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Abstract We define an infinite class of fractals, called horizontally and vertically blocked labyrinth
fractals, which are dendrites and special Sierpiński carpets. Between any two points in the fractal there
is a unique arc a; the length of a is infinite and the set of points where no tangent to a exists is dense
in a.
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1. Introduction

Having discussed 4 × 4-labyrinth fractals in [5], we now devote our attention to m × m-
labyrinth fractals for m � 5. These fractal sets are constructed iteratively, as described
in § 1.1.1. Additionally, we demand three properties be satisfied, which we formulate
in § 1.1.2. An example for the first two steps of the construction is given in Figure 1,
where the black squares indicate the points that are not in the fractal.

1.1. Labyrinth fractals

In this section it will be helpful to keep in mind the example in Figure 1, which we
have already discussed [5].

1.1.1. Construction

We note that Figure 1 gives an example of the construction we now describe. Let
Q ⊆ [0, 1] × [0, 1] be a square. Then, for any point (z1, z2) ∈ [0, 1] × [0, 1], we define the
function

PQ(z1, z2) = (qz1 + x1, qz2 + x2),

where (x1, x2) is the lower-left corner of Q and q is the side length of Q.
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Figure 1. L1 and L2.

Let m � 1,

Si,j,m =
{

(z1, z2)
∣∣∣∣ i

m
� z1 � i + 1

m
and

j

m
� z2 � j + 1

m

}
,

and Sm = {Si,j,m | 0 � i � m − 1 and 0 � j � m − 1}. We let W1 ⊂ Sm, and call it the
set of white squares of order 1. Then we define B1 = Sm \ W1 as the set of black squares
of order 1. For n � 2 we define the set of white squares of order n by

Wn =
⋃

W1∈W1,Wn−1∈Wn−1

{PWn−1(W1)}.

We note that Wn ⊂ Smn , and we define the set of black squares of order n by Bn =
Smn \Wn. For n � 1, we define Ln =

⋃
W∈Wn

W . Therefore, {Ln}∞
n=1 is a monotonically

decreasing sequence of compact sets. We write L∞ =
⋂∞

n=1 Ln, i.e. the limit set of W1.

1.1.2. Definition of labyrinth fractals

We note that the graph concepts we use here were defined by Cristea and Steinsky [5].
For n � 1, we define G(Wn) ≡ (V(G(Wn)), E(G(Wn))) to be the graph of Wn, i.e. the

graph whose vertices V(G(Wn)) are the white squares in Wn, and whose edges E(G(Wn))
are the unordered pairs of white squares that have a common side. The top row of order n

is the set of all white squares in {Si,mn−1,mn | 0 � i � mn − 1}. The bottom row, left
column and right column are defined analogously. A top exit in Wn is a white square in
the top row of order n, such that there is a white square in the same column in the bottom
row of order n. A bottom exit is defined analogously. A left exit in Wn is a white square
in the left column of order n, such that there is a white square in the same row in the
right column of order n. A right exit is defined analogously. W1 has the following three
properties, which we will use to define labyrinth sets. We call Wn an m × m-labyrinth
set if Wn satisfies Properties 1.1, 1.2 and 1.3.

Property 1.1. G(Wn) is a tree.

https://doi.org/10.1017/S0013091509000169 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509000169


Curves of infinite length in labyrinth fractals 331

Property 1.2. Exactly one top exit in G(Wn) lies in the top row (of order n), exactly
one bottom exit lies in the bottom row, exactly one left exit lies in the left column and
exactly one right exit lies in the right column.

Property 1.3. If there is a white square in Wn at a corner of Wn, then there is no
white square in Wn at the diagonal opposite corner of Wn.

We call the limit set L∞ a labyrinth fractal and notice that for W1 = {W1, . . . , Wn}
the limit set L∞ is the attractor of the iterated function system (IFS) {PW1 , . . . , PWn},
which satisfies the open set condition. Moreover, labyrinth fractals can also be obtained
by Moran construction [10,12,13].

1.2. Overview

In § 2 we recapitulate proven results [5] that we need for this paper. One of the facts
mentioned therein [5] is that labyrinth fractals are dendrites, which yields that between
any two points in a labyrinth fractal there is a unique arc in the labyrinth fractal.

Cristea [4] introduced certain Moran fractals in the unit square, called limit net sets,
and showed several connectedness properties as connectedness, local connectedness or
arcwise connectedness. The construction of net sets is similar to that of labyrinth fractals,
but net sets need not be self-similar and the black squares satisfy certain conditions,
which in a sense say that they are ‘well distributed’. In § 3, we define horizontally and
vertically blocked labyrinth fractals, which are labyrinth fractals such that the set where
the construction begins contains no row and no column of white squares: a property
they have in common with net sets. An example of such a set is shown on the left of
Figure 1. This section also contains the main results of this paper, which are summed up
in Theorem 3.18. We show that between any two points in the limit set of a horizontally
and vertically blocked m × m-labyrinth set there is a unique arc a in the fractal, the
length of a is infinite and the set of all points at which no tangent to a exists is dense
in a. To gain this result, we first show that the path matrix (which is defined in § 2) of
any horizontally and vertically blocked m×m-labyrinth set is primitive. Then we use the
Perron–Frobenius Theorem for primitive matrices to obtain the asymptotic behaviour
of the path lengths in the nth step of the construction as n tends to ∞. Furthermore,
we prove that the spectral radius r of the path matrix is greater than m, and that the
box-counting dimension of a is log(r)/ log(m).

We note that the literature provides many examples of continuous curves with infinite
length, like the von Koch curve [16, 17], the Peano curve [11], the Hilbert curve [8]
or the dragon curve [2, Example 5.1.6]. Following Akiyama et al . [1, Remark 3.2] or
Hata [7, Remark 2, p. 391], we may find more examples of curves with infinite length.
But we note that not all of these curves have the property that the distance between any
two points of the curve (seen as a set of points) is infinite, as is the case for labyrinth
fractals. Furthermore, we note that this property does not follow from the fact that
labyrinth fractals are attractors of self-similar IFSs with open set condition and have
Hausdorff dimension between 1 and 2, since this is also satisfied for the well-known
Sierpiński carpet, where the distance between any two points is finite.
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Figure 2. Paths from the right to the bottom exit of W1 and W2.

2. Previous results for labyrinth fractals

All the results in this section have been proven by Cristea and Steinsky [5]. Nevertheless,
we present them here, as they will be used later.

A topological space X is an arc if there is a homeomorphism h from [0, 1] to X. We say
that X is an arc between h(0) and h(1). A curve c is the image of a continuous function
that is defined on a real interval. We say a topological space is a simple closed curve if
it is homeomorphic to the unit cycle. A topological space X is locally connected if, for
each point x ∈ X, each neighbourhood of x contains a connected open neighbourhood of
x. A continuum is a compact connected T2-space, and a dendrite is a locally connected
continuum that contains no simple closed curve. We refer to Bandt [3, Proposition 10]
and note that between any pair of points x �= y in L∞ there is a unique arc [9, Corollary 2,
p. 301].

Theorem 2.1. L∞ is a dendrite.

As a further remark, the Hausdorff dimension of L∞ is

dimH =
log |W1|
log m

,

which follows from known results for self-similar sets [6, Theorem 9.3]. Since in the case
of labyrinth fractals we have |W1| > m, it follows that dimH > 1. We call a path in
G(Wn) a -path if it leads from the top exit to the bottom exit of Wn. The -, -, -,

- and -paths lead from left to right, top to right, right to bottom, bottom to left and
left to top exits, respectively. We write n, n, n, n, n and n for the length of the
respective path.

We will now give a construction for the path between all possible pairs of exits. To
demonstrate the idea, let us start with a path between the right exit and the bottom
exit, as shown in Figure 2, but we note that the construction we describe here works for
all labyrinth fractals.

First, we find the path between the right and the bottom exit of W1. Then we denote
each white square in the path according to its neighbours within the path. If it has a
top and a bottom neighbour within the path it is called -square (with respect to the
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path). It is called -, -, -, - and -square if its neighbours are on the left and on the
right, on the top and on the right, on the right and on the bottom, on the bottom and
on the left and on the left and on the top, respectively. If the white square is an exit, it
is supposed to have a neighbour outside the side of the exit. If it is a bottom exit, for
example, then it has no bottom neighbour within the path but is supposed to have a
neighbour below, outside the bottom, in addition to its inside neighbour.

We do this for all possible paths between two exits in G(W1) in the same way.

Lemma 2.2. There is a non-negative 6 × 6-matrix M such that, for n � 1,⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n

n

n

n

n

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= M ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n−1

n−1

n−1

n−1

n−1

n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= Mn ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.1)

We note that in the example shown in Figure 1, we have

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 0 1 1 1 1
0 2 1 1 1 1
0 1 3 0 2 0
1 1 1 2 1 1
1 0 0 0 1 0
1 1 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We call the matrix M in Lemma 2.2 the path matrix of the labyrinth set W1. For n � 1
and W1, W2 ∈ G(Wn), let pn(W1, W2) be the path in G(Wn) from W1 to W2.

Lemma 2.3 (arc construction). Let a, b ∈ L∞, where a �= b. For all n � 1, there
are Wn(a), Wn(b) ∈ V (G(Wn)) such that

(a) W1(a) ⊇ W2(a) ⊇ · · · ,

(b) W1(b) ⊇ W2(b) ⊇ · · · ,

(c) a =
⋂∞

n=1 Wn(a),

(d) b =
⋂∞

n=1 Wn(b).

(e) the set
⋂∞

n=1(
⋃

W∈pn(Wn(a),Wn(b)) W ) is an arc between a and b.

Let Tn ∈ Wn be the top exit of Wn, for n � 1. The top exit of L∞ is
⋂∞

n=1 Tn. The
other exits of L∞ are defined analogously. Let c be a curve. A surjective and continuous
function p : [a, b] → c is called a parametrization of c. The length of p is defined as

L(p) = sup
{ n∑

i=1

(|p(ti+1) − p(ti)|)
∣∣∣∣ a = t0 < · · · < tn = b

}
.
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We say an arc has finite length if it has a parametrization p with L(p) < ∞, and otherwise
the arc has infinite length.

Lemma 2.4. Let n, k � 1, {W1, . . . , Wk} be a (shortest) path between the exits W1

and Wk in G(Wn), K0 = W1 ∩ ∂([0, 1] × [0, 1]), Kk = Wk ∩ ∂([0, 1] × [0, 1]), and c be a
curve in Ln from a point of K0 to a point of Kk. The length of any parametrization of c

is at least (k − 1)/(2mn).

Lemma 2.5.

(a) For all n � 1, each exit e in L∞ lies in exactly one square Wn(e) ∈ Wn.

(b) If n � 1 and e is an exit of L∞, then e is a fixed point of PWn(e).

(c) Let z ∈ [0, 1]× [0, 1]. Then PWn(e)(z)−e and z−e are linearly dependent for n � 1.

Lemma 2.6. If a is an arc between two exits e1 and e2 in L∞, p is a path in G(Wn)
from Wn(e1) to Wn(e2), and Wn ∈ Wn is a -square with respect to p, then Wn ∩ a is
an arc between the top exit and the bottom exit of Wn. If Wn is another type of square,
the analogous statement holds.

Lemma 2.7. If a is an arc between the top and bottom exits in L∞ and Wn ∈ Wn,
then PWn

(a) is an arc between the top and bottom exits in Wn. For the other pairs of
exits, the analogous statement holds.

Lemma 2.8. If a is an arc between the top and bottom exits in L∞, then

lim inf
k→∞

log( k)
k log(m)

� dimB(a) � dimB(a) � lim sup
k→∞

log( k)
k log(m)

.

For the other pairs of exits, the analogous statement holds.

3. Horizontally and vertically blocked labyrinth fractals

In this section we present the main results of this paper. An m × m-labyrinth set W1

is called horizontally blocked if the row (of squares) from the left exit to the right exit
contains at least one black square. It is called vertically blocked if the column (of squares)
from the top exit to the bottom exit contains at least one black square. We note that
there is no horizontally or vertically blocked m × m-labyrinth set for m � 3. The main
statement is contained in Theorem 3.18. We show that between any two points in the
limit set of a horizontally and vertically blocked m×m-labyrinth set there is a unique arc
a in the fractal, the length of a is infinite and the set of all points at which no tangent to
a exists is dense in a. We prove that the path matrix of any horizontally and vertically
blocked m × m-labyrinth set is primitive and use the Perron–Frobenius Theorem for
primitive matrices to obtain the asymptotic behaviour of the path lengths in the nth
step of the construction, as n → ∞.

From now on, let m � 4, let W1 be a horizontally and vertically blocked m × m-
labyrinth set and let {Lk}∞

k=1 be defined as in § 1.1.1.
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Lemma 3.1. Let P = {W1, . . . , Wn} be a path between the top exit and the bottom
exit of W1. The -squares and the -squares occur alternately in P , beginning with a

-square and ending with a -square, i.e.

(a) if Wj is a -square in P , then there is an i < j such that Wi is a -square in P ,

(b) if Wj is a -square in P , then there is an i > j such that Wi is a -square in P ,

(c) if Wi and Wj are -squares in P , for i < j, then there is a k such that i < k < j

and Wk is a -square in P ,

(d) if Wi and Wj are -squares in P , for i < j, then there is a k such that i < k < j

and Wk is a -square in P .

Proof. (a) If we do not use a -square and start at Wj , which is a -square, it is
only possible to go downwards or to the left, such that we cannot reach the top exit W1.

(b) This follows from the same arguments as (a).

(c) If the two -squares lie in different rows, then it is not possible to reach the upper
-square from the lower -square without a -square, by the same argument as in (a).

If the two -squares lie in different columns, then it is not possible to reach the right
-square from the left -square without a -square, by the same argument as in (a).

(d) The proof is analogous to that of (c). �

We note that Lemma 3.1 also holds if -square is replaced by -square and -square
is replaced by -square. Also, for both versions of Lemma 3.1, an analogous lemma for
paths from the left exit to the right exit holds.

Lemma 3.2. Let k < n, {W1, . . . , Wk} be a path between the top exit and the right
exit of W1, and let {Wk+1, . . . , Wn} be a path between the left exit and the bottom exit
of W1. Let G be the graph that results if we horizontally combine two copies of G(W1)
such that the right exit of the left copy is neighboured to the left exit of the right copy.
Then P = {W1, . . . , Wk, Wk+1, . . . , Wn} is a path in G between the top exit of the left
copy and the bottom exit of the right copy in G. The -squares and the -squares occur
alternately in P , beginning with a -square and ending with a -square, i.e. the items
(a)–(d) are the same as in Lemma 3.1.

Proof. The proof is similar to that of Lemma 3.1. �

We note that Lemma 3.2, like Lemma 3.1, also exists in four versions.
For u, v ∈ { , , , , , }, let n(u, v) be the number of u-squares in a v-path of

G(W1).

Lemma 3.3.

(a) n( , ) = n( , ) and n( , ) = n( , ).

(b) n( , ) = n( , ) and n( , ) = n( , ).
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(c) n( , ) + n( , ) = n( , ) + n( , ) and n( , ) + n( , ) = n( , ) + n( , ).

(d) n( , ) + n( , ) = n( , ) + n( , ) and n( , ) + n( , ) = n( , ) + n( , ).

Proof. (a) n( , ) = n( , ) follows from Lemma 3.1 and n( , ) = n( , ) is
deduced from the notes after Lemma 3.1.

(b) The arguments are the same as in (a), except that we use the remarks after
Lemma 3.1.

(c) To show n( , ) + n( , ) = n( , ) + n( , ) and n( , ) + n( , ) = n( , ) +
n( , ) we use Lemma 3.2.

(d) We prove this in the same way as (c). �

For a matrix Q = (qi,j)r
i,j=1 � 0, we define Q′ = (q′

i,j)
r
i,j=1 by

q′
i,j =

{
1 if qi,j > 0,

0 if qi,j = 0.

A digraph G is a pair (V, E), where V = V (G) is a finite set and E = E(G) is a
subset of (V × V ) \ {(a, a) | a ∈ V }. Now, we define the digraph G ≡ (V, E), where
V = { , , , , , } and E ⊆ V × V is defined by the adjacency matrix M ′, where M

is the path matrix of W1. We write u → v if (u, v) ∈ E and note that u → v if and only
if a u-square is contained in a v-path in L1.

Lemma 3.4.

→ , → , → , → and → ,

→ , → , → , → and → .

Proof. By symmetry, it suffices to show the first line. Let P be a -path. We indirectly
assume that P contains no -square. Without loss of generality, we assume that the top
exit is a -square. If P contains a -square W , then the square below W in P must be
a -square, to avoid a cycle in G(W1). Thus, P cannot reach the bottom exit, which is
a contradiction. Therefore, → .

Since W1 is vertically blocked, there is a first square S in P , starting from the top exit,
that is not a -square. Thus, S must be a - or a -square. Without loss of generality,
we assume that S is a -square. With Lemma 3.3 (a) we obtain that P also contains a

-square. If P neither contains a -square nor a -square, then the path could only go
downwards or to the right and therefore, it would not reach the bottom exit, which is a
contradiction. Therefore, Lemma 3.3 (a) yields that there is a -square and a -square
in P . �

Lemma 3.5.

→ or → ,

→ or → ,

→ or → ,

→ or → .
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Figure 3. For the proof of Lemma 3.5.

Proof. By symmetry, it suffices to show the first line. We indirectly assume that
neither → nor → . The top exit and the left exit of W1 are denoted by T and L,
respectively. We number the columns and rows of W1 from 1 to m, beginning at the left
and at the top. Now, we write col(T ) for the column where T lies, and we write row(L)
for the row in which L appears. If row(L) > col(T ), then we take a look at the -path P .
The top exit T must be a -square in P , because otherwise, as P leads to L and we have
assumed that → does not hold, a cycle must occur in G(W1). Since row(L) > col(T ),
P must contain a -square, since otherwise P will not reach the left exit L (if we say P

starts in the top exit T ). Thus, row(L) > col(T ) is not possible. In the same way we show
that the -path contains a -square if row(L) < col(T ), which makes row(L) < col(T )
impossible. Therefore, row(T ) = col(L), which implies that there is no -square in the

-path and no -square in the -path. Property 1.1 yields that there is a path P0 between
the bottom exit and L. P0 has to use a square that is adjacent to P . As Figure 3 shows,
this produces a contradiction either to Property 1.1 or to Property 1.2. �

A non-negative square matrix Q = (Qi,j)k
i,j=1 is called irreducible if for every pair

1 � i, j � k, there is a positive integer p such that Qp
i,j > 0. A path of length n � 1 from

a to b in a digraph G ≡ (V, E) is a sequence (a0, a1, . . . , an) such that a0, a1, . . . , an ∈ V ,
a0 = a, an = b, ai �= aj for 0 � i < j � n, and (ai−1, ai) ∈ E for i = 1, . . . , n. We say a
digraph is strongly connected if there is a path from every vertex to every other vertex.
We note that the non-negative square matrix Q is irreducible if and only if the digraph
with vertex set {1, . . . , k} and adjacency matrix Q′ is strongly connected.

Theorem 3.6. The path matrix M of an m × m-labyrinth set is irreducible if and
only if the labyrinth set is horizontally and vertically blocked.

Proof.

(1) If, without loss of generality, the labyrinth set is not horizontally blocked, then the
-path contains only -squares. Therefore, it is not possible to reach in G from

any vertex but by a path. Thus, M is not irreducible.

(2) Let the labyrinth set be horizontally and vertically blocked. We indirectly assume
that M is not irreducible. Thus, G is not strongly connected, which implies that
there are vertices u, v ∈ V such that there is no path from u and v in G.
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As the first case we treat u ∈ { , , , }. Lemma 3.4 gives u → and u → . Thus,
if v ∈ { , }, then u → v yields a contradiction. If v ∈ { , , , }, we assume without
loss of generality that v = . If → , then u → → = v is a contradiction. If

→ , then u → → = v is a contradiction. Thus, neither → nor → holds.
Now, we indirectly assume that → does not hold. The top exit is a square in the

-path, because otherwise, as P leads to the right exit, a cycle must occur in G(W1).
Thus, the -path consists only of one -square, which means that there is an exit, which
is a right exit and a top exit. This is impossible by Property 1.3, such that we may
assume → . Since → does not hold, → must be satisfied by Lemma 3.5.
Therefore, u → → → = v is a contradiction.

The second case is u ∈ { , }. We assume without loss of generality that u = . If
v ∈ { , }, a contradiction follows, since then there must be a path from u to v, as
Lemma 3.5 yields → or → and Lemma 3.4 gives → , → , → and

→ . If v ∈ { , , , }, we assume without loss of generality that v = . If → ,
then u = → = v is a contradiction. So we state that → does not hold and
therefore Lemma 3.5 yields → . Furthermore, Lemma 3.4 gives → . If → ,
then u = → → → = v is a contradiction. So we state that → does not
hold. As in the first case, it follows that → and finally u = → → = v yields a
contradiction. �

A non-negative square matrix Q is called primitive if there is a positive integer p such
that Qp > 0, i.e. all entries of Qp are greater than 0. We note that a primitive matrix has
to be irreducible and that an irreducible matrix with at least one non-negative diagonal
element is primitive.

Theorem 3.7. The path matrix M of an m×m-labyrinth set is primitive if and only
if the labyrinth set is horizontally and vertically blocked.

Proof.

(1) If the labyrinth set is not horizontally and vertically blocked, then M is not irre-
ducible, by Theorem 3.6. Thus, M is not primitive.

(2) If the labyrinth set is horizontally and vertically blocked, then M is irreducible, by
Theorem 3.6. Since Lemma 3.4 provides → , M is primitive.

�

Let M be the path matrix of a horizontally and vertically blocked m×m-labyrinth set
W1. The reduced path matrix M̄ of W1 arises from M in the following way. We add the
sixth row to the fourth row and the fifth row to the third row in M . From the result we
delete the fifth and sixth rows and columns. Let n = n + n and n = n + n.
We need the reduced path matrix M̄ for technical reasons which we will explain later.
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Lemma 3.8. For n � 1,
⎛
⎜⎜⎜⎝

n

n

n

n

⎞
⎟⎟⎟⎠ = M̄

⎛
⎜⎜⎜⎝

n−1

n−1

n−1

n−1

⎞
⎟⎟⎟⎠ , where

⎛
⎜⎜⎜⎝

0

0

0

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
1
2
2

⎞
⎟⎟⎟⎠ .

Proof. Let M = (mij)6i,j=1 and let M∗ be⎛
⎜⎜⎜⎝

m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26

m31 + m51 m32 + m52 m33 + m53 m34 + m54 m35 + m55 m36 + m56

m41 + m61 m42 + m62 m43 + m63 m44 + m64 m45 + m65 m46 + m66

⎞
⎟⎟⎟⎠ .

We use Lemma 2.2 to obtain

⎛
⎜⎜⎜⎝

n

n

n

n

⎞
⎟⎟⎟⎠ = M∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n−1

n−1

n−1

n−1

n−1

n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

which is equal to
⎛
⎜⎜⎜⎝

m11 m12 m13 m14

m21 m22 m23 m24

m31 + m51 m32 + m52 m33 + m53 m34 + m54

m41 + m61 m42 + m62 m43 + m63 m44 + m64

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

n−1

n−1

n−1 + n−1

n−1 + n−1

⎞
⎟⎟⎟⎠ ,

since the third column of M∗ is equal to its fifth column and the fourth column of M∗

is equal to its sixth column, by Lemma 3.3. �

Lemmas 3.1 and 3.2 allow us to combine the -squares and -squares of a path
(between exits) into -squares and to combine the -squares and -squares of a path
(between exits) into -squares. If the columns and rows of M̄ correspond to , ,
and , then the element in row x and column y is the number of y-squares in the
x-path. The -path and the -path arise according to Lemma 3.2.

Lemma 3.9. The reduced path matrix M̄ of a horizontally and vertically blocked
m × m-labyrinth set is primitive.

Proof. We define the digraph G∗ ≡ (V, E), where V = { , , , } and E ⊆ V × V
is defined by the adjacency matrix M̄ ′.
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(1) If, without loss of generality, the labyrinth set is not horizontally blocked, then the
-path contains only -squares. Therefore, it is not possible to reach in G∗ from

any vertex but by a path. Thus, M̄ is not irreducible.

(2) If the m × m-labyrinth set is horizontally and vertically blocked, then Lemmas 3.4
and 3.5 allow us to show that the graph G∗ is strongly connected.

�

From the Perron–Frobenius Theorem for primitive matrices, e.g. in the book of Seneta
[14, Theorem 1.1, p. 3], we have the following result.

Theorem 3.10. Let M be the path matrix of a horizontally and vertically blocked
m × m-labyrinth set. Then there is an eigenvalue r of M such that

(a) r is real and greater than 0,

(b) strictly positive left and right eigenvectors can be associated with r,

(c) r > |λ| for any eigenvalue λ �= r of M .

Let λ be an eigenvalue of M with |λ| < r, and the property that for any other eigenvalue
λ′ of M with |λ′| < r we have either |λ′| < |λ| or |λ| = |λ′| and the algebraic multiplicity
mλ of λ is not lower than the algebraic multiplicity of λ′. Let w, u be positive right and
left eigenvectors to r, in accordance with Theorem 3.10, normed so that uw = 1. The
following theorem [14, Theorem 1.2, p. 9] yields the asymptotic behaviour of Mk.

Theorem 3.11. For a primitive matrix M :

(a) if λ �= 0, then as n → ∞

Mn = rnwu + O(n(mλ−1)|λ|n);

(b) if λ = 0, then for n � 1
Mn = rnwu.

We note that we actually need the reduced path matrix M̄ to give a lower bound of
the spectral radius of M . The argument which we use for M̄ in Theorem 3.12 does not
work for M , since, in general, neither the minimal row sum nor the minimal column sum
of M has to be greater than or equal to m.

Theorem 3.12. Let M be the path matrix and M̄ be the reduced path matrix of
a horizontally and vertically blocked m × m-labyrinth set. The spectral radius of M is
equal to the spectral radius of M̄ and is greater than m.

Proof. We first show that the spectral radius of M̄ is greater than m. The row sum
of the first row of M̄ is not lower than m, since a -path needs at least one -square or
one -square or one -square to go from one row to the row beneath. By the same
argument, the row sum of the other rows of M̄ is not lower than m. Now, we will show
that the row sum of the third row of M̄ is greater than m, by indirectly assuming that
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the row sum is equal to m. Let P be a -path between the top exit of the -square
and the bottom exit of the neighbouring -square. If P consists of m squares, where the
combined -squares count as one square and the combined -squares also count as
one square, P has to go at least one step downwards and at least one step to the right
in each of its squares. Therefore, P consists of -squares only, which is impossible by
Lemma 3.5. As this is a contradiction, we conclude that the sum of the third row is
greater than m. It is known [14, Corollary 1, p.8] that the spectral radius is not lower
than the minimal row sum, and is greater than the minimal row sum if not all row sums
are equal. This implies that the spectral radius of M̄ is greater than m.

Now, we prove that the spectral radius of M is equal to the spectral radius of M̄ . We
indirectly assume that the spectral radius r of M is not equal to the spectral radius r̄ of
M̄ . For n � 1, let Mn = (mij,n)6i,j=0 and M̄n = (m̄ij,n)4ij=0. Theorem 3.11 yields

lim
n→∞

m11,n + m12,n + m13,n + m14,n + m15,n + m16,n

rn
= c > 0

and

lim
n→∞

m̄11,n + m̄12,n + 2m̄13,n + 2m̄14,n

r̄n
= c̄ > 0.

This is impossible since

n = m11,n +m12,n +m13,n +m14,n +m15,n +m16,n = m̄11,n + m̄12,n +2m̄13,n +2m̄14,n,

by Lemma 3.8. �

Let Tn ∈ Wn be the top exit of Wn for n � 1. The top exit of L∞ is
⋂∞

n=1 Tn. The
other exits of L∞ are defined analogously. Let c be a curve. A surjective and continuous
function p : [a, b] → c is called a parametrization of c. The length of p is defined as

L(p) = sup
{ n∑

i=1

(|p(ti+1) − p(ti)|)
∣∣∣∣ a = t0 < · · · < tn = b

}
.

We say an arc has finite length if it has a parametrization p with L(p) < ∞ and otherwise
the arc has infinite length. Let t be the top exit of L∞, n � 1, and W ∈ Wn. Then we
call PW (t) the top exit of W . The other exits of W are defined analogously. We note that
we have now defined exits for three different types of object, i.e. for Wn, for L∞ and for
squares in Wn.

Lemma 3.13. Between any two different exits of L∞ there is no arc of finite length
in L∞. Furthermore, between two different exits of a square W ∈ Wn, for n � 1, there
is no arc of finite length in L∞.

Proof. Let r be the spectral radius of M . M is primitive, by Theorem 3.7. Since
Theorem 3.12 guarantees r > m, it follows from Theorem 3.11 that each entry of Mn/mn

tends to ∞. Now, Lemmas 2.2 and 2.4 imply that there is no arc of finite length between
two different exits of L∞. To prove the second statement, we assume that there is an
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arc a between two different exits of W whose length is finite. The function PW is a
homeomorphism between [0, 1] × [0, 1] and W , and P−1

W (W ∩ L∞) = L∞. Thus, P−1
W (a)

is an arc in L∞ between two different exits of L∞, whose length is infinite, as we have
just showed. As this is a contradiction, the proof is completed. �

Theorem 3.14. The length of the arc a in L∞ between any two distinct points x and
y in L∞ is infinite.

Proof. Let pn be the path between Wn(x) and Wn(y), constructed as in Lemma 2.3.
Since, x �= y, there must be a k � 1, such that pk consists of at least three squares. Let
W ∈ pn be a square that is different from Wn(x) and Wn(y). By the construction of the
arc a between x and y in Lemma 2.3, it follows that a ∩ W is an arc between two exits
of W . From Lemma 3.13 it follows that the length of a ∩ W cannot be finite. �

Following [15, § 7.2, p. 73], we say that there exists a tangent T at a point x0 to an
arc a if for every positive angle φ, there exists an ε, such that, for all x in a that satisfy
|x0 − x| < ε, the angle between the line T and the line through x and x0 is not greater
than φ.

Lemma 3.15. If a is an arc between two exits e1 and e2 in L∞, then there exists no
tangent at e1 or e2 to a.

Proof. We will show this for e1. Without loss of generality, we assume that e1 is the
left exit. By Lemma 2.5 (a), for all n � 1, e1 lies in exactly one square Wn(e1) ∈ Wn and
e2 lies in exactly in one square Wn(e2) ∈ Wn. Let pn be the path in G(Wn) from Wn(e1)
to Wn(e2). The square Wn(e1) can only be of type , or , with respect to pn, for each
n � 1. Thus, at least one of the types , or occurs infinitely often in the sequence
{Wn(e1)}∞

n=1, with respect to pn. Without loss of generality we assume that there is a
sequence {nj}∞

j=1 such that Wnj
(e1) is a -square, for all j � 1. Thus, Wn1(e1) ∩ a is an

arc between the left exit and the right exit of Wn1(e1), by Lemma 2.6. The path matrix
of a horizontally and vertically blocked labyrinth set is irreducible, by Theorem 3.6. This
implies that there is an n � 1 such that projections of all four exits of L∞ into squares
of Wn must be contained in any arc in L∞ between two exits of L∞. Therefore, an arc
between two exits of a square cannot be a straight line segment. Thus, we may choose
two points p1 and p2 in Wn1(e1) ∩ a which are both different from e1, such that p1 − e1

and p2 − e1 are not collinear. On the one hand, aj = PWnj
(e1)(p1) and bj = PWnj

(e1)(p2)
define sequences for j � 2, which converge to e1 and there is no j � 1 such that aj = e1

or bj = e1. Lemmas 2.6 and 2.7 yield that aj , bj ∈ a for j � 1. On the other hand, aj

lies on a straight line la for all j � 1 and bj lies on a straight line lb for all j � 1, by
Lemma 2.5 (c). As p1 − e1 and p2 − e1 are not collinear, we have la �= lb. It follows that
there exists no tangent to a at e1. �

Corollary 3.16. If a ⊂ L∞ is an arc, then the set of all points at which no tangent
to a exists is dense in a.
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Proof. For n � 1, let pn(Wn(a), Wn(b)) = {W1, . . . , Wk} be constructed according
to Lemma 2.3. Let e1, e2, e3 and e4 be the exits of L∞ and let 1 � j � k. From
Lemmas 2.6 and 2.7, we obtain that Wj ∩a is an arc from PWj

(ei1) to PWj
(ei2) for some

1 � i1 < i2 � 4. The set

a ∩
∞⋃

n=1

⋃
Wn∈Wn

PWn({e1, e2, e3, e4})

is dense in a. Lemma 3.15 implies that

a ∩
∞⋃

n=1

⋃
Wn∈Wn

PWn({e1, e2, e3, e4})

is a subset of the set of all points at which no tangent to a exists. �

Lemma 3.17. Let L∞ be the limit set of a horizontally and vertically blocked m×m-
labyrinth set with path matrix M and let r be the spectral radius of M . If a is an arc
between two exits in L∞, then

dimB(a) =
log(r)
log(m)

.

Proof. We use Lemma 2.8 and Theorem 3.11. �

As a summary, we now state our main result.

Theorem 3.18. Let L∞ be the limit set of a horizontally and vertically blocked m×m-
labyrinth set with path matrix M and let r be the spectral radius of M . Between any two
points in L∞ there is a unique arc a; the length of a is infinite, dimB(a) = log(r)/ log(m)
and the set of all points at which no tangent to a exists is dense in a.

Proof. Let x and y be two points in L∞. Since L∞ is a dendrite, by Theorem 2.1,
there is a unique arc a from x to y [9, Corollary 2, p. 301]. The length of a is infinite,
by Theorem 3.14, and Corollary 3.16 says that the set of points at which no tangent to
a exists is dense in a. Lemma 3.17 yields the box-counting dimension of a. �
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