r- dr2 -(n- 2) rdr = 0 with ] o = I on r = a, 

and 
2 dj, dj, 

r dr2 -(n- 2) rTr - 41ifl = 0 with], = J on r = a. 

This gives dJo/dr = Crn- z' where C is a consta nt. But, from (24), 

ar ,-...... r, - n ov/or ,......, r- ' 

unless C = o. So we must have C = 0, otherwise aT is singular at the origin. H ence]o (r ) == I . 

The equation for], gives 

where c = t(n- r ) +Hn2+ 14n + I )!. (The other solu tion would make aT and ao singu lar at 
r = 0. ) So the solution for the velocity perturbation v is 

Equations (24) now give explicit expressions for the stress perturbations ar and ao. Fina lly, 
combining the perturbation with the unperturbed solution we find 

1 {r EC(r) C-n } 
Tr = - -k -+- - cos 28 

2 a 2n a 

I (r) c-n 
T O = '2 Ek ~ sin 2() 

(14 (k)n[ (r) "+1 I {(r)r \] u = 1l ~ 1 '2 1- ~ + '2 E(n+ l) 1- ~ cos 2()/ 

1 
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