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ON THE SINGULAR BEHAVIOUR

OF THE TITCHMARSH-WEYL m-FUNCTION
FOR THE PERTURBED HILL’S EQUATION ON THE LINE

DOMINIC P. CLEMENCE

ABSTRACT. For the perturbed Hill's equation on the line,

,ﬂ +[P(X) +V(X)]y=Ey, —oo<x< 00
dx2 ’ ’

we study the behaviour of the matrix m-function at the spectral gap endpoints. In

particular, we extend the result of Hinton, Klaus and Shaw that E,,, a gap endpoint, is

ahalf-bound state (HBS) if and only if (E — En)% m(E) approaches a nonzero constant
asE — Ep, to the present case.

1. Introduction. In this short note we study the behaviour of the Titchmarsh-Wey!|
m-function for the equation
d’y
(1.1 ~ o +[PX) +V(X)] =By, —oo < X< 00.
Under the assumptionthat P(x) and V(x) arereal-valued potentialswith P(x) € L1([0, 1]),
P(x+1) = P(x) and
L 1+ [x])|V(X)| dx < oo

the spectrum of the operator H induced by (1.1) on L,(R) iswell known. In particular, it
consists of an absolutely continuous part which is the union of closed intervals of type
[E2n Eone1], -00 < BEp < By < E» < Ez--- and may have at most a finite number of
eigenvaluesin any of the spectral gaps (Ean+1, Eons2). Information about eigenvalues of
H isreadily available in the literature (see [10] for example).

Our concern in this article is the Titchmarsh-Weyl m-function associated to (1.1), in
particular its behaviour at the spectral gap endpoints. Specifically, we extend the four-part
m-function spectral characterization of Hinton and Shaw [9] to the case when a spectral
point E, is a so-called half-bound state (HBS), by which we mean that the equation
Hy = Eny has anontrivial bounded solution which is not square integrable.

The problem we study here has been studied by Hinton, Klaus and Shaw [7] for the
operator H restricted to Lz([O. oo)), and as such our result here is an extension of that
paper. Similar results have been obtained in [8] and [1] for the case where P(xX) = 0in
the Dirac counterpart of (1.1) as well as for the periodic Dirac case [2] on [0, 00). The
methodsused in all the above-mentioned papers are similar, and we continuein the same
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spirit in the present article. As aresult, we shall only provide outlines of our proofs and
refer the reader accordingly for details; in particular, we rely heavily on the analysis of
[4]. Let us point out that the analysis presented here also works for the Dirac System, in
view of [3].

This paper is organized as follows. In the next section we introduce all the pertinent
solutions of (1.1), relabel the spectral parameter by the so-called quasimomentum, and
expressthe m-function in terms of Jost-type functions. Then in Section 3 we present the
asymptotic behaviour of the m-function, which we obtain via the asymptotic behaviour
of our Jost-type functions.

2. Preliminaries. To begin with, we want to regard (1.1) as a perturbation of the
equation
(2.1 —@+P(x)y:Ey —00 < X< 00

' dx? ’ ’
with P(X) asin (1.1). Now, let ¢o(X, E) and 6p(x. E) be the solutions of (2.1) satisfying
the conditions

2.2) 00(0.E) = 04(0.E) =1 and (0. E) = ¢4(0.E) = 0.

Further denote ¢o(E) = ¢4(1. E), 60(E) = 6,(1, E), and recall the definition of the quasi-
momentum k [6]:
(2.3 k = k(E) = cos [A(E)].

where A(E) = %[qﬁ()(E) + 6p(E)]. The properties of k are well documented in [6] and
recaptured in [4]. In the sequel, our spectral parameter will be k, and hence we shall
write ¢o(X, K) in place of ¢o(x, E), etc.

Next, let usrecall that the m-functions m + (k) associated with (1.1) are defined by

where 6(x, k) and ¢(x, k) are solutions of (1.1) satisfying condition (2.2), with a similar
definition for mp & (k) associated with (2.1). Then we know from the Titchmarsh-Wey!|
theory that for Sk > 0, we have that

(25) Ui ) = fo(x. k) + M (K)ga(x. K) € L2(0. 00).
(2.6) Yig (%K) = fo(x. K) + My (K)bo(x. k) € La(—00.0).

Further, the Floquet theory providesuswith functions € +(x. k) with ¢ (x+1. k) = ¢ (x. k),
£%(0,K) = 1, such that _
(2.7) o (%K) = &5 (x. e,

From (2.3), (2.5)2.7), we arrive at
2isink

(28) [Wo (. K); v (- K] = my (k) — mg(k) = R
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where [f(-); 9(-)] denotes the Wronskian of f(-) and g(-). In addition to the solutions
6(x. k) and ¢(x, k) introduced above, we also have the Jost solutions F=(x, k) of (1.1),
which are defined by the integral equations

(2.9) F(x, k) = 5 (x. k) — /x > A(X, t; KVO)F(t, K) dt,
(2.10) F™(x. K) = ¢y (X, K) + . /j . A t; KV()F (t, k) dt,
where

(211) At K) = —[5(- K); vg (- KT [0g(x. Ky (8. k) — g (x. Ky (t. K)].

Let us define the following functions, which we call Jost functions. For any solution y
of (1.1) we define

, K 00
(2.12) Fy(K) = (—mg(K). 1) (;',((% k))> + /O Yt KV (D)y(t. K) dt.
and / 0.1
_ _ y(O, 0
@13 FE= (1) k)> + [ ve L KVOYE K dt.
It isthen astraightforward exercise (see[9]) to show that
O A,

(2.19) y(x, k) = %[Fy(k) +0(1)] asx— +o00
e £g (x. Ke™™

_ S Ke™ - L
(2.15) y(x. k) Mo () — 1 (k)[Fy (k) +0o(1)] asx 00.
In view of (2.4), wetherefore arrive at the m-function representations

1Y = Fo(k)
(2.16) m'(k) = _F:’;(k) and m (k) = _Fjj(k)'

Recalling that the whole-line m-function for (1.1) is (suppressing the k-dependence)

o 1 F(m™ +m")
M(k) = (m m)l\%(rrr+m+)2rrr+m+ ’

we therefore arrive at the representation, by (2.16),

2.17) M(K) = (:T";i %) :

where my; = F;(Ig(Fk‘); ® , Mpy = w and My =My = %W with F(k) =
Fo(KF (K) — F5(KF; (K). Itis easy to check that

(2.18) F(K) = [F (. k); F (. K)].

(2.19) Fy(K) = [F"(. k) y(-. K)] and F (K) = [F~ (. K); y(. K.
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3. Asymptotic behaviour of M(E). Theasymptotic behaviour of the m-function at
the gap endpoints k,, which is our aimin this note, is now easily deduced from that of
the Jost-type functions qu(k), F+(K) and F(K).

First, let us note that the numerators in the expression for M(k), (2.17), do not
simultaneously vanish at k = k,. This is due to the well-known [5] behaviour of the
solutions of (1.1) at k = ky, in particular that one solution is bounded while ancther is
unbounded, and the following lemma, whose proof we omit.

LEMMA 1 (SEE [4] LEMMA (2.1)). Let Z(x, ky) be a solution of (1.1) for k = k,. Then
Z(x, kq) is bounded for x > 0 (resp., x < 0) if and only if F}(k,) = O (resp., F; (k,) = 0).

In particular, Lemma 1 tells us, since ¢(x, ky) and 0(x, k,) cannot be simultane-
ously bounded as either x — +oo or X — —oo, that the pairs (F (kn). F} (ky)), and
(F7 (kn). F; (kn)) are non-vanishing.

It therefore only remainsto compute the asymptotic behaviour of F(k) ask — k,. Inthe
casewedo not haveaHBSat k = ky, then F*(x, k,) and F~(x. k,) arelinearly independent
and hence, by (2.18), F(k,) isnonzero. Thereforein this case M(k) approachesanonzero
constant matrix ask — k.

In case we have a HBS at k = k;, so that there is a constant a, with F*(x,k,) =
anF~ (%, ky), we proceed as follows. Define a solution z(x, k) by

(3. Z(x, k) = F*(0, kn)0(x. k) + F*'(0. kn)p(x. K),

where we assume, without loss, that F*(0, k,) # 0. It isthen astraightforward calculation
to arrive at the identity

(8.2) F'(0. kn)[F" (. K); F~(-. K)] = F~(0. K)[F"(-. K); (- K)] = F* (0, K)[F~ (. K); Z(-, K)].
Using (2.19) and (3.1), we easily arrive at the identities
[F (K 20 )] = —m (0, ko) + F(0, k) + [ w5t kvt Kyt
and
[F (K 2 K] = —m5 (IF"(0. ko) + F/(0 k) + [ v (t VL Kyt
Writing, in the preceding identities,

o (L ka)V(DZ(L. K) = 15 (& k) VO K) + [1g (t. K) — v (¢ k) V(D)L kn)
+ o (t VO[(E K) — 2t ko)]
and using standard bounds on the bracketed terms as well as the boundednessof z(t, k),
we finally obtain (see [4] for details, and [3] for the Dirac case), ask — k, through real
values,

33) [F(. K 2(. K = (=1 i[¢o(kn)] ~H(k — kn) + O(k — kn)
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and
(34) [F (- K 2, K)] = (=1)"ani[$o(kn)] (K — kn) + 0(k — ko).
Combining (3.2)—(3.4) we hence obtain that ask — k, through real values,
(—1)™i(e3 + 1)
do(Kn)an

To extend the validity of (3.5) to complex values, we note the bound

35 F(k) = (k — kn) + o(k — kn).

(3.6) IFE(x. k)| < Ce™>®&*X(1 + max{Fx, 0}).
which follows from (2.9), (2.10) and the bound
IAMX, )] < CeTSkX(1 + |x —t]).

In view of (3.6) and (2.18), we may therefore apply the Phragmen-Lindel 6f theorem
to conclude validity of (3.5) in the sector

0<argk—ky) <.

Before we summarise our considerationsin the form of atheorem, let us note that (2.3),
by simple expansion, yields an analytic function g(k) which does not vanish at k = k,
such that

E — En = g(kn)(k — kn)* aSE — En.

We therefore have the following result.

THEOREM 2. Thepoint E = E,isan HBSif and only if there existsa non-zero constant
matrix C, such that
lim (E - En)ZM(E) = Cy.

Moreover, if E, is not an HBS, then M(E) approaches a nonzero constant matrix as
E — En.
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gestions about the statement of Theorem 2. | aso thank my dearest friend, Belinda
G. B. Clemence, for the expert typesetting of the manuscript.
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