THE FLOW OF A GLACIER IN A CHANNEL OF
RECTANGULAR, ELLIPTIC OR PARABOLIC
CROSS-SECTION

By J. F. NyE
(H. H. Wills Physics Laboratory, University of Bristol, Bristol, England)

AspsTrACT. Numerical solutions are found for the steady rectilinear flow of ice, obeying Glen’s non-linear
flow law, down uniform cylindrical channels of rectangular, semi-elliptic and parabolic cross-section. The
results are also directly applicable to the pumping of a non-Newtonian fluid down a pipe. There is assumed
to be no slip of the ice on the channel surface. Certain results on the centre-line velocity in symmetrical
channels may be derived purely from dimensional and symmetry principles. An analytical solution due to
Dr. W. Chester is given for a semi-elliptic channel section which departs only slightly from a semi-circle.
Contrary to a view sometimes held, the maximum shear stress at the ice surface in a parabolic channel and
in some clliptical channels does not always occur at the edge. With the flow law, strain-rate proportional to
(stress)3, the velocity averaged across the ice surface, which is easily measured with a line of stakes, is close
to the average velocity over the whole section for a wide range of parabolic sections; the hydrological
importance of this result is that the discharge may be inferred without the need to measure the velocity at
depth. Arguments are given to show that the result still holds when there is slipping on the bed and when
the power in the flow law differs somewhat from 3. Depending on the amount of bed slip and the shape of the
channel section, the kinematie wave velocity for a range of parabolic channels is between 2-0 and 2- 3 times
the centre-line velocity of the ice, and between 2.0 and 3-5 times the mean surface velocity of the ice,

REsSUME. L'écoulement d’un glacier dans un canal de section droite rectangulaire, elliptique ou parabolique. On a
trouvé des solutions pour I'écoulement permanent rectilinéaire de la glace obéissant a la loi non linéaire
d’écoulement de Glen, le long d’un canal régulier cylindrique de section droite rectangulaire, semi-elliptique
ou parabolique, Les résultats sont aussi dircetement applicables au pompage d’un fluide non newtonien a
travers une conduite. Il est supposé que la glace ne glisse pas a la surface du canal. Certains résultats de la
vitesse de la ligne centrale peuvent étre déduits des considérations de dimension et de symétrie. Une solution
analytique du Dr. W. Chester est donnée pour un canal de section semi-elliptique qui ne différe que de peu
d’une section semi-circulaire. Contrairement 4 une opinion énoncée parfois, le maximum de la tension de
cisaillement dans un canal parabolique ou elliptique ne se manifeste pas toujours sur le bord pour la surface
de la glace. Avec la loi d’écoulement, vitesse de déformation proportionnelle au cube de la contrainte, la
moyenne de la vitesse superficielle le long d’un profil transversal, facilement mesurée par une ligne de balises,
est proche de la vitesse moyenne pour toute la section pour biea des sections paraboliques; une conclusion
hydrologique importante en découle, i savoir que le débit peut étre obtenu sans mesure des vitesses profondes,
Des arguments sont présentés pour montrer que ces résultats sont valables méme lorsqu'’il y a glissement sur
le lit et lorsque la puissance de la loi d'écoulement différe quelque peu de trois. Dépendant du glissement sur
le lit et de la forme de la section du canal, la vitesse de la vague cinématique pour un ensemble de sections
paraboliques est comprise entre 2,0 et 2.3 fois la vitesse de la ligne centrale de la glace, et entre 2,0 et 3,5 lois
la vitesse moyenne superficielle,

ZUSAMMENFASSUNG. Das Fliessen eines Glelschers in einem Bett mil rechteckigem, elliptischem oder parabolischem
Querschnitt. Fir das stetige, geradlinige Fliessen von Lis nach Glen’s nichtlinearem Fliessgesetz in gleich-
formigen zylindrischen Betten mit rechteckigem, halbelliptischem und parabolischem Querschnitt werden
numerische Losungen gegeben. Die Ergebnisse sind auch unmittelbar aul das Pumpen einer nicht-
Newton'schen Flissigkeit durch ein Rohr anwendbar. Es wird angenommen, dass das Eis am Untergrund
nicht gleitet. Gewisse Ergebnisse iiber die achsiale Geschwindigkeit in symmetrischen Betten kénnen allein
aus Dimensions- und Symmetrieverhiiltnissen abgeleitet werden. Fir ein Bett, dessen halbelliptischer
Querschnitt nur wenig von einem Halbkreis abweicht, wird eine analytische Lésung nach Dr. W. Chester
gegeben. Im Gegensatz zu einer manchmal gedusserten Ansicht tritt die maximale Scherspannung an der
Eisoberfliche in parabolischen und in einigen elliptischen Betten nicht immer am Eisrande auf, Setzt man
im Fliessgesetz die Verformungsgeschwindigkeit proportional zur dritten Potenz der Spannung, so kommt
die mittlere Fliessgeschwindigkeit quer {iber die Eisoberfliche, die leicht durch eine Pegelrethe gemessen
werden kann, der mittleren Geschwindigkeit im ganzen Querschnitt fiir einen weiten Bereich parabolischer
Querschnittsformen schr nahe. Die hydrologische Bedeutung dieses Ergebnisses liegt in der Tatsache, dass
der Durchfluss ohne Geschwindigkeitsmessungen in der Tiefe ermittelt werden kann. Es werden Griinde fiir
die Giiltigkeit dieses Ergebnisses auch bei Gleiten am Untergrund und bei leichtem Abweichen des
Fliessgesctz-Exponenten von g angefithrt. In Abhéngigkeit von dem Betrag des Gleitens am Untergrund und
von der Form des Bettquerschnitts betriigt die Geschwindigkeit kinematischer Wellen fiir eine Reihe von
parabolischen Betten zwischen dem 2,0 bis 2,3-fachen der achsialen Eisgeschwindigkeit und zwischen dem
2.0 bis 3,5-fachen der mittleren Oberflichengeschwindigkeit des Eises.

1. Tne ProBLEM
The theory of the flow of a valley glacier (Nye, 1951, 1952, 1957) is notably incomplete
661

https://doi.org/10.3189/50022143000018670 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000018670

662 JOURNAL OF GLACIOLOGY

in a certain respect: that it fails to deal satisfactorily with the problem of drag by the valley
sides. This means, in particular, that the theory in its present state cannot explain quanti-
tatively how the ice velocity varies along a transverse line drawn on the glacier surface. The
problem is an old one. Measurements of the distortion of transverse lines have proliferated
since Forbes made the first observations 120 yr. ago, yet none of them has been fully explained
on a quantitative basis.

This paper tries to improve our understanding of the problem by finding numerical
solutions for the steady rectilinear flow of ice down uniform cylindrical channels of various
prescribed cross-sections—rectangles, ellipses and parabolas. Somigliana studied this problem
in a series of well-known papers (1921) on the assumption that ice behaved as a Newtonian
viscous liquid. Experiments on the creep of ice in the laboratory now show that it is more
appropriate to use a flow law in which the strain-rate is proportional to the nth power of the
stress, where 7 is not 1, as it would be for a Newtonian liquid, but has a value in the range
2 to 4. Our object is to solve the problem of steady flow in a channel under a non-linear flow
law of this type.

Glen’s experiments (1955) on steady creep in the laboratory under uniaxial compressive
stresses between 1 and 10 bars gave a good fit with a power law, n having a value of 3-17-+-0-2
or 4-2 according to how the results were analysed. Steinemann (1958, p. 25), on the other
hand, found that n varies from slightly less than 2 at a shear stress of 1 bar to about 4 at 15 bars.
Voytkovskiy (1960) finds n between 1:6 and 2-2 for shear stresses between 0-25 and about
1 bar, but he agrees with Glen that n is about 3 at higher stresses. It is still a debatable question
how closely laboratory creep tests such as these, which may last for up to 7 months
(Voytkovskiy, 1960), represent the deformation of the ice within a glacier, which may continue
for hundreds of years with continuous recrystallization of the polycrystalline mass. There is
also the problem of the stress range. The shear stress in our problem ranges from zero, on the
centre-line of the ice surface, to a maximum value that depends on the slope and cross-section
of the channel, but which in glaciers is often about 1 bar. Thus our calculations involve some
extrapolation of the laboratory results (lowest shear stress 0-25 bar) to low stresses. There is
indirect evidence that the extrapolation is valid from observations of the closing up of tunnels
in glaciers (Nye, 1953; Glen, 1955). In tunnel closure the shear stresses range from (ideally)
zero far from the tunnel to a maximum on the tunnel wall. If a power law of flow with u close
to g is assumed to apply over the whole stress range there is good agreement between theory
and observation.

The laboratory evidence thus suggests that, while n is probably not truly constant, never-
theless a calculation with n taken as constant and equal to 2, § or 4 is worth making. In fact
we take n — g for the numerical work; otherwise we keep the value of n general.

In assuming a stress—strain-rate relation that is uniform over a cross-section we are ignoring
the fact that the ice in glaciers can show a marked degree of preferred orientation in its
crystals—and that both the degree and nature of the preferred orientation are non-uniform
over a cross-section. Until more is known experimentally about the distribution of preferred
orientations and the corresponding distribution of parameters in the flow law, there seems
little that can be done to meet this complication. We may notice, however, that the nature
of the preferred orientation is such as to make the ice weakest at the places where the stress is
highest, near the channel boundary. This will make the effective value of n higher than that
found in laboratory tests of randomly oriented polycrystalline specimens.

It is natural, perhaps, to assume that with some suitable boundary condition on the
channel surface, such as no slip, it is always possible to have a steady rectilinear motion down
the channel of the sort we have described. But a paper by Green and Rivlin (1956) warns us
that, when the material obeys certain kinds of flow law, this assumption can be false. There
are certain flow laws that in these conditions necessarily entail transverse circulations.
Fortunately for us the flow law for ice does not fall into this category, if we make the usual
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assumption that only the second invariant of the strain-rate, and not the third, is significant in
determining the stresses. So we may safely postulate rectilinear flow without inconsistency,

Consider now the boundary condition on the channel surface. For a liquid one would
naturally assume that there is no slip. But for a solid the situation is different. The meagre
observational evidence is that temperate glaciers, where the ice is at the melting point, do in
fact slip on their beds, but that a glacier whose bottom ice is below the melting point probably
does not slip. Weertman’s theory (1957) explains why this is so. Therefore, to set up a good
model for a temperate glacier one should put in a boundary condition that allows slip. I have
not been able to do this, not primarily because of the additional complexity it brings into the
mathematics—it would merely make the computer programme longer—but because at
present there is not enough information on the proper form of the slip law or on the numerical
parameters it contains. Instead I have had to assume no slip. This would make the calculations
more appropriate to those regions of a temperate glacier where slip on the bed is only a small
part of the total motion, or to glaciers with bottom temperatures below the melting point.
Unfortunately for our purpose, such non-temperate glaciers are not normally isothermal
(there is no reason why they should be) and so, for this reason if for no other, they do not obey
the assumption that the relation between strain-rate and shear stress is the same all over the
cross-section,

The limitations of the calculation thus appear to be: (a) the possible inaccuracy of a simple
power law of flow; (b) the non-uniformity of the stress-strain-rate relation, which arises from
preferred orientation and other inhomogeneities in all glaciers, and also arises in non-
temperate glaciers from the temperature distribution : (¢) the assumption of no slipping. In
addition, the calculation assumes that any longitudinal strain-rate directed along the channel
axis is small. It is known (Nye, 1957) that, because of the non-lincarity of the flow law, a
longitudinal strain-rate will interact with the main flow and can change it profoundly. This
occurs wherever the longitudinal strain-rate is comparable with or greater than the shear
strain-rates arising from the main rectilinear flow. There will always be such a region close
to the centre-line on the surface, where the shear strain-rate is zero, but if the longitudinal
strain-rate is small the disturbed region will be small.

In view of these limitations some further explanation is perhaps required for why the
calculations are presented at all. First and foremost, they at least make a start on the problem.
Second, apart from the preferred orientation difficulty, they should be quantitatively applic-
able to certain regions of temperate glaciers where bed-slip is unimportant. Third, it turns
out, rather unexpectedly, that certain results are apparently not much affected by whether
there is slip on the bed or not. Lastly, we note that a more exact computation could only be
made for a temperate glacier if the slip law on the bed were fully known, and for a cold glacier
if the temperature distribution were fully prescribed. In such cases the numerical method we
describe could serve as a basis for developing the more elaborate method that would then
have to be used.

2. T'HE MobpEgL

=

The theoretical model is the following. Ice, obeying Glen’s flow law and incompressible,
flows under gravity down a channel of uniform cross-section and uniform slope a. We use
Cartesian coordinates as shown in Figure 1a and b. The upper surface of the ice is the plane
» = 0. The (tensile) stress COmMpoONents are oy, oy, Oz Tyz, Tay, Tzz- ON ) = 0 we take
Ty = Tyz = 7oy = 0. All elements move steadily along lines parallel to Ox, so that the
only velocity component is u, which is a function of y and z. On the lower surface of the ice
we take u = o. In these circumstances all elements deform by simple shear.

If we assume a pressure distribution

Ox = Oy = 0z = —pg) COS «,
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where p is the density and g the acceleration due to gravity, and that 7, — 0, we find that
the equilibrium equations reduce to the single one

s
07zy OTzz

% 7 = —pgsina, (1)

The two stress components tending to deform the material are 74y and 74z, which constitute
the y and z components of a vector T in the yz plane. Thus (1) may be alternatively written

divt = —pgsin a. (2)
Glen’s flow law for simple shear gives the equation
grad u = Ar" ', (3)
0 & ha
—] T T g %
L ey L% o . \\\/

Fig, 1

where A and n are constants and = is the modulus of T, for the strain-rate is grad u, it is
proportional to 77, and takes place in the direction appropriate to the vector T. In component
form equation (3) is

ou B du

a—y = A7 T 74y,

where = = -+ (72,+73.)% We have to solve equations (1) and (4) for the unknowns u, 7z,
722 in the plane yz, with the boundary conditions 754 = 0 on the upper ice surface y = o,
and # = o on the lower ice surface.

We have intentionally not invoked the Lévy-Mises equations or a full three-dimensional
flow theory in the above formulation. Since each element deforms by simple shear there is no
need to generalize Glen’s flow law to a full three-dimensional stress situation. Equations (1)
and (4) determine a stress and strain-rate distribution that satisfies the boundary conditions
and the equations of equilibrium, in which each element deforms in simple shear, and in
which Glen’s flow law for simple shear is obeyed.

T = gt S (4)

3. SoLuTIONS IN SPECIAL CASES

There are three channel shapes for which equations (1) and (4) have simple solutions.
(1) Infinitely wide channel of uniform depth a

Here the solution is

2
a)

s =~

_aAk'n b n+1
= I_(E) }’

where k = pga sin «; k may be thought of as a characteristic stress for the problem.

Tyz = 0,
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(i7) Semi-circular channel of radius a

ky kz

g — ==
24’

2a’
) 16

U= =] {1—|-
nt+1\2 a) :

(222) Infinitely deep channel of uniform width 2a

Tyy = —

(6)

where r = 4+ (»*+2z
2

Tzy = O, Tzz — —k;:
adkn 15 n+1
I = I1—|= .
n+1 }
Case (iz) may be thought of as intermediate between (i) and (iii). Notice that in all three

cases the shear stresses are linear in y and z. Tt is interesting to see how good an approximation
this is in other cases.

(7)

|a

4. GENERAL RESULTS FOR SYMMETRICAL CHANNELS

For certain shapes of channel one can learn something about the velocity at the origin
by using nothing more than dimensional arguments and principles of symmetry. First notice
the close relation between the present problem of flow in an open channel under gravity and
the problem of flow in a pipe under a uniform pressure gradient without gravity. Reflect the
channel in the plane y = o (Iig. 1b) so that it becomes a pipe filled with ice, or other similar
non-Newtonian fluid. Put g = o in the equations of equilibrium, and replace the pressure
distribution by oz = oy = 0; = yx (x < 0); ¥ is thus the longitudinal pressure gradient.
There is now a term fo,/2x in the equations of equilibrium, which has the effect of replacing
the constant — pg sin « on the right-hand side of equation (1) by —y. Otherwise the equations
are the same. The boundary condition on the pipe wall is #« = o, and there is no shear stress
on the plane y = o, by symmetry. Thus the flow in the pipe under the pressure gradient
y = pg sin « is exactly the same as it was in the channel. *

Now consider flow under gravity in an open channel whose cross-section is a semi-ellipse
(Fig. 2a), of depth a and half-width Wa. The velocity is the same as that in an elliptic pipe
under a pressure gradient y = pg sin a. If we turn the pipe on its side (Fig. 2b) the velocity
at 0 is clearly unchanged, and is the same as it would be in a channel of semi-elliptic cross-
section with depth Wa and half-width a. Now suppose we reduce the linear dimensions of
the cross-section by a factor IW, so that it becomes of depth a and half-width W (Fig. 2¢).
The shear stresses at corresponding points will diminish by a factor W, by equation (1);
the velocity gradients will therefore diminish by a factor W%, by equation (4), and so the
velocities will diminish by a factor W7+, Thus the velocity at O in Figure 2a equals the
velocity at O in Figure 2b, which equals W7+ times the velocity at O in Figure 2c. For the
set of semi-elliptic channels of depth a we have by this argument related the velocity at O
for half-width Wa to the velocity at O for half-width W-1a. Symbolically we may write

lln( ”’f) = Wnitx 1!0( W—'), (8)
where us( W) is the velocity at O for half-width Wa and depth a.

* For a Newtonian fluid (n = 1) the velocity distribution obeys Poisson’s equation
V’z = —'yA.
The distribution of « may be helpfully visualized by a soap-film analogy. Imagine the pipe cut by a plane perpen-
dicular to its axis, and span the cross-scction by a soap-film, If a small pressure difference yA is set up across the

film, the small displacement u of the film obeys the above equation, with boundary condition ¥ — o, and therefore
gives a picture of the velocity distribution in the pipe, or in the open channel.
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Fig. 2. Hlustrating the application of similarity principles

This functional equation enables us to deduce a good deal about the form of u.( W). First
let W be very large. The velocity at the origin for the infinitely wide elliptic channel is
presumably the same as for an infinitely wide channel of uniform depth a, for which we already
know the result by putting y = o0 in (5):

adkn

uo(w) = ﬂ+l.

For W = 1 the channel is semi-circular and we know by putting r = o in (6) that

ad [1 \" 1\
us(1) = n+l(;k) = (E) tta( 00).
For W small we use (8) and find
uc)( W) = Wt ﬂu(CD) oc Wnts,
Thus, in Figure 5, we know the form of the curve near O, we know the point p, and we know

the asymptote. We can also find the slope of the tangent at p. For this purpose differentiate

(8) with respect to W,
ws(W) = (nt-1) Whuo W) — Wisa(W-s),

and put W =1 to give

ug(1) = ${n+1) uo(1). (9)

Pl b v e e e

U“o(l) B

)

Fig. 3. The velocity at the origin ws as a function of W, the ratio of half-width to depth, in a family of symmetrical channels
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This shows that the tangent at » meets the W axis at the point Q, say, which divides the
interval o to 1 in the ratio n—1 to 2.

Let us pause to emphasize this remarkable result. Points near p correspond to slightly
elliptic channels. The velocity at the centre of a slightly elliptic channel may be found merely
by using symmetry, a dimensional argument, and the known result for a semi-circular
channel—without solving the differential cquations.

If n = 3, as we shall assume later, the results are as follows: uo( W) oc W4 for small W;
uo(1) = ghadk’; ul(1) = 2uo(1), so that @ bisects the interval o to 1; uo(0) = Ladk3,

By further differentiation of (8) and setting W = 1 it is possible to derive conditions on
some of the higher derivatives of u, with respect to Wat W = 1 (a curious result is that the
(n+2)th derivative of uo at W — 1 is always zero). But it is not possible to determine the
entire function in this way. Physically this is rather obvious. Mathematically it may be seen
by first writing (8) as

W—ttn+1) o [,1/‘) = Witn+n) o ”/—1)

and then making the substitution W = e?. The left-hand side becomes a function of #, namely
e—itn+np un(/})’

which we may call f(p). The right-hand side becomes
0D u(—p),

which is simply /(—p). Thus with this substitution the functional equation (8) reduces to

) =L(—p)s

which is satisfied by any even function. This shows conclusively (if any proof were needed)
that we cannot expect to deduce the entire function uo( W) simply from (8).

The reader may have noticed that, in deducing equation (8), we did not make full use
of the fact that the channel was elliptical. We only used certain symmetry properties. In
fact the equation is true for other families of channels. An example is the channel which is
given in the first quadrant, y = o, z = o, by

and which is completed by reflecting this curve in the y axis. m was 2 in the previous argument,
but it does not need to be. The requirement for equation (8) to hold is that, after reflexion
in the z axis, the curves should form a one-parameter family passing through the points
(0, +Wa) and (+a, 0) such that any member is specified by the value of W. They must also
be such that rotating a curve about the origin through go°, and then decreasing the scale by
a factor W, gives a curve of the original family. Notice that a triangular cross-section (m = 1)
satisfies these conditions, but the parabolic cross-section

(2%
a+(m) =1

that we use later does not.

5. SOLUTION FOR A SricurLy Errieric CHANNEL

If n = 1, as assumed by Somigliana, the basic equations (1) and (4) reduce to Poisson’s
equation for u, but when n # 1 the problem is essentially non-linear and analytical solutions,
other than the three simple ones in §3, are hard to find. Dr. W. Chester has succeeded in
finding a solution for a semi-elliptic channel that departs only slightly from a semi-circle—the
derivation of his solution, which he has kindly allowed me to reproduce, is given in an
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Appendix. The boundary is the semi-ellipse of depth @ and half-width a(1+¢) (Fig. 4). The
solution, valid for small € and obtained by a perturbation method, is, in cylindrical polar
coordinates r, 0, x, where r, # are in the plane yz and Ox is the cylinder axis,

. k(r efr\c ™ 0 ]
= —g a+2n - cos 2

1 r c—n
Top = —€k| - sin 26 b (10
ox o a 3 \ )

o ) oo f () ]

where ¢ = }(n—1) +4(n*+14n+ 1)L The solution satisfies the differential equations and the
boundary conditions to the first order in e.

<—a(l+e) —>
T

Fig. 4. Semi-circular channel perturbed slightly into a semi-elliptic shape

The velocity at the origin (r = 0) may be found directly from equation (g) without
recourse to the full solution. Thus
tol W) = tn(1-+€) = ta(x)+euy(x) = {1 helw+1)} uo(1)
by equation (g), which agrees with the value obtained by putting r = o in the third of
equations (10). These last equations show that, if n = 3, increasing the width of the channel
by a factor (1-f-€) increases the velocity at O by a factor (1+-2¢).
For n — g Chester’s solution is

k 1-6ob
——— ﬁg{;_{_o. 768 e(r) cos 28}

a

1 T 1-606
Thp = —ek|- sin 20
G o\

1 r\4 7'\ 4606
= —aAk3[I~(*) -\—25{1—(—) cos 26}]
32 a a ]

Notice how the variation of 7r; with 7 departs from linearity by the addition of a term
proportional to ert®¢. This means that dr,,/or at the origin is unchanged by the perturbation
and retains the value —}pg sin a appropriate to a semi-circle.

I have tried to repeat this perturbation calculation taking as the unperturbed state the
solution for an infinitely wide channel of uniform depth, instead of a semi-circular channel.
But the method fails to produce a complete solution—although certain results may be derived.
The reason for the failure is that on y» = o the strain rate in the unperturbed state is zero, so
that if n # 1 any perturbation on y = 0 is essentially non-linear. Thus the equations cannot
be linearized over the whole field. It might be thought that the same difficulty would have

2's
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occurred with the semi-circle at r = o, but here, although the unperturbed strain-rate is
zero, the perturbed strain-rate is also zero. So the method succeeds for a semi-circle.

The difficulty with perturbing the solution for an infinitely wide plane bed may be
avoided by altering the flow law so that it is Newtonian (n = 1) for small stresses, for example,
€ = A7 | B7}, where € is the strain-rate and 7 is the stress. Then the perturbation from zero
strain-rate on » = o takes place in the Newtonian range and linearity of the perturbation
equations is preserved. Some of the results are of interest but the analysis is rather too long
to report here.

This is as far as it was possible to take the problem by purely analytical methods. To make
further progress we solve the equations numerically as described in the next section.

6. NUMERICAL SOLUTIONS
The equations to be solved are

B’rx_u 07T 22

% Bz —pg sin w, (1)

= A" 1y, (4)

Q)lm
N =

cu
e AT 7 gy,

where 7 = (73, +73,)%, with the boundary conditions:
Tay — 0 0Ny = 0,
# = o on the channel.

To express the equations in dimensionless form, let a be the depth of the channel at z — o
and define a stress £ = pga sin « as before. Write

Y = y/a, L = zla,
Ty = mayihs Ty =1k, 1 =k,
U = u/(adkm).

3

Then we have

8Ty 9Tz -
T Tz =0 (11)

U U

@R g T (12)

where 7 = (T} 4 T2)!, with boundary conditions Ty =0 on ¥ =0 and U = o on
the channel. We shall take n = 3.

After experimenting with several unsuccessful (because non-convergent) schemes for
solving these equations by iteration, the following workable numerical method was found.
Introduce a stress function  which is such that

a1 w1
= Q—E T, Tz e ———; z (Ij)

i
Equation (11) is then automatically satisfied. Differentiate equations (12) with respect to

< and ¥ respectively and subtract to eliminate /. Now substitute for the stress components
in terms of 4 and finally obtain the following equation for :

(B et by s |

2]

(=]

Ty

QD

b

=~
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This is the differential equation that we solve numerically. The boundary condition on
¥ = ois Ty = o, which in terms of ¢ is 8/ = 0, or fy = constant. Since  as determined
by (13) contains an arbitrary additive constant, we may as well fix the boundary condition
on ¥'=o0as = o.

On the channel boundary we wish to know the condition on ¢ that corresponds to
U/ = o. If the angle of the boundary is ¢ as shown in Figure 1b, dU/ = o in the direction
defined by dY/d{ = —tan ¢. Since

i = S T
Tl P‘T +8Z ‘\7.;
we have
auleY  dg
T AR aant s
or, by equations (12),
Ty
Ty O . (15)
Substitution from equations (13) finally gives
ojeZ—1Y
WprTiz = =

as the boundary condition on ¢ on the channel. (It may also be expressed as a condition on
&is|2n, the derivative of ¢ along the outward normal to the boundary,

o1 .
= :;(Tsm ¢—Z cos ¢),

but we shall use the Cartesian form (16) in preference.)

Equation (14) is of the form known as quasi-linear, that is, it is linear in the second-order
derivatives of t. It is this feature that makes possible the iterative method that we use. We
take a rectangular mesh of which a part is shown in Figure 5. The central point numbered 2
is any point of the mesh inside the boundary, and its eight neighbours are numbered as shown.
If equation (14) is now written as a finite difference approximation at the point 2, central
differences may be used for the first derivatives, and the important point is that these will
not involve i, the value of s at mesh point 2. . will only appear in the finite difference form
of the second derivatives, which occur linearly. The result is that (14) becomes an equation
involving #. and the values of ¢ at the eight neighbouring mesh points, and that in this
equation only the first power of ¢ occurs. Thus ¢ is readily expressed in terms of the eight

6 4 7
Z
g 5 |
" Y
8 5 2
Fig. 5
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neighbouring values. Specifically, the finite difference equations for i: in a form suitable
for machine computation in succession are:

F = {(ho+pg) — (shr+ths) } R
E = (hs—y) [2h+3Z

D = (§3—) [2l—3T

C = DEF “s (17)
B = (D*+3E%) /R
A= 3D+ E)P
2 = {A(r+3) + By +1hs) +C{2(4+B)} |

where A and [ are the mesh intervals parallel to 07 and O£ respectively. When approximate
values are known for ¢ at the surrounding points these equations may be used to improve the
value 3. at the central point, The technique is therefore to start with a trial solution, and then
systematically to use (17) to improve  at each interior point in succession until further use of
the formulae produces no change, to the number of significant figures used—in fact 7 or 8.
Improved values are used in (17) as soon as they are obtained. When the point 2 in Figure 5
is on or near a boundary some of its neighboursmay be on or outside the boundary. The values
of i at these peripheral points are found by using a finite difference approximation of the
boundary condition. In fact the first trial solution was always taken as iy = o everywhere;
this corresponds to Ty = —17¥, Tz = —4Z, and is the solution for a semi-circular boundary.

Having found (¥, £) we may obtain Ty and 7 z from equations (13) by differentiation,
and then U(), Z) from equations (12) by integration, using the condition {/ = 0 on the
channel boundary.

To begin with, a rectangular boundary was taken so as to establish the technique without
the complication of a curved boundary. Then, as a first curved boundary, a semi-ellipse
was tried; this had the advantage that the results for small eccentricities could be checked
against Chester’s perturbation solution. When the programme was satisfactory for an ellipse
it was slightly modified for a parabolic boundary, which is more like a real glacier channel,
but for which fewer checks are available. There is nothing to prevent a programme being
written for a channel shape measured on a real glacier if it were thought worth while.

(i) Rectangular channel

Clonsider the rectangular boundary 1" = 1, = - W. The symmetry in the Y-axis means
that the equations need only be solved in the first quadrant. On J = o, Tz = o by symmetry,
and hence ¢y = 0. On ¥V = 1 we have ¢ = 0 in (16); hence &)/c¢V = —1Z. On T = W
we have ¢ = J7 in (16); hence é¢/c = LY. Pinite difference forms of these boundary
conditions are easy to write down. The method was programmed for an 1.B.M. 1620 digital
computer with W as a variable parameter. It was found best to start with a 66 mesh
covering the first quadrant. The result was then used as the starting trial solution for an
11 % 11 mesh, and the result from this was used in turn as the first trial for a 21 X 21 mesh.
The symmetry of the boundary, as discussed in §4, means that the solution for half-width W
is readily converted into the solution for half-width W~r. Therefore only the values W = 1
need be considered.

With W = 1 the values of ¢ were improved systematically row by row. The solution
converged only slowly. So, instead, the points were taken first row by row, then column by
column, then row by row again, and so on (the alternating direction method). The rate of
convergence improved greatly, but eventually settled down to a slow rate with successive
solutions showing a lightly damped oscillation. This tendency was cured by improving the
treatment of the corner point ¥ = 1, .Z = W.Itis readily shown from the boundary conditions
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that at this corner point ¢ the gradient of 4 along the diagonal oc is zero, for all values of W.
We therefore used this fact to improve the value of ¢ at ¢ when its turn came. The rate of
convergence was then acceptable, but it was further improved by using a technique of over-
relaxation, the factor of over-relaxation being controlled by the operator and varied as
judgement dictated during the computation. The I.B.M. 1620 is relatively slow; with a
faster machine it would not have been necessary to resort to all these ways of speeding up
convergence. For all-night runs no over-relaxation, or only a mild amount that did not
require the operator’s presence, was used.

i was found on a 21 X 21 mesh for rectangles with W = 1, 2 and 3. The stresses Ty, Tz
were computed from (13), and so automatically satisfy the equilibrium equation (11). UJ
was found by integrating the second of equations (12) in horizontally from the wall 2 = W
by Simpson’s rule, which is much more accurate than the difference formulae used in other
parts of the computation. If the equations are satisfied, these values of U should agree with
those obtained by integrating the first of equations (12) vertically up from the bed ¥ = 1.
This gives a check on the accuracy of the solution (column 4 of Table I). The mean of the two
integrations was taken as giving the best value of U. An indication of the accuracy is also
given by comparing the result for the 11 % 11 mesh with that for the 21 x 21 mesh (columns
2 and g of Table I).

Figure 6a shows the distribution of velocity over the cross-section for W = 1, 2 and 3,
and Figure 6b shows the distribution of the shear stress magnitude 7. Thus Iigure 6b also
shows how the rate of shear (which is proportional to 73) is distributed over the sections.
Figure 6¢ shows, at lower right, the distribution of the shear-stress components 7y (that is
7zy in units of pgasin ) down the ¥-axis, and shows, at lower left, the distribution of
T z(7zz) on the Z-axis. Figure 6c also shows the distribution of velocity down the Y-axis
(upper right) and along the J-axis (upper left). We shall return to these results later.

0 oo BE /
) sz /
W o m 2 / /
04 [ = ;
e 0. /
03/ -7 08 /
-4 e Pl
b—— . o t0’| | S G L ’4—4___,__/’/ o -0; r
L — = e o
V=" i —— 00
W= W=2
U j / / |
) /I.s/ - / / !J
).,-//,-» .2 .0?/‘/ 1 /t'
sy i
R
e

W=3
Fig. Ga. Velocity distribution in rectangular channel sections (n = 3). Only one half of each channel is shown, the complete

channel being obtained by reflexion in the left-hand boundary. Solutions are given for W, the ratio of half-width to depth,
equal to 1, 2 and 3. U is a dimensionless measure of velocity
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Fig. 6b. Distribution of the shear-stress magnilude T (dimensionless) in rectangular channel sections. n = 3
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Ilig. 6c. Rectangular channels (n — 3). Taop left: velocity distribution along a transverse line ( {-axis) on the surface. Top right :
velocity distribution down the Y-axis. Bottom lefl: distribution of shear-stress component Tz (a dimensionless measure of
the shear-stress component 7.5) on the < axis. Bottom right : distribution of shear stress component Ty (a dimensionless
measire of ©ry) down the Y-axis. Numbers on curves are values of W, the ratio of half-width to depth
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Tasre I. REcTANGULAR CHANNELS

n=g3g

W = half~width/depth

Us = velocity at O in dimensionless form
= uo/{ad(pga sin a)’}

(1) (2) (3) (4)
W U, Errorin U Time
IIX11 21 X 21 hr,
o o — —
1 0-0428 0-0433 0-0002 17
2 0-126 0-123 0-001 53
3 0-187 0173 0-003 28
0 0-2500 — —

Notes :

Time for one traverse over 21 ¥ 21 mesh on I.B.M. 1620 was 6 min.

Error shown in column 4 is one-half of the maximum discrepancy in U between the resulis of horizontal and
vertical integration on the 21 % 21 mesh.

Solutions for W = } and } are not shown in the figures, but they can be readily found by
the similarity arguments of §4. For example, the distributions of {7 and Tz on ¥ — o for
W = § are obtained from the distributions of U/ and Ty on {Z=o0 for W= g: linear

dimensions are divided by 3, shear stresses are divided by 3 and the velocity is divided by
34 = BT,

Fig. 7a. Velocity distribution in four semi-¢lliptic channels. To obtain the complete channel reflect each diagram in the lefl-hand
boundary. n = 3
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o

- Tz i TY \\E?;
L ; : T

1 1 ]

Fig. 7e. Semi-elliptic channels (n — 3). Top left : veloeity on a transverse line (the Z-axis) on the surface. Top right : velocity
distribution down the Y-axis. Bottom left : shear stress Tz on the Z-axis. Bottom vight : shear stress Ty on the V-axis.
Numbers on curves are values of W
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(it) Semi-elliptic channel

The next attempt was on a series of semi-elliptic channels of depth 1 and half-width .
The new feature is the curved boundary. The rectangular mesh was retained, some points
now, of course, being outside the boundary. In principle the method was to use (17) at all
interior mesh points. This required that values of ¢ be assigned to certain exterior mesh
points close to the curved boundary, a task which was done by writing the boundary condition
(16) in an appropriate finite difference approximation. (In fact there were three different
classes of exterior mesh points to deal with, and special consideration was needed for exterior
points near the corners (o, W) and (1, 0). Certain ways of treating the exterior points led to
instability in the solutions.) The storage capacity of the I.B.M. 1620 used (20,000 decimal
digits) was such that by breaking up the programme into several parts it was just possible to
accommodate a rectangular mesh of 11 3 11 points in the first quadrant.

For a semi-circle (W = 1) the programmes gave U, = 0-03124, truncated to five decimal
places, compared with the theoretical value of 5 = 0-03125. Next, the value W = 1-01 was
tried for comparison with Chester’s perturbation solution. The stresses agreed to 1 part in
104 and the velocities to 10-5, which is within the accuracy of the perturbation method itself.
The programmes were therefore assumed to be free from mistakes.

‘Table IT and Figures 7a, b, ¢ show the computed results for ellipses with W = 2, 3 and 4.
The numbers and curves for W = o, 1 and o are from exact formulae. We shall discuss the
results below.

The solutions for W = 1, 1, 1 are not shown, but, as with rectangles, they are readily
deducible by similarity arguments.

(1it) Parabolic channel

The programme for a parabolic channel of depth 1 and half-width 1" was almost identical
to that used for the ellipse. Again, an 11 % 11 mesh was the finest that could be accommodated
on the machine. Some results are in Table 111A.

When the values of U found by horizontal and by vertical integration were compared it
was found that the values on the line ¥ = o by horizontal integration were unreliable for
W — 1. This is because the integration starts in the top right-hand corner where Tz is
changing rapidly. The result from vertical integration was taken as the final result for U in
this case. In other cases the mean of horizontal and vertical integrations was taken. The error

Tasrke I1. SEmMi-ELLIPTIC CHANNELS

n=3g

W = half-width/depth
U, = velocity at O in dimensionless form

= uof/{ad(pgasin a)’)

Q — discharge in dimensionless [orm
= gf{a® A(pgasin a) i

(1) (2) (3) (4) (5)

W Us Errorin U Time Q
hr.

o 0 - — o

1 0-03125 — — 0-03272

2 0:0891 0-0004 5 0- 1826

3 0-1277 0-0011 3 0379

4 0-15% 0-002 4 0-587

o0 02500 — — oo

Notes :

Time for one traverse over 11 11 mesh on I.B,M. 1620 was 1-3 min.

Error shown in column 3 is one-half of the maximum discrepancy in U between the results of horizontal and
vertical integration.
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shown in column g of Table ITIA is one-half of the maximum discrepancy between the two

integrations for U (excluding the line ¥ = o when W = 1). The distributions of the velocity
and shear stress are shown in Figures 8a, b, ¢; they are discussed in the next section.

Since measurements taken from the figures will be less accurate than the computed
results, copies of the results for rectangles, ellipses and parabolas in numerical form have

been deposited in the Library of the Glaciological Society and in the World Data Centres

(Glaciology).
TasLe ITTA. Parasoric CHANNELS
n 3
W = half-width/depth
Us = velocity at O in dimensionless form
uo/tad(pga sin a)?)
() — discharge in dimensionless form
= gl{a* A(pgasin a) 3}
U7 = mean velocity over the section in dimensionless form
U; = mean velocity on the surface in dimensionless form
(1 (2) (3) (4) (5) (6)
W Us Errorin U Estimated a U
lime
hr.
o ) — - 0 0
1 00221 0-0007 ~3 0:0199 0:0149
2 0-0675 0-0016 3 0-1172 00440
3 0-104 0-002 ~3 0-255 00637
4 0-131 0-004 ~3 0- 4047 0-0757
o0 0-2500 - - o] 01108
* Improved from 0-41 by using asymptotic slope of Q : W graph.
Tasre IIs. VELoarry Ratios 1N Parasoric CHANNELS
# — mean velocity over the section
us — mean velocity on the surface
w0 = velocity at centreline of surface
D.M.O. = differential motion only
B.5.0. — bed slip only
=2 n=3
W D.M.0, B.5.0. D.M.0, B.5.0. D.M.0.
0 i 050 I 0429 I 0-38
1 (0-80) 1 0-837 1 (0-86)
2 Bl go-gl) I 0:980 1 (1-03)
3 E {0-93) ! 0:997 1 (1-05)
4 (0-93) 1 1-005 1 (1-06)
o0 1:00 1 1-091 1 1-15
o [ 0-38 1 0-343 1 0-31
1 (0-67) I 0-674 1 (0-67)
2 i (0-65) 1 0-652 I (0-64)
3 e (0-61) 1 o-6r2 1 (0-60)
4 (0-58) 1 0-578 I (0-56)
vl 046 1 0443 1 042
o fi 075 1 0-8oo 1 0-83
1 (0-8) I 0-8o5 I (0-8)
2 (0-71) 1 0-665 1 (0-63)
3 tsfuo < (0-66) 1 0-614 1 (0-58)
4 (0-62) 1 0-575 1 (0-54)
e L 0-46 1 0-406 1 0-37
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(i) Discussion of resulls

Let us look first at the curves at the lower right in Figures 6¢, 7¢ and 8c, which give the
behaviour of Ty on the ¥ axis. They are interesting because they show to what extent the
linear variation for an infinitely wide channel (27y/2Y = —1) and for a semi-circular
channel (2Ty/8¥ = —4) still holds good for other channel shapes. All the curves, except that

TasLe ITIc. KinemaTtic Wave VELocrTies IN PArRaroric CHANNELS

¢ — kinematic wave velocity
# = mean velocity of ice over the section
us = mean velocity of ice on the surface
uo = velocity of ice at centreline of surface
D.M.0. = differential motion only
B.S.0. = bed slip only

fii= 42 n=g3 =
W D.M.O B.S.0. D.M.O. B.5.0. D.M.O. B.S.0.
o i 2:00 1-50 233 1-67 2.67 1-83
I (2-51) 1-74 3:01 1-99 (3-51) 2-23
2 JF o (2-71) 1-88 3-28 2-18 (3-85 2-47
3 (2-83) 1:94 344 2-25 (4-05) 256
4 (2-88) 1-96 351 2-28 (4+14) 2-60
o0 L 3-00 2:00 3-67 288 4-33 2-67
o [ 0-75 150 o-8o0 1:67 0-83 1-83
I (1-67) 174 2-03 1:99 (2-34) 2-23
2 i A (1-75) 1-88 2-14 2-18 (2-48) 2-47
3 (1-73) 194 2411 2-25 (2-44) 2-56
4 (1-67) 1-96 2-03 2-28 (234) 2-60
o0 L 1-37 2-00 1-63 2-33 1:85 2-67
0 [ 1:00 150 1-00 1-67 1:00 1-83
1 (2-01) 174 2:52 1-99 (3-03) 2:33
2 i A (2-47) 1-88 321 2-18 (3-95) 2:47
3 J (2-02) 194 3:43 2-25 (4-24) 2:56
4 (2-69) 1-96 3-53 228 (4-37) 2-bo
20 L 3-00 200 400 2-33 5-00 2:67

Tasre I1Ip. Ratio oF PrororTiONAL CHANGE IN VELOCITY TO PROPORTIONAL CHANGE IN
THICKNESS FOR Paraporic CHANNELS
a = ice thickness at centre of section
D.M.0. = differential motion only

B.5.0. = bed slip only

n=2 n =g n=g
W D.M.O. B.S.0. D.M.O, B.S5.0. D.M.O. B.S.0.
0 ( 1-50 075 200 1:00 2-50 1-25
1 (2-26) 1-12 3-02 149 (3-77) 1-86
2 a di (2-57) 1:32 3-42 L7 (4-27) 2-21
3 7 da (2-74) 141 366 1-88 (4-57) 2:35
4 (2-82) 144 377 1:93 (4-71) 241
00 3-00 I-50 4.-00 2-00 5:00 2-50
[¢] 150 0-75 200 1-00 2-50 1-25
1 (2+1) I-12 2-80 T-49 (3+5) 1-86
2 a duo (2+54) 1-32 339 Tes7 (4-24) 2:21
3 w da (2:65) 1-41 354 1-88 (4-42) 2:35
4 (2:77) 144 3-69 1-93 (4-61) 2-41
0 3-00 150 4+00 200 5+00 2-50
o [ 1-50 075 2:00 1-00 2-50 1:25
1 (2-4) 1-12 3-2 149 (4-0) 1-86
2 a dusg (2-58) 1:32 3-44 € (4-30) 2.21
3 us da (274) 141 3-05 1-88 (4-56) 2:35
4 (2-81) 144 3-75 1-93 (4-69) 2-41
0 300 1:50 4+ 00 2:00 500 2-50
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for W — oo, start out from the origin with ¢77y/8) = —1, a fact that experimenters using
bore holes should note; Chester’s perturbation solution also gives this result, as we have
already seen. The curves then bend over, but for rectangles they all meet the bed, ¥ = 1,
with the same slope ¢7Ty/¢}Y = —1 (since the boundary condition U = o here implies
8T z/dZ = o).

For rectangles the curves of 77z:J on the J-axis (I'ig. 6¢, lower left) also have slope —1
at the origin and —1 at the edge, for the same reason. The 7 z:.Z curves for ellipses and
parabolas will be discussed in a moment.

For some purposes it may be useful to approximate the curve of Ty(1) on the Y-axis by
the straight line

Tr— —fF,

choosing the constant f so as to give the true surface velocity if integration is made with this

approximate shear stress up the Y-axis. The values of /; which is a shape factor, are given in
Table 1V.

TarrLe IV. TuE Suark Factor /1N THE ApPrOXIMATE ForRMULA 74y = —fpgysin a

W = hall-width/depth

W e

Rectangle Ellipse Parabola
(0] (0] QO 0
1 0134 —
3 0°204 0-185 —
3 0313 o-281 —
1 0558 0+ 500 0445
2 078y 0- 700 0-646
3 0-884 0-799 0-746
4 — 0-849 o-806
e 1-000 1-000 1-000

The velocity curves in Figures 6¢, 7¢, 8¢ at upper left show the distortion of a transverse
line drawn on the glacier surface along the {-axis. There are interesting differences between
the results for rectangles, ellipses and parabolas. Ior rectangles (Fig. 6¢) the line is always
convex down glacier. I'or parabolas (Fig. 8c) it is convex down glacier in the centre but
concave at the edges—the curvature reverses and there is a point of inflexion. This is readily
explained by the behaviour of the shear-stress component 7z(7;,) on the J-axis, which is
plotted immediately below the velocity curves. 7z is zero at the centre of the glacier, J = o,
by symmetry. For a parabola it is also zero at the edge .2 — W for the following reason. At
the top right-hand corner point of the cross-section (0, W) Ty — o, because the upper
surface is free; but the other boundary condition 7 = o on the channel wall leads to equation
(15), which is

Tz = Ty tan ¢.
Hence, unless ¢ = i, the fact that Ty — o implies Tz — o at the corner (o, W). For a
parabolic bed ¢ # l7 and so T = o at the corner. But for a rectangular or semi-elliptic
bed ¢ = Iz at the corner, and so there is no restriction of this sort on Tz, Tt follows that for
a parabolic channel |Tz| must pass through a maximum at some point between the centre
and the edge. This accounts for the reversal of curvature in the velocity curves for parabolas.

For the parabola with W = 1 (Fig. 8¢c) there is a particularly rapid change of Tz near
the edge { = . It is also conspicuous in the distribution of 7(7¥, £) in Figure 8b. The eflect
is caused by the steepness of the boundary wall. As we have just remarked, if the angle ¢ of
the boundary is not {m, Tz must be zero; but, if ¢ = 4=, Tz need not be zero. If ¢ is close
to 4w, it is therefore quite understandable that Tz will change rapidly from a comparatively
high value a short distance from the edge to zero on the edge itself.
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Fig. 8a. Velocily distribution in four parabolic channels. To obtain the complete channel reflect each diagram in the left-hand
boundary. n — 3

Iig. 8b. Distribution of shear-stress magnitude T (dimensionless) in parabolic channels. n — g
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It one were tempted to guess from the above arguments that there would be no maximum
in |T| on the surface for semi-clliptic channels, one would be wrong. Figure 7¢ shows that
| Tz| does go through a maximum for elliptic channels when W = 3 and also when W = 4.
For W = 2 it probably does not. For W = 1 it certainly does not, and Chester’s solution
shows that it does not for small departures from W = 1. Why should |7z| behave like this
for elliptic channels? The reason is seen by letting I become very large. Then on any line
£ = constant in the V' plane, not too close to the edge, the velocity distribution will be that

= —T= T
T T o T T

Parabolas o

Fig. 8c. Parabolic channels (n — 3). Top left: velocity on a transverse line (the Z-axis) on the surface. Top right : velacity
distribution down the Y-axis. Bottom left: shear stress Ty on the Z-axis. Bottom right: shear stress Ty on the Y-axis,
Numbers on curves are values of W

of an infinitely wide channel of appropriate depth. The surface velocity U is therefore pro-
portional to /4*, where H is the depth below the point in question. If we plot the curve of U
against /W on this basis for a semi-ellipse (Fig. g) it is found to have an inflexion at
LW = 1/4/3 = 0-577 (shown by an arrow). The corresponding curve for a parabola has
an inflexion at J/W = 1/4/7 = 0-378. The curve for a rectangle is simply the straight line
U7 = § and has no inflexion. An inflexion in the U curve means a maximum of |7|. The
fact that |7z| shows a maximum for elliptic channels at the higher values of W is thus
understandable. *®

The channels of real glaciers are nearly always sloping, not vertical, at the edges. To the
extent that there is no slip on the bed the arguments for 7., = 7z = o0 at the edge will there-
fore apply. So we must expect that the maximum shear stress in the surface of a glacier will
not occur precisely at the edge but at a certain distance in. If there is a gap between the
glacier and the rock wall 7, will certainly be zero at the extreme edge. Thus, curiously
enough, no slip and free slip give the same result.

Observation confirms that the maximum shear stress is not always at the edge. To give

* An extension of the argument shows that | Tg| will always have a maximum for very wide elliptic channels
ifnss w,
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one example: at a transverse linc of stakes on Austerdalsbreen, Norway, over three different
periods of observation, 1957-58, 1958-59 and 1958-63 a reversal of curvature (point of
inflexion) occurred consistently at & = —o-7W. The slope of the side wall on that side was
é = 33°. At the other end of the same line ¢ was much greater, 62°; for 1957-58 no inflexion
was detected, but there was an observable inflexion for both 1958-59 and 1958-69 between
Z = o0-gW and J = W. In other words, the steeper the side wall the closer is the inflexion,
as the theoretical discussion leads us to expect. Since it occurs rather close to the glacier edge,
perhaps in a lateral moraine, the inflexion phenomenon may often pass undetected. Figure 10
shows evidence of the same effect on Ultramarine Glacier, Kenai Mountains, Alaska, in the
form of a zone of marginal crevasses which occur a short distance in from the ice edge (the
photograph is by Austin S. Post, who has kindly given permission to reproduce it). This
phenomenon explains why one can sometimes find a way down a glacier by going to the
extreme margin when progress a short distance in from the edge is blocked by crevasses.

" Rectangle”

Semi—elliPse

e Parabola

a a2 o 1 e Z/W .8 - 1

Fig. g. Velocity U (dimensionless) on a transverse line (Z-axis) on the surface for very wide channels of rectangular, semi-
elliptic and parabolic cross-sections. n = 3

Let us now look at the distributions of T(%, {) in Figures 6b, 7b, 8b. The fact that, for
W = 1, | T#| may have a maximum on the -axis, but that | Ty| has no maximum on the
Y-axis, accounts for the general nature of the distributions. For the rectangles with W = 2
and g the pattern of T(?, Z) near the side wall is very similar; it suggests that there is a rather
constant “‘edge effect” for wide channels. An invariable rule for all the channels is that the
highest shear stress occurs at the point of the bed closest to the origin. For W > 1 this point
is always the centre of the bed, except in the one case of parabolas with W near to 1; Figure 8b
(W = 1) illustrates this.

Figure 11 shows the centre-line velocity {/, plotted against I for all three channel shapes.
The curves for rectangles and ellipses, but not parabolas, should obey the similarity principles
of §4. The tangents at the points W — 1 on the curves are drawn through the point W = }
on the W axis, and it is interesting to see how closely the curves follow the tangents even up to
W = 2. In closing this discussion let us emphasize the great effect that the drag of the valley
sides has on the centre-line velocity. In a parabolic valley with a ratio of width to depth of
8(W = 4) the centre-line velocity is approximately half’ what it would be in an infinitely
wide valley of the same depth (Fig. 11); Table I11a gives the factor as 0-131/0-250 = 0-524.
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)

Fig. 10. Ultramarine Glacier, Kenai Mountains, Alaska. The zone of crevasses a short distance in from the edge of the glacier
indicales that the maximum shear stress dves nol occur at the edge itself. (Photagraph by Austin S. Post, 12 August 19671)

7. DiscHarGE AND MEAN VELOCITIES
By integrating the velocity over the cross-section we may find the discharge ¢. This is
given in the dimensionless form
Q= qlta*Alpgasin o)) (18)
in Tables IT and I1Ia. Since the parabolic bed is closest to the real situation in glaciers our
further discussions are concerned with this case.
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Fig. 11. Velocity U, (dimensionless) at the origin as a function of W, the ratio of half-width to depth, Jfor rectangular, semi-
elliptic and parabolic channels. n = 3

Q is plotted against I in Figure 12 for n = 3. The two extreme cases W —oand W — o
may be treated analytically. As W — o the velocity distribution on any horizontal line becomes
the same as that in an infinitely deep channel of appropriate width. By this principle we find,

for a parabolic bed, as W —o,
4 wn+2
L~ ) ) '

or, for n = 3, Q — (4/35) W, On the other hand, as W — co the velocity distribution on

5 1 T 1 T

o4 — -]
Q
35— —
2 =
.| — o —
s—Asymptote

T | | L

0 I 2 3 4 5

W

Fig. 12. Discharge Q (dimensionless) for parabolic channels as a function of W. n = 3
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any vertical line where the depth is H, say, is the same as that in an infinitely wide channel
of uniform depth H. By this principle we obtain for a parabolic bed,

0 2
\[;H,I; W nita Han-+gs

where I(r) = _i'ﬁcos" f8df. When r is a positive integer the integral is given by the recurrence
formula

tl(r) = (r—1) I(r—2) (r > 2) (19)
with I(1) =1 and (o) = i=.

Putting n = 3 we find
I(11) = (1ox8x6xq4x2)/(9gx7x5%x3) = 0-3604.

Hence the Q: W curve has an asymptotic slope of £ x0:3694 == 0-1478. This slope is in fact
reached to at least two-figure accuracy between W = g and W = 4 (thereby affording a

further check on the computer programmes), and enables us to infer that
0 =o0"1478 W—o0-187 (W =3).

(The Q value for W = 4 is thereby improved from 0-41 to 0-404.)
The mean velocity over the section, #, is given in dimensionless form

U = i/{aA(pga sin )"}

by U=3Q/w).

As W-—o, U-—{3/(n+2)(ntq)} Wnts, and, as W > oo, U —{3/2(n+2)} I(2n-+5).
U is listed, for n = 3, in column 6 of Table I11a.

The mean velocity along a transverse line drawn on the glacier surface is also of interest
because it is relatively easy to measure. Call it ug, or in dimensionless form

{/s = ug/{ad(pga sin «)"}.

It is given, for n = 3, in column 7 of Table 111a. The principles used above lead to the result
that as W — o, Us — (n-+2)~" Wa+, and, as W — oo, Us — (n4+1)-* I(2n+3).

Table I1la shows that, for W > 2 and n =3, U, is quite close to [/. The ratio
[_7/[',,- = iljus, the ratio of mean velocity over the section to mean surface velocity, is listed
in Table IIlg, column 4, under the heading n — 3, D.M.O. (differential motion only). For
values of W between 2 and 4 this ratio is unity to within 2 per cent (figures in bold type).
(In fact the error in computing the velocity distribution is also about 2 per cent, so it is not
certain that we can detect any departure from unity in this range.) Even for I infinite the
ratio differs from 1 by only g per cent. This seems to be an important result from a hydro-
logical point of view, for it means that the mean velocity of a glacier, and therefore, if the
cross-section is known, the discharge, may be inferred purely from measurements on the
glacier surface, without the need for bore-hole experiments. One simply measures the mean
surface velocity by means of a line of stakes, and then the mean velocity over the section is
taken to have the same value. Note that this result has only been derived for parabolic sections.

What effect will slip on the bed have on this last result? Apparently, very little. For
suppose that the entire motion consisted of bed slip, so that the glacier moved forward as a
rigid body. Then certainly the ratio @i/us — 1. Thus the result is true at both extremes—all
differential motion within the ice, and all bed slip. It is therefore presumably a good approxi-
mation for intermediate cases.

It may be asked how sensitive this result for n = 3 is to the value of n. Velocity distributions
for n # 3 have not been computed, but nevertheless some information on the n dependence
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may be obtained by the following argument. In the extreme case W — o we find from
previous results

ﬁ/‘ub' == 311(71+4):

and for W — oo

3(n+1) {(2n-+75) 3(n+1)

" 2(n-t2) I(2n+3) 2n-+5

by the recurrence relation (1g). Thus, for these two extreme cases we know precisely how the
ratio @/us depends on n. In Table 118, columns 2 and 6 show the values calculated for the two
extreme cases with # — 2 and 4. The variation of @/u; with n thus revealed enables us to make
an estimate, or a good guess, at @fuy for n = 2 and n = 4 for intermediate values of W.
In these estimates, which are shown in parentheses, the second decimal place is doubtful
since it depends on the interpolation method used.

The values of @/us that would occur if motion consisted entirely of bed slip are all equal
to 1 and are shown in Table 1118 under the heading B.S.O. (bed slip only). We conclude from
the table that @ equals u; to within a few per cent for 2 << W < 4 regardless of the amount
of bed slip, and even when n differs a little from 3.

The ratios @/uo and ug/uo are also shown in Table I1Ig for n = g for differential motion
only and for bed slip only. The values for W — 0 and W — oo are respectively

i
Us

i g(n+1) 3(n+1)

g Bin el = J(on-t¢

o (n+2) (n+4) and e (2n-+3),
s n+1

and — =
Uy n+2

and {(2n+3).

Estimates for n = 2 and n — 4 at intermediate values of I have been made accordingly.
It will be seen that the ratios are quite insensitive to the value of #, but, unlike #/us, they may
be expected to vary significantly with the amount of bed slip.

8. KinemaTic Wave VELocITY

It is shown in Lighthill and Whitham (1955) or Nye (1960) that for unsteady slow flow
in a channel the velocity of kinematic waves of constant ¢ is given by

dg
Ty
where S is the area of cross-section. This means that if the Ievel of the ice in a fixed parabolic
channel changes so as to increase the cross-sectional area of the ice by 48, the discharge will
increase by dg, and the ratio gives the kinematic wave velocity. Clearly, our computations on
parabolic sections contain the necessary information to find ¢ for n = 3, but a little further
thought is needed because the calculations have explicitly referred to a channel of fixed depth
and variable width, rather than a variable height of ice surface in a fixed channel. We proceed
as follows, for general n, remembering that differentiations with respect to § are for a fixed
parabola.

By the definition of Q = Q(I) in (18) we have ¢ = Q(W) y(a), where sl SEETT,
Therefore

¢

_ (S dlfV) WdQ. L(Sda)(_ad_y)
*(W’I‘;‘ (QW) adS)\yda)

¢ Sdg S dWdQ Sdy

But, for a fixed parabola, W oc § % and @ oc S%. Therefore
i Widd 2. .
= ~zgawts "t

=l
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For n = 3 we take the values of dQ) [dIV from the graph of O: W (Fig. 12) and so calculate
¢/t (Table Illc, under the heading n = 3, D.M.O., ¢/id). As W — 0 we have seen that
Q —{4/(n+2) (n+4)} Wn, which leads to ¢/ii = L(n+4). On the other hand, as W — oo
we have d() [dW — Q | W, which gives ¢/i = L(2n | 5).

Let us now consider the effect on the ratio ¢/@ of bed slip and of changing n. T'o estimate
the effect of bed slip it is instructive to think once again about the case where motion is
entirely due to slip on the bed, there being no differential motion within the ice at all. We
assumec that slip occurs according to the law

u ot Ty
where 74 is the shear stress on the bed, and m = §(n—+1). (For a bed of uniform roughness
7y must be uniform around the perimeter of the parabolic section because u is uniform.)
The expression for m is taken [rom Weertman (1957). Simple statics gives 74, = pg(S/p) sin «
where § is the area of cross-section and p is the perimeter in contact with ice, and then some
straightforward calculation shows that

clu = (m+1)—m(S/p)(dp/dS).

¢/u caleulated with this formula and n = 2, 3 and 4 is given in Table ITIc under the heading
cfit, B.S.O. Tt seems plausible to expect that when motion is partly due to bed slip and partly
to differential motion within the ice the ratio ¢/@ will lie between the extremes calculated
for D.M.O. and B.S.0O.

The effect on the ratio ¢/ of changing n is estimated by the method used before: we know
precisely how the ratio depends on n for W -0 and W > o0, so we use this information to
make a rough estimate of the effect at intermediate . The values of ¢/ in Table I11c show
how this ratio is affected both by bed slip and by a change of »,

The values of ¢/us and ¢fug in Table ITIc now follow in a straightforward way. The forms
for /o0 and W — oo respectively are

¢ n+41 ;
- 5 R and (n+1) I{2n+3)
4
sl ——1 and (r41).
Uy

Of the three ratios, ¢/d, ¢/us and c/us, the one shown by Table I11c to be least affected by
the amount of bed slip is ¢/us. It happens that this is also the ratio that is least dependent on
W over the practically important range 1 << W <= 4. Indeed for this range of W and for
n = 3 ¢fu lies between 2-0 and 2-3 regardless of the amount of bed slip. The ratio goes
up or down by about 0-3 as n increases or decreases by 1. In practical cases where the amount
of bed slip is unknown this ratio ¢/us seems to be the most useful.

Liffect of changes in thickness on the velocily. One further type of ratio may be considered. Since
clit = (dg/q)[(dS]S), ¢/@t gives immediately the fractional change of discharge, in a fixed
channel, due to a given [ractional change in the cross-sectional area. Glaciologists are often
more interested to know the fractional change of velocity that is caused by a given fractional
change in the ice thickness. For this we calculate (di/i)/(daja) by the following steps:

adi Sdi
= %Ed_l;' since, for a fixed parabola, S oc a3,
3(14dq 2 _ _
= E(ﬁ 5! since dg — @ dS-+Sdi,
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Since ¢/l is already known, this formula enables us to find (a/@)(di/da) ; the results are shown
in Table ITIp.

The fractional change in the centre-line velocity is also of interest. Remembering that the
changes are those for a fixed channel, some differentiation similar to that used above in
finding ¢/@ shows that

a duo 1 WdU,

e ol Gl i Tk

For n — 3, dUo/dW is taken from the graph of Us: W in Figure 11, and the resulting values
of (a/uo)(dus|da) are shown in Table ITIn under the heading n = 3, D.M.O. The values when
there is bed slip only (B.S.0.) are of course the same as those of (a/i)(di/da).

The ratio (afus) (dus/da) is formed in a similar way. For the case of differential motion
only it is notable that the formulae for W — o0 and W — oo are exactly the same for @, uo
%% = ia;i; = i% = é (n+1) and (n}1) respectively. As might be
expected from this result, the fractional change of velocity with thickness at intermediate IW
does not depend very much on which particular velocity, @, uo or us, is specified. An examina-
tion of Table ITInp makes this clear. The ratios in Table ITIp evidently depend considerably
upon the amount of bed slip; they increase or decrease by between o-5 and 1-0 as n increases
or decreases by 1.

By way of summary we may pick out the following leading results from Tables I11g, ¢ and b.
(1) The average surface velocity us is equal to the average velocity over the section # to within
a few per cent for 2 <= W < 4 regardless of the relative contribution of bed slip. This result
is most exact for n — 3 but is not sensitive to the precise value of n. (2) For 1 << W < 4 and
n = 3, the kinematic wave velocity ¢ is between 2-0 and 2-3 times the centre-line velocity of
the ice uo regardless of the amount of bed slip. This ratio goes up or down by about 0-3 as n
increases or decreases by 1. (3) For 1 <~ W < 4 and n = §, ¢ is between 2-0 and 3-5 times
the mean surface velocity of the ice u,. The exact value depends on W and on the amount of
bed slip, and changes by up to 0-8 as n changes by 1. (4) The ratio of the fractional change
in velocity to a given fractional change in ice thickness is only slightly dependent on which
velocity is specified ; but it can take values ranging from 1-1 to 4-7 depending on the amount
of bed slip, the width-depth ratio (1 < W < 4), and the value of n (2 << n < 4).

and ug, namely
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APPENDIX

CHESTER’S SOLUTION FOR A NEARLY SEMI-CIRCULAR CUHANNEL

We start with the solution for a semi-circular channel of radius a, and perturb the boundary
slightly into a semi-ellipse with horizontal semi-axis a(1-¢) and depth a (Fig. 4), e being
small. In polar coordinates r, 8, x (Fig. 4) the two shear-stress components in the plane of the
cross-section are 7,4, T4, which we may denote for brevity 7, 75. The equations are

10(rry) 107y !
———— | ——=— = —pgsin 18
r or l rcf PE = S

i I cu
B — Ar®—1ry, —T-ET? = Arh-1q, (. (Ig)
= ~legtmgh (20)
The unperturbed solution, with flow independent of 8, is
kr

wp= = Bk (21)

L R

where & = pga sin a. For the perturbed solution put

Tr = Tote€oy,
To = €0y, (23)
u = (u)otev,

where oy, oy and o are functions to be determined, and substitute into the differential
equations, retaining only terms up to order e. The zero-order terms cancel, and we find
from (19) and (20)

& 1 0v
— = ndl|7o| 1 oy —— = Al|7o|" 1 gy 2
o LT R AU (24)
Substituting for the stress components in (18) then gives
& %0

2

ov
re=a—n—2)r= e — 0 25
or* ( ) ('r+n o~ > (25)

as the differential equation to be satisfied by the perturbation in velocity v.
To the first order in e the channel boundary is

r = a(1-fesin® ).
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On the boundary (u), is found from (22) to have the value

(w)o = —ead(Lk)? sin* @
to order e. T'o make u zero on the boundary we therefore choose v so that, on r = a, ev is the
negative of this value; thus

v = B(1—cos 20) onr—a, (26)
where B = taA(}k)". Notice that it is sufficient to set this boundary condition on 2 at r = a
rather than at the perturbed boundary. Thus (25) has to be solved for » with the boundary
condition (26).
For a solution put

v = Bfolr) —f(r) cos 26},

where fo(r) and fi(r) are functions to be determined. Then, by substitution into (25),

, &fo dfo —
ra —(n—=2) ¥ = with fo = 1 on r = g,
&, . .
and > —(n—2) rE—q.ry". o withfi—=1 onr—a

This gives dfo/dr = Crn—*, where C is a constant. But, from (24),
G ~1r N gplor ~ort
unless ¢ = 0. So we must have ¢ = o, otherwise o, is singular at the origin. Hence fo(r) = 1.
The equation for f; gives

where ¢ = J(n—1)+4(n*+14n-+1)% (The other solution would make o, and o, singular at
r = 0.) So the solution for the velocity perturbation v is

b= B{rﬁ(g)Pms 26}.

Equations (24) now give explicit expressions for the stress perturbations ¢, and o. Finally,
combining the perturbation with the unperturbed solution we find

I [(r efr\c=*
Tr = ——k{—+~(—) cos 29}
2 |la 2n\a
1 e
Ty == —ek(—) sin 2 rs
a

T o ]

=
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