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Abstract

Copulas are helpful in studying joint distributions of two variables, in particular, when confounders are
unobserved. However, most conventional copulas cannot model joint distributions where one variable does
not increase or decrease in the other in a monotonic manner. For instance, suppose that two variables are
linearly positively correlated for one type of unit and negatively for another type of unit. If the type is
unobserved, we can observe only a mixture of both types. Seemingly, one variable tends to take either a
high or low value (or a middle value) when the other variable is small (large), or vice versa. To address this
issue, I consider an overlooked copula with trigonometric functions (Chesneau [2021, Applied Mathematics,
1(1), pp. 3–17]) that I name the “normal mode copula.” I apply the copula to a dataset about government
formation and duration to demonstrate that the normal mode copula has better performance than other
conventional copulas.

Keywords: asymmetricity; coalition government; duration; government formation; joint distribution; sine function; trigono-
metric function

Edited by: Jeff Gill

1. Introduction

When two variables are simultaneously generated, it becomes challenging and promising to study the
relationship between them. For instance, if unobserved confounders affect them, regressing one variable
on the other leads to endogeneity bias. Scholars may have reasonable substantive knowledge or theory
about the marginal distributions of the two variables but no idea about the conditional distribution
of one variable given the other. One approach is to directly analyze the joint distribution. When
one variable includes some of the same information as the other, analyzing them together will lead
to less biased and more efficient estimation, as well as better prediction without assuming selection
on observables. Classic methods include the seemingly unrelated regression and Heckman’s sample
selection models, although they assume only a bivariate normal distribution for the variables.1 Instead,
as I elaborate on below, copula functions are flexible and helpful because they model how dependent
the two variables are on each other, whatever marginal distribution each variable follows. In political
science, Braumoeller et al. (2018), Chiba, Martin, and Stevenson (2015), Chiba, Metternich, and Ward
(2015), and Fukumoto (2015) have employed copulas.2 In finance, Li (2000) improves credit derivative
valuation by accounting for the default correlation with the help of copulas.

1Furthermore, analysts have to integrate a latent variable out of the selection model.
2Sartori (2003) modifies Heckman’s sample selection model by using the Fréchet upper bound copula in effect, although

she does not mention a copula. Gomes et al. (2019) explicitly incorporate copulas in their sample selection model.
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Figure 1. Empirical examples of nonmonotonic dependence. (a) Each dot corresponds to a country in a year, 2000 to 2015 (n = 2,560).

(b) Each dot corresponds a civil war, 1946 to 2003 (n = 267).

However, an understudied shortcoming of copulas is that most conventional copulas cannot model
joint distributions where one variable does not increase or decrease in the other in a monotonic manner.
To date, little attention has been devoted to such situations because those scenarios “do not seem to arise
often in applications” (Hofert et al. 2018, 173, emphasis added). Nevertheless, they do sometimes arise,
even in political science. For instance, suppose that two variables are linearly positively correlated for
one type of unit and negatively correlated for another type of unit. If the type is unobserved, we can
observe only a mixture of both types. Seemingly, one variable tends to take either a high or low value
(or a middle value) when the other variable is small (large), or vice versa.

One example is the relationship between access to social media and press freedom. Kocak and
Kıbrıs (2023) develop a game-theoretic model to argue that higher internet access promotes press
freedom in a country when an incumbent has a lower rent from office but prohibits it in a country
with higher rent. The left panel of Figure 1 replicates Figure 1 of Kocak and Kıbrıs (2023) that shows
the relationship between internet penetration and press freedom in 160 countries from 2000 to 2015.3
Each dot corresponds to a unit of observation, namely, a country in a year (n = 2,560). The horizontal
axis represents internet penetration. The vertical axis indicates a press freedom score. When internet
penetration is low, the press freedom scores vary (near the left vertical axis). When internet penetration
is high, some units have high press freedom scores (top-right corner) and others have low press freedom
scores (bottom-right corner), although no unit has a moderate press freedom score (near and in the
middle of the right vertical axis). Therefore, the relationship between the two variables is nonmonotonic
in the sense that internet penetration decreases in press freedom when press freedom is low but increases
in press freedom when press freedom is high. Since the rent is unobserved, we cannot condition on it
and should have studied the joint distribution.

Another instance is civil war duration and outcome, 1946 to 2003 (Cunningham, Gleditsch, and
Salehyan 2009). In the right panel of Figure 1, each point represents a civil war (n = 267), the horizontal
axis indicates the duration in days, and the vertical axis corresponds to the outcome, which is equal

3I obtained the dataset from one of the authors, Korhan Kocak, through personal communication on March 23, 2023. The
replication materials for this article can be found at Fukumoto (2023b).
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to one if the government wins, two if neither side wins, and three if the rebellion wins.4 If either the
government or the rebellion is strong enough to win, the civil war ends in a short time. Otherwise,
neither side obtains a decisive victory, but they instead reach a negotiated settlement to spare the
continuing war attrition costs. They do this only after the intrastate military conflict persists for a long
duration (Mason, Weingarten Jr, and Fett 1999). Here, the relative power of rebels to governments is a
confounder, which is observed but only as a three-category indicator with measurement error.

In these cases, the underlying copulas have irregular properties, such as nonmonotonicity and
asymmetricity. Few parametric copulas can handle these properties. To address this gap, I pay special
attention to an overlooked copula (Chesneau 2021), which I name the “normal mode copula.” It is
imperative to enlarge the pool of copulas so that analysts can flexibly adapt the joint distribution to
the data and alleviate reliance on the functional-form assumption of the joint distribution (Braumoeller
et al. 2018).

This article is organized as follows: The next section elaborates on the definition of copulas, intro-
duces some conventional copulas, and defines the normal mode copula. In the following section, I apply
these copulas to a dataset on government formation and duration (Chiba et al. 2015) to demonstrate
that the normal mode copula fits the data better than do other conventional copulas. Finally, I present
concluding remarks.

2. Definition

2.1. Generic and Gaussian Copulas
Let 0 ≤ ud ≤ 1 for d ∈ {1,2}. A function C(u1,u2) ∶ [0,1]2→ [0,1] is called a copula if the following two
conditions are met (Nelsen 2006, 10):

Boundary conditions: C(u1,0) = C(0,u2) = 0,C(u1,1) = u1, and C(1,u2) = u2.
Two-increasing condition: If uL

1 ≤ uH
1 and uL

2 ≤ uH
2 , it follows that C(uH

1 ,uH
2 ) − C(uL

1,uH
2 ) −

C(uH
1 ,uL

2)+C(uL
1,uL

2) ≥ 0.

The motivation for copulas is as follows. I suppose that there are two random variables, X1 and X2. I
denote the value of the dth variable Xd by xd, the marginal cumulative distribution function (CDF) of
Xd by Fd(xd) ≡ ud, and the joint CDF of X1 and X2 by F12(x1,x2). Then, according to Sklar’s theorem
(Nelsen 2006, 18 and 24–25), there exists a copula C such that

F12(x1,x2) = C{F1(x1),F2(x2)}. (1)

When F1 and F2 are continuous, C is unique. If X1 and X2 are continuous variables and we can
differentiate both sides of Equation (1) by x1 and x2, we obtain

f12(x1,x2) = f1(x1)f2(x2)c(u1,u2), (2)

where fd(xd) is the probability density function (PDF) of Xd and

c(u1,u2) ≡
∂2

∂u1∂u2
C(u1,u2)

represents densities for copula C.5 The copula C of X1 and X2 abstracts away the marginal distributions
of X1 and X2 and thus distills all information about the dependence between X1 and X2. Equation
(2) clarifies the modularity of the copula: we can substitute the marginal distribution of one variable

4I downloaded the replication materials of Cunningham et al. (2009) (the original publication version, not the latest updated
version) from http://jcr.sagepub.com/content/53/4/570/suppl/DC1 on July 6, 2012. I preprocessed the dataset in the same way
as Fukumoto (2015) did.

5In this case, the two-increasing condition is equivalent to c(u1,u2) ≥ 0.
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Figure 2. Bivariate normal distribution: joint distribution, marginal distributions, and copula.

or the copula without changing the other two terms on the right-hand side to obtain a new bivariate
distribution on the left-hand side.

For instance, the Gaussian copula is defined as

CG(u1,u2) ≡Φ2{Φ−1(u1),Φ−1(u2) ∣ θ},

where Φ and Φ2 are univariate and bivariate standard normal distributions, respectively, and −1 ≤ θ ≤ 1
is the correlation parameter. Figure 2 illustrates an example; the top-left panel shows a contour plot
of densities for the joint distribution f12(x1,x2) = φ2(x1,x2 ∣ θ = 0.156), where φ2 is the PDF of Φ2;6
the bottom-left and top-right panels present densities for the marginal distributions f1(x1) = φ(x1) and
f2(x2) =φ(x2), respectively, whereφ is the PDF ofΦ; the bottom-right panel represents a contour plot of
densities for the copula c(u1,u2), which turns to be Gaussian, cG(u1,u2).7 If we substitute f1(x1),f2(x2),
or c(u1,u2), the joint distribution f12(x1,x2) is no longer represented by φ2.

6In Figures 2 and 3, the value of θ is set so that the Kendall rank correlation (Nelsen 2006, 161 and 164, Trivedi and Zimmer
2007, 16 and 22), a measure of association, is equal to 0.1, and thus copulas are comparable. I conduct all analyses in the
statistical computational environment R (R Core Team 2022). For Gaussian copulas, I employ the mvtnorm library (Genz
et al. 2021).

7In Figures 2–6, the shade in the contour plot is decided according to the maximum densities of each panel and thus is not
comparable across panels.
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2.2. Conventional Copulas
Scholars have derived dozens of copulas (Hofert et al. 2018; Nelsen 2006; Trivedi and Zimmer 2007). For
reference, I introduce the product copula and the following four conventional copulas: Farlie–Gumbel–
Morgenstein (FGM), Ali–Mikhail–Haq (AMH), Clayton, and Frank.

The product (or independence) copula is defined as (Nelsen 2006, 25)

CI(u1,u2) ≡ u1u2,

where X1 and X2 are independent of each other.
The FGM copula is defined as (Nelsen 2006, 77)

CFGM(u1,u2) ≡ u1u2+θu1(1−u1)u2(1−u2),
where −1 ≤ θ ≤ 1.

The other three belong to a class of Archimedean copulas. Let the generator function ϕ(u) ∶ [0,1]→
[0,∞] be a continuous, convex, strictly decreasing function, where ϕ(1) = 0. I define the pseudoinverse
function of ϕ(u) as ϕ[−1](z) = ϕ−1(z) for 0 ≤ z ≤ ϕ(0) and ϕ[−1](z) = 0 for ϕ(0) ≤ z ≤∞. Then, the
following function:

CA(u1,u2 ∣ ϕ) ≡ϕ[−1]{ϕ(u1)+ϕ(u2)}
meets the two conditions of a copula and is called an Archimedean copula (Nelsen 2006, 110–112). The
generator functions for the AMH, Clayton, and Frank copulas are

ϕAMH(u) ≡ log[
1
u
{1−θ(1−u)}] for −1 ≤ θ ≤ 1,

ϕClayton(u) ≡ θ−1(u−θ −1) for θ > 0,

ϕFrank(u) ≡ − log[
1

exp(−θ)−1
{exp(−θu)−1}] for θ ∈R,

respectively.
Figure 3 shows contour plots of densities for the conventional copulas, where the horizontal and

vertical axes are u1 and u2, respectively. Panels correspond to FGM, AMH, Clayton, and Frank.8 Clearly,
these copulas represent monotonic dependence.

In general, the three associated copulas of a copula are defined as (Trivedi and Zimmer 2007, 13–14)

C(1)(u1,u2) ≡ u2−C(1−u1,u2),

C(2)(u1,u2) ≡ u1−C(u1,1−u2), (3)

C(12)(u1,u2) ≡ u1+u2−1+C(1−u1,1−u2).

In particular, C(12)(u1,u2) is called the survival copula (Nelsen 2006, 32). Figure 4 illustrates contour
plots of densities for the associated Clayton copulas. Graphically, by turning the density c(u1,u2) (first
panel, the same as the bottom-left panel of Figure 3) with respect to the line ud = 1

2 , we obtain c(d)(u1,u2)
(second (d= 1) and third (d= 2) panels); by rotating c(u1,u2) 180 degrees, we obtain c(12)(u1,u2) (fourth
panel).9 Specifically, I study the three associated copulas for AMH and Clayton copulas (cf. Braumoeller
et al. 2018, 59); for each of the other conventional copulas, the three associated copulas belong to the
family of the original copula.

8The values of θ are equal to 0.45, 0.381, 0.222, and 0.907 in the order of the mentioned copulas, respectively. For deriving
θ of the Frank copula, I utilize the gsl library (version 2.1-7.1 Hankin 2006).

9The Kendall rank correlation is equal to 0.1, −0.1, −0.1, and 0.1 for c,c(1),c(2), and c(12), respectively.
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Figure 3. Example plots of conventional copulas.
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Figure 4. Example plots of associated Clayton copulas.

2.3. Normal Mode Copulas
Chesneau (2021) refers to the following copula but only in passing:

CChesneau(u1,u2) = u1u2+
1

p1p2κ1κ2π2 θ{sin(u1κ1π)}p1{sin(u2κ2π)}p2, (4)

where for d ∈ {1,2}, κd’s are positive integers, pd ≥ 1, and −1 ≤ θ ≤ 1.10 However, Chesneau (2021) did
not apply the copula to any real data or give it any name.

10To be accurate, Chesneau (2021) introduces the multivariate version of this copula.
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Figure 5. Example plots of normal mode copulas.

I simplify this copula by setting pd = 1,

CNM(u1,u2) ≡ u1u2+
1

κ1κ2π2 θ sin(u1κ1π)sin(u2κ2π),

so that the copula is still flexible in a tractable way with fewer parameters. I name CNM the normal mode
copula, θ the amplitude, and κd’s mode numbers. (I explain the motivation shortly.)

Figure 5 shows contour plots of densities for normal mode copulas,

cNM(u1,u2) = 1+θcos(u1κ1π)cos(u2κ2π).

The top-left panel corresponds to the case where θ = 0.304,κ1 = 1, and κ2 = 1.11 This normal mode
copula is (radially) symmetric, where U2 monotonically increases in U1. In the top-right panel, I present
another normal mode copula where I only change θ from 0.304 to −0.304. We obtain the current plot
by making the dark parts in the previous plot light and vice versa. Here, U2 monotonically decreases
in U1. The bottom-left panel represents the case where θ = 0.304,κ1 = 2, and κ2 = 1. This normal mode
copula is not (radially) symmetric. Moreover, U2 monotonically increases in U1 for U1 ≤ 1

2 but decreases
in U1 for U1 ≥ 1

2 . Thus, the copula represents a case of nonmonotonic dependence that motivates me,
as I explained in Section 1. In fact, if we rotate the plot clockwise (counterclockwise) 90 degrees, it
resembles the right (left) panel of Figure 1. Finally, the bottom-right panel addresses the case where

11The Kendall rank correlation is equal to 0.1,−0.1,0, and 0 for the first to fourth panels, respectively. Note that the Kendall
rank correlation can be equal to 0 when the two variables are not independent of each other and the dependence between
these two variables is nonmonotonic.
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θ = 0.304,κ1 = 2, and κ2 = 2. This normal mode copula is (radially) symmetric but has nonmonotonic
dependence.

If we regard u1 as the position along an open pipe (such as a flute) with unit length and u2 as time,
the displacement of a standing sound wave with one frequency at position u1 and time u2 resembles
cNM(u1,u2).12 Importantly, if κ1 were not an integer, the corresponding sound wave would not form a
standing wave and would not resonate, thus dissipating immediately. In general, this kind of standing
wave is called the normal mode. This is why I name CNM the normal mode copula.

3. Application

3.1. Overview
This section intends to showcase the usefulness of normal mode copulas by reanalyzing Chiba et al.
(2015, hereafter, “CMS”), who also use a copula.13 CMS focus on two outcomes of (coalition) govern-
ment formation and duration. Scholars have studied what factors affect either outcome. One problem is
that these two outcomes are interrelated, and failure to consider simultaneity leads to selection bias in
estimating the model. For instance, if a government would not remain in power for a long time, say, due
to a hidden scandal, it may be less likely to be formed in the first place. If (and probably as) scholars do
not observe all confounders (e.g., the hidden scandal) that affect both outcomes or do observe some
of them but with measurement error, the resultant estimates will be less efficient and might suffer
from omitted variable bias. To address this problem, CMS incorporate a copula into their model and
analyze the two outcomes jointly. A remaining concern is that CMS consider only the Gaussian copula.
I substitute the normal mode copulas as well as other conventional copulas to show that a normal mode
copula is the best.

3.2. Model
To focus on the comparison between the Gaussian copula and other copulas, this subsection introduces
a simplified version of the CMS model using my notation.14 The units of observation are a (coalition
government) formation opportunity i ∈ {1,2, . . . ,n = 432} and a potential coalition government (combi-
nation of parties) j ∈ Ji ≡ {1,2, . . . ,mi} (∑i mi = 95,576). For each i, we have two outcome variables. The
first outcome is a realized government, Y1,i ∈ Ji. The second outcome is the duration of the government
from its inception to its termination, Y2,i ∈ (0,ȳi], where ȳi is the constitutional interelection period.
Unless a government ends for political reasons (replacement by another government without an election
or dissolution of the legislature followed by an early election), I regard the government’s duration as
censored.15

CMS use a conditional logit model to explain government formation. We denote a covariate vector
by z1,ij and the corresponding coefficient vector by θ1. Specifically, z1,ij is composed of Minority
Government, Status Quo Government, and dozens of party dummy variables.16 The probability that

12Strictly speaking, the displacement is θcos(u1κ1π)cos(u2κ2π), where ∣θ∣ can be larger than one, X2 is a circular variable,
and κ2 is an even integer.

13I downloaded the replication materials (Chiba, Martin, and Stevenson 2014) on March 14, 2023. The dataset covers 17
European countries, 1945 to 2011. For details, see CMS, f.n. 11 (p.51).

14I thank a reviewer for suggesting simplifying the CMS model. In the Supplementary Material, I present reanalyses of the
full CMS model.

15According to CMS, “an observation is right-censored if the government was still in office as of December 31, 2011 (the
cutoff date for our sample), or if it terminated for any of the following reasons: the occurrence of a regularly scheduled election,
a technical resignation required for constitutional reasons, or the death of the prime minister. . . .Of our 432 governments, 89
are right-censored for these reasons” (p. 52). CMS employ the competing risks approach where they differentiate termination
due to replacement from termination due to dissolution.

16Minority is equal to one if government parties do not collectively control a parliamentary majority, zero otherwise (CMS,
53). Status Quo Government is equal to one if the potential coalition government is the same as the pervious government,
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government g ∈ Ji is formed is modeled as

Pr(Y1,i = g) =
exp(z′1,igθ1)

∑j∈Ji
exp(z′1,ijθ1)

≡G(g ∣ z1,i,θ1),
where z1,i ≡ (z′1,i1,z′1,i2, . . . ,z′1,imi)

′. In my understanding, CMS implicitly assume that when a latent
utility variable X1,i is smaller than x1,i ≡ F−1

1 {G(g ∣ z1,i,θ1)}, we observe Y1,i = g.17

CMS’s main model assumes that the government duration follows a Weibull distribution, F2(t ∣
θ2,inv.scale,θ2,shape), where θ2,inv.scale is the inverse scale parameter and θ2,shape is the shape parameter. We
denote the latent time variable by X2,i, another covariate vector by z2,i, and the corresponding coefficient
vector by θ2,coef. To be concrete, I include Minority and Polarization Index in z2,i.18 The probability
density that the length of the duration is t is modeled as

p(X2,i = t) = f2(t ∣ θ2,inv.scale,θ2,shape),
where θ2,inv.scale = exp(−z′2,iθ2,coef).

Let Wi be the censoring indicator. If the duration ends for political reasons at t < ȳi, we observe
Wi = 0, Y1,i = g, and Y2,i = X2,i = t, and the mixed joint density is

p(Y1,i = g,Y2,i = t) =Pr(X1,i ≤ x1,i ∣ X2,i = t)p(X2,i = t)
= F1∣2(x1,i ∣ X2,i = t)f2(t ∣ z2,i,θ2) (5)
= C′1∣2(u1,i ∣ u2,i,θ12)f2(t ∣ z2,i,θ2),

where u1,i = F1(x1,i) =G(g ∣ z1,i,θ1), u2,i ≡ F2(t ∣ z2,i,θ2), θ2 ≡ (θ′2,coef,θ2,shape)′, θ12 is the parameter of
copula C of X1 and X2, and it generally holds that Pr(X1 ≤ x1 ∣ X2 = x2) = ∂

∂u2
C(u1,u2) ≡ C′1∣2(u1 ∣ u2)

(Nelsen 2006, 41).
If the duration is censored at t, we observe Wi = 1, Y1,i = g, and Y2,i = t but not X2,i > t, and the joint

probability is

Pr(Y1,i = g,Y2,i = t) =Pr(X1,i ≤ x1,i,X2,i > t)
=Pr(X1,i ≤ x1,i)−Pr(X1,i ≤ x1,i,X2,i ≤ t) (6)
= F1(x1,i)−F12(x1,i,t)
= u1,i−C(u1,i,u2,i ∣ θ12).

By multiplying either Equation (5) or (6), we can obtain the total likelihood function,

L12(θ1,θ2,θ12 ∣w,y1,y2,Z1,Z2) ∝
n
∏
i=1
{C′1∣2(u1,i ∣ u2,i,θ12)f2(y2,i ∣ z2,i,θ2)}I(wi=0) (7)

{u1,i−C(u1,i,u2,i ∣ θ12)}I(wi=1)
,

where I(⋅) is the dummy indicator function, and maximize it to estimate the parameters, θ1,θ2, and
θ12. This is the CMS model.

zero otherwise (Martin and Stevenson 2010, 504). The intercept is not included in z1,ij. CMS include 20 additional variables.
I retain Minority because CMS show that it affects both formation and duration in a statistically significant manner. I retain
Status Quo Government for the exclusion restriction; CMS (53–54) argue that it affects formation but not duration. See also
the Supplementary Material. As for party dummy variables, see Martin and Stevenson (2010, 512–514).

17For details, see the Supplementary Material. In other words, X1,i is integrated out: Pr(Y1,i = g) = ∫
x1,i
−∞ f1(x1)dx1.

18Polarization Index measures the presence of anti-establishment parties in the legislature (for details, see CMS, 53). The
intercept is included in z2,i. CMS add four variables. I retain Polarization Index for the purpose of the exclusion restriction;
CMS (53–54) argue that it affects duration but not formation.
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3.3. Studied Copulas
CMS assume that the copula of X1 and X2 is a Gaussian copula. My departure from the CMS model
starts here. I substitute normal mode copulas. In general, before analysts apply a normal mode copula
to any dataset, they have to determine the values of κ1 and κ2, which are model choice indicators rather
than parameters to be estimated. In my case, I explore κ1,κ2 ∈ {1,2,3,4}. I also consider the following
four conventional copulas: FGM, AMH, Clayton, and Frank. The three associated copulas of AMH and
Clayton copulas are also studied.

For the purpose of comparison, I analyze the “separate” model of formation and duration by
maximizing each of the following likelihood functions:

L1(θ1 ∣ y1,Z1) ∝
n
∏
i=1

G(y1,i ∣ z1,i,θ1), (8)

L2(θ2 ∣w,y2,Z2) ∝
n
∏
i=1
{f2(y2,i ∣ z2,i,θ2)}I(wi=0){1−F2(y2,i ∣ z2,i,θ2)}I(wi=1) . (9)

I also analyze another duration model where I include the predicted probability of formation (û1,i,
hereafter, “Formation Probability”), which is estimated by using the formation model (Equation (8)), as
a covariate:

L∗2 (θ∗2 ∣w,y2,Z2,û1) ∝
n
∏
i=1
{f2(y2,i ∣ z2,i,û1,i,θ

∗
2 )}

I(wi=0)
{1−F2(y2,i ∣ z2,i,û1,i,θ

∗
2 )}

I(wi=1)
. (10)

If the relationship between formation and duration is monotonic, this “two-step” model should work.19

Note that the separate and two-step models are effectively equivalent to the CMS model with the product
copula (CI), which has no parameter, because C′I,1∣2(u1 ∣ u2) = u1 and Equation (7) becomes

n
∏
i=1
{C′I,1∣2(u1,i ∣ u2,i)f2(y2,i ∣ z2,i,θ2)}I(wi=0){u1,i−CI(u1,i,u2,i)}

I(wi=1)

=
n
∏
i=1
{u1,if2(y2,i ∣ z2,i,θ2)}I(wi=0){u1,i−u1,iu2,i}

I(wi=1)

=
n
∏
i=1

G(y1,i ∣ z1,i,θ1)
������������������������������������������������������������������������

formation

{f2(y2,i ∣ z2,i,θ2)}I(wi=0){1−F2(y2,i ∣ z2,i,θ2)}I(wi=1)

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
duration

.

If copula models improve the model fit, we can alleviate bias due to unobserved confounders and
root mean squared error (CMS, Braumoeller et al. 2018). I also expect that a copula model that fits
the data better leads to smaller standard errors because the copula model takes greater advantage of
the information about formation (X1) in estimating the parameters about duration (X2), and thus the
conditional variance of duration given formation is smaller.

3.4. Results
Table 1 reports the Akaike information criterion (AIC) for each copula used in the CMS model.20 Each
row indicates the model with each copula. In the first and second rows, I report the AICs of the separate
and two-step models, respectively, where I sum the AICs of the formation model (Equation (8)) and
the duration model (Equation (9) for the separate model and Equation (10) for the two-step model).
The AIC of the two-step model is larger than that of the separate model almost by two, which means
the predicted probability of formation has little linear relation with duration. Below, all models employ
Equation (7). Compared with the separate model, the Gaussian copula model CMS used (third row)

19I thank a reviewer for suggesting the two-step model.
20Braumoeller et al. (2018) and Fukumoto (2015) also select the best among copulas in terms of AIC.
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Table 1. AICs for models using various copulas.

Copula AIC

Product Separate 7,686.2

Two-step 7,688.2

Gaussian 7,686.7

Normal Mode κ1 = 1,κ2 = 1 7,686.3

κ1 = 1,κ2 = 2 7,628.2

κ1 = 1,κ2 = 3 7,644.1

κ1 = 1,κ2 = 4 7,644.3

κ1 = 2,κ2 = 1 7,649.0

κ1 = 2,κ2 = 2 7,668.8

κ1 = 2,κ2 = 3 7,688.1

κ1 = 2,κ2 = 4 7,674.0

κ1 = 3,κ2 = 1 7,677.5

κ1 = 3,κ2 = 2 7,638.7

κ1 = 3,κ2 = 3 7,661.5

κ1 = 3,κ2 = 4 7,646.5

κ1 = 4,κ2 = 1 7,638.0

κ1 = 4,κ2 = 2 7,685.6

κ1 = 4,κ2 = 3 7,668.9

κ1 = 4,κ2 = 4 7,680.9

FGM 7,688.0

AMH Original 7,687.8

Associate 1 7,688.0

Associate 2 7,687.9

Survival 7,688.0

Clayton Original 7,688.1

Associate 1 7,688.2

Associate 2 7,688.2

Survival 7,688.2

Frank 7,687.9

worsens the AIC. In the next 16 rows, I display the AICs of normal mode copula models. The normal
mode copula model with κ1 = 1 and κ2 = 2 (hereafter, the “NM(1, 2) copula model,” fifth row) has the
best (i.e., smallest) AIC. In the last ten rows, I present the AICs of the conventional copula models and
their associated copula models. (For the AMH and Clayton copulas, “Original,” “Associate 1,” “Associate
2,” and “Survival” indicate C, C(1), C(2), and C(12) (Equation (3)), respectively.) They have almost the
same AIC as the two-step model and do not outperform the NM(1, 2) copula model. This is probably
because all of these conventional copulas cope with monotonic relationships alone, where in fact, the
relation between u1,i and u2,i is nonmonotonic as shown next.

Figure 6 illustrates the scatter plots of estimated u1,i’s (horizontal axis) and u2,i’s (vertical axis).
The left and right panels correspond to the Gaussian copula model and the NM(1, 2) copula model,
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Figure 6. Scatter plots of u1, i ’s and u

2, i ’s with contour plots of the estimated copula. n = 432.

respectively. In each panel, the contour plot of the copula based on the estimate of θ12 is overlaid.21 A
point indicates a unit that is not censored, where (U1,i,U2,i) ∈ {(u1,u2) ∣ 0 < u1 ≤ u1,i,u2 = u2,i}. A cross
indicates a unit that is censored, where (U1,i,U2,i) ∈ {(u1,u2) ∣ 0 < u1 ≤ u1,i,u2,i < u2 < 1}. Clearly, the
relationship between u1,i and u2,i is nonmonotonic. Since I use a simplified CMS model, neither copula
model appears to fit the data well. However, units near the right vertical axis are situated in low-density
areas of the Gaussian copula model but in high-density areas of the NM(1, 2) copula model. This is likely
why the NM(1, 2) copula model achieves the best performance among the studied copulas in Table 1.

Table 2 presents the estimation results of the parameters.22 The first two rows display covariate
coefficients of the formation model (θ1 except for dozens of party fixed effects). The third to sixth
rows indicate covariate coefficients of the duration model (including intercept, θ2,coef), while the last
row represents the logged shape parameter of the duration model (log(θshape)). The first and second
columns concern the separate model (Equations (8) and (9), respectively), while the third and fourth
columns correspond to the two-step model (Equations (8) and (10), respectively; thus, the first column
is the same as the third column). In the fifth and sixth columns, I show the results of the Gaussian copula
model and the NM(1, 2) copula model, respectively (Equation (7)). In each cell, the entry is the estimate
with the standard error in parentheses.

As expected, all standard errors are smaller in the NM(1, 2) copula model than in the separate
model, the two-step model, and the Gaussian copula model, except for that of the Duration Dependence
parameter. In the case of Minority Government as a formation covariate, the standard error of the
NM(1, 2) copula model is reduced by 34% compared with that of the separate model. The coefficient of
Formation Probability in the two-step model is close to zero and not significant, although the NM(1, 2)
copula model performs well. (Recall also that the two-step model does not improve the AIC compared
with the separate model in Table 1.) This implies that the probability of formation affects duration
not in a monotonic way but in a nonmonotonic way. Point estimates are not particularly different
across models in the simplified models. However, if I use the full CMS model, they are so distinct that
coefficient estimates are statistically significantly different from zero in one model but not in another
(Supplementary Material).

21θ̂12 = 0.070 for the Gaussian copula and θ̂12 = 1.000 for the NM(1, 2) copula. The corresponding Kendall rank correlations
are 0.045 and 0, respectively, which implies little linear correlation between formation and duration.

22Chiba et al. (2014) require us to use the corpcor library (Schafer et al. 2021).

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 5
2.

15
.2

23
.2

46
, o

n 
11

 Ja
n 

20
25

 a
t 0

3:
29

:2
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
02

3.
45

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2023.45


Political Analysis 429

Table 2. Results of parameter estimation.

Separate Two-step Gaussian NM(1, 2)

Formation

Minority Government −1.370 −1.370 −1.384 −1.341

( 0.180 ) ( 0.180 ) ( 0.121 ) ( 0.119 )

Status Quo Government 2.614 2.614 2.625 2.490

( 0.125 ) ( 0.125 ) ( 0.119 ) ( 0.118 )

Duration

Minority Government −0.390 −0.388 −0.369 −0.389

( 0.085 ) ( 0.086 ) ( 0.084 ) ( 0.079 )

Polarization Index −0.068 −0.067 −0.065 −0.059

( 0.020 ) ( 0.020 ) ( 0.020 ) ( 0.018 )

Formation Probability 0.018

( 0.143 )

Intercept 7.059 7.054 7.138 7.380

( 0.055 ) ( 0.070 ) ( 0.054 ) ( 0.053 )

Duration Dependence 0.305 0.305 0.347 0.299

( 0.045 ) ( 0.045 ) ( 0.045 ) ( 0.045 )

Note: Cell entries are estimates (with standard errors in parentheses). n = 432.

4. Conclusion

This study sheds light on an understudied family of copulas, normal mode copulas. I apply dozens
of copulas to a dataset of government formation and duration to show that the normal mode copula
achieves higher performance than other conventional copulas.

There are several directions for future research. In a companion paper (Fukumoto 2023a), I have
characterized the properties of normal mode copulas such as monotonicity and measures of association.
It is also promising to explore the properties of Chesneau’s (2021) copulas (Equation (4)) and its
multivariate version. Scholars can apply normal mode copulas to various data to find interesting
dependence structures. I hope normal mode copulas become a helpful tool to analyze mutually
dependent variables in political science.
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