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Abstract
The resolution of a small initial discontinuity in a gas is examined using the

linearised Navier-Stokes equations. The smoothing of the resultant contact
surface and sound waves due to dissipation results in small flows which interact.
The problem is solved for arbitrary Prandtl number by using a Fourier trans-
form in space and a Laplace transform in time. The Fourier transform is
inverted exactly and the density perturbation is found as two asymptotic series
valid for small dissipation near the contact surface and the sound waves respec-
tively. The modifications to the structures of the contact surface and the sound
waves are exhibited.

1. Introduction
In the Riemann problem for a gas two one-dimensional half-spaces with

different densities and pressures are separated by a membrane at x = 0, say,
which is instantaneously ruptured. According to ideal gas theory the resultant
flow will consist of a shock and an expansion wave which move in opposite
directions, and a contact surface which moves with the gas originally adjacent to
the membrane. In a real gas the presence of heat conductivity and viscosity
will result in two additional effects. First, the discontinuities are resolved into
narrow regions of rapid but continuous change. In particular the temperature
jump across the contact surface is smeared by conduction thus inducing a small
scale flow which will interact with the shock wave to change its position and
structure. This is the second effect.

Studies have been made of the resolution of an initial discontinuity by Chu
(2), (3) and Bienkowski (1). Chu uses the Krook model of the Boltzmann
equation for times large enough for the shock to be well developed. Bienkowski
studies the initial effects by using a series solution for both the Krook model
and exact Boltzmann equation with Maxwell molecules. To find the solution
for larger times Bienkowski employs the linearised Navier-Stokes equations.
In this model the shock and expansion waves are replaced by sound waves of
equal strength. This part is specialised to a Prandtl number of f and exhibits
the smoothed out contact surface and sound waves, but the interaction between
them is not found. Goldsworthy (4) studied the interaction of a large contact
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discontinuity and a shock wave. The contact surface structure is found by
using a thin layer approximation. The perturbations produced by the flow
inside the contact layer are assumed to be propagated outside it by a wave
equation, and are matched to an unstructured shock.

This paper improves on Bienkowski's solution of the linearised Navier-
Stokes equations by letting the Prandtl number be arbitrary and by finding the
effect of the smoothing of the contact discontinuity on the sound wave approxi-
mately.

2. Formulation of the problem
The theory of the linearised Navier-Stokes equations was given by Lager-

strom, Cole and Trilling (5), to which reference should be made for details.
We may assume that the dynamic viscosity and heat conductivity coefficients
are constants v0 and K0. If pressure, density and velocity are P, p and u we
write

P = P0(l+p), P = Po(l+-y)> " = «o + »> (2.1)

where Po, p0 and u0 are constant values andp, s and v are small perturbations.
If w0 = 0, the one dimensional linearised Navier-Stokes equations are

vt + (a2ly)px-(4v0/3)uxx = 0,'

s,+vx =0,\ (2.2)

and p, - ys, - (KO/POCV)(J>XX - sxx) = 0

where t and x are time and distance coordinates and Co is the specific heat
at constant volume. This set of equations is to be solved subject to the initial
conditions

s - %s0 sgn (x), p = ip0 sgn (x), v = 0 at t = 0. (2.3)

We write

KolPoCv = Kl 4vo/3 = 4K Pr/3y = <TK; (2.4)

X = x/L; T = at/L; aw = v; (2.5)

and m = K/OL. (2.6)
Pr is the Prandtl number, and L is a length scale which is not specified at this
stage. The non-dimensional equations are then

wT+px/y-mawxx =0 ,

sr+wx =0, (2.7)

and pt - yst+m(sxx - pxx) = 0.

The equations are solved by making a Laplace transform in time and a
Fourier transform in space:

/0?)= " r ' m (2.8)
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and

(«)= f"
J —000

Solving the resultant algebraic equations for the twice transformed density
perturbation § gives

a2P{ 1 + j3m(l + a)} + 03]S

s0} + ix3am3sQ. (2.9)

3. The poles of $
Equation (2.9) shows that $ has a pole when a = 0 and when

a2 = /?{1 -Pm{\ +a) + r}l{2m(map+ 1/y)}, (3.1)
where

r = [l + 2/?m0 + <r-2/y)+j32m2(l-a)2]. (3.2)

Branches of <x2(/J) will occur when r = 0; that is at

0 = {-(l-HT_2/y)±2V[(l-l/y)(c7-l/y)]}/{m(l-cr)2}. (3.3)
Since a = 4Pr/3y these roots are complex provided that Pr<J, which is

the case for most gases, and their real parts are negative in this case if
<7>(2-y)/y. (3.4)

Equation (3.2) shows that the product of the roots is positive, so that the roots,
if real, are negative whenever (3.4) holds. The inequality (3.4) is satisfied for
most gases, and in particular for monatomic and diatomic gases. Both roots
a.2(fi) vanish at the origin, the one with the plus sign attached to r being 0{fi2)
there, and the other O(p). The denominator of (3.1) vanishes when

P = - l/(my<r) = p0.

Examination of (3.1) shows, however, that the numerator of one root oc2(/?)
also vanishes at J?o- If 4(v~l) Pr>3y then { — l+ ( l + <7)/yo} is positive, and
the root <x2(/?) with the minus sign attached to r has vanishing numerator and
regular behaviour at p0) while the other root has a simple pole there. If the
inequality is reversed the roots have opposite properties at p0. The branch
lines of both roots a.2(p) stretch from the left of the points (3.3) to the point
at infinity along lines parallel to the real axis. It is easily verified that for large
| P | the roots are asymptotically like — P/m and —p/ma, so that they have
the same argument at infinity.

To define the functions <x(P), write

«i = {/*[-1 -pm(l + a)+r-\/l2m(pma+ 1/y)]}*. (3.5)

a2 is the same expression but with a negative sign in front of r; a3 = —at

and oc4 = — a2. The definition is completed by requiring that at and a2 have
argument n/2 for real, large, positive p. For each root a,, | a,-1 = O(| /?* |)
when | p | is large. The remarks on a2 show that each ctj has branch points at
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(3.3) and corresponding branch lines. a3 and a4 have additional branch points
at the origin. If Pr<3y/4(y— 1), a2 and a4 have branch points at)? = 0 and at
P = — l/(mya) which are joined by a branch line. All roots have the branch
points and corresponding branch lines of a.2{fi). If the inequality is reversed,
oc1 and a3 have branch points at p = — \\{myo), the origin is a branch point
of a2 and a4 and again all the roots have the branch points of a2(/?). The branch
lines in all cases stretch from the left of the corresponding branch point along
lines parallel to the real axis up to the point at infinity.

4. Inversion of the Fourier transform
For Im (a) negative and % positive, Re (—ia.%) is negative so that

is exponentially small along the semi-circle | a | = R in Im (a)>0 when R is
large. Consequently

27CJ-CO

is given by the residues of the integrand in Im(a)<0. A similar argument
applies when x is negative, the relevant residues being those in Im (a) ~2. 0.

If the Laplace transform is inverted by integrating along a line Re (/?) > 0
we find that the arguments of <x3 and a4 lie between 57r/4 and 7n/4 on this line,
since a3~a4~z/?* for large \p\. Thus a3 and <x4 lie in Im (a)<0: a1 and a2

must then lie in Im (a) > 0, which shows that the residues at a = 0, a3 and a4

are relevant for #>0- A straightforward calculation then shows that for

s(X, P) = is0IP + ap (-ia3XM( + )-exp ( - i«a)A{-), (4.2)
where

A(±) = ~
4/?

(4.3)

A similar result holds for

5. Inversion of the Laplace transform
The solution six, T) must be anti-symmetric in % because the equations (2.7)

are linear and the initial conditions (2.3) are anti-symmetric. The solution for
X > 0 therefore gives that for ^ < 0 by inspection, and only x >0 will be examined.

For x>0 the right hand side of equation (4.2) tends to iso/p for large x>
so that s(x, T) is then approximately

| s 0 , (5.1)

which verifies that equations (4.2), (4.3) and (3.2) yield the correct answers for
large | x \-

It will now be shown that inversion of A{—) exp (—ioc4x) gives the contact
surface and of A(+) exp (—ix3x) gives the sound wave. It is not possible to
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invert either term exactly, and an asymptotic solution valid for m <£ 1 and
T > 1 will be sought.

To invert A{—) exp (—iaAx) take a contour along Re(/?)= — M<0,
indenting it round the branch lines and the pole at the origin. M is a suitably
large constant. Since A(—) exp (—ia x̂) is at most of order exp (^M*) on
Re <$)= -M, the integral

—; \ A( — ) exp (— fa4/) exp (Px)dp
2ni J

is of order exp (—Mx) which is negligibly small if Mx > 1. The integral round
the branches terminating at the points (3.2) is at most of order

exp(-T/m)exp(z),

which is negligible if x < xlw- The largest contribution must therefore come
from the integral round the branch line to the origin. This branch line is
enclosed by the contour C, consisting of two lines

P = h + id, -M<h<-p, (5>0; (5.2)
and the circle

P = pew, -n<9<n. (5.3)

Note that taking the integration to h = oo introduces only an exponentially
small error, even if <x4 has two branch points on the real axis and the branch
line terminates at j30. Thus the value of the Prandtl number does not signi-
ficantly affect the answer.

The argument of a4 is 37r/2 for large real p>0, and this is unchanged on the
positive real axis because a4, l/a4 and r are non-vanishing there. Thus a4 is
real on either side of the branch line to the origin, and | exp(—fa4/)| = 1
there. It follows that far from the origin the integral along C is exponentially
small like exp (—T/J). A(—) and a4 are therefore expanded as power series in
Pm valid near the origin.

Some algebra shows that the inversion of A(—) exp (—/<x4/) is

f+ 0{m2d2ldz2y\ x f ip-1 exp [- iw+p^dp. (5.4)

For small | P |, a4~exp (—m/2)(y^/m)*, and it follows from this that the integral
round the circle (5.3) has limit 2ni as p vanishes. Further, the integral along
the lines p = h+i5 and P = h — id has limit as 5->0 and p->-0

T

J
sin [xV()"?/m)] exP (-^)/? xdr\ = -ni erf {Xyjiy/mx)}. (5.5)

o
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Substituting these results in (5.4) gives

a-2ly)-so(y- 1)(<7-

Examination of the derivatives shows that each is negligible compared with
previous ones if x < n&i, which gives a limit to the range of validity of (5.6).

The inversion of A(+) exp (—itx3x) is simplified if at the outset it is assumed
that i—% is small. More exactly write

T-X = ex. (5.7)
Limits on the magnitude of e will be set by requiring that the errors of the inver-
sion are small. A(+) exp (—i<x3x) does not have a branch point at the origin
and the contour D of the inversion integral is the imaginary axis indented to the
left of the origin. More exactly D is the limit as d-*0 and L-*co of the two
lines

P = -S±iy, 0<y<L; (5.8)
and the circular arc

fi = Se", -n<9<n. (5.9)

To estimate the errors of inversion introduce two additional contours. The

first is Da, consisting of the two circular arcs | /? | = L,- £0 ^ 0 and | P | = L,

- 0 ^ f l ^ —n/2. 0 is restricted to the sector 3n/4 ;> 0 ^ n/2. The second
contour is Dr consisting fo the two radii P = p exp (±i&), dt<p<L and the
circular arc p = St exp (id), —n<6<n, where 5t <5. The integral over Da is
exponentially small for sufficiently large L, because | a3 | = O(\ fi* |) for large
\f}\. Further A(+) exp (-cfl—ia.3x) is analytic in the region enclosed by D, Da

and Dr, and it follows that the integrals along Dr and D are equal in the limit
of large L. As a further aid to estimating errors of inversion, Dr is divided into
two parts: on one, called X, \firn\ = o(l); the remainder is called A. The
integrand is then written as an asymptotic expansion in Pm on X, plus an error
term of known magnitude; and the integral on A is estimated directly. The
difference between the integrals of the expansion along X and C is its integral
along A which is again estimated directly. The integral along C is then written
in the form of equation (5.4).

The expansion of A(+) is

A(+) = P+E = p~1 t ar(Pmy+O(Pnmn+1),
r = 1

where

(5.10)
and
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Also

exp [-i«3z] = exp [-

where
b3 = i[4y2ff2+4(l-).Xa-l/vXl + ff+^-2/7)-(l-f-ff-l/y)2] (5.11)

and

The integral of ^4(+) exp (/?T—ia3x) along A is exponentially small provided
that | p | > 1 on A, because in that case | a | = 0(| /? |*) and the integrand is
dominated by exp (/?T).

The integral of £ exp (T/?-/<X3X) on X can be split into two:

f exp{(t-z)/?}£rf/?+ ! cxp(xP){exp(-m3X)-cxp(-Xp)}Edp. (5.12)
Jx Jx

Integrating the first of these by parts yields, along with (5.10),

[exp {(T-z)jS}.Wm"+1)Sn/(t-x)]A-{«mn+l/(T-z)} J exp {(x-x)P}p-1dp.

(5.13)

The integrated term vanishes at /? = 0 and is exponentially small at the other
limit provided that \{x~x)P \ > 1- If the largest value of |j? | on A is Oirrf'1),
then T—% = £T leads to

e §> m?-1/*- (5.14)

Repeated integration by parts then gives a final estimate 0{n! rrf+1(T — x)~(n+1)},
which is small provided that

e > AM/T. (5.15)

It may be noted in passing that the factorial in the estimate shows that the
estimate is not uniform in n. The second integral in (5.12) can be estimated in
the same manner because {exp (—/a3/+xP)— 1} is uniformly O(xmfi2) on X,
and it is small provided that

e"+3 > (m/z)n+2. (5.16)

Finally if exp (—iix3x) is replaced by a truncated expansion in the form of
(5.11), an error term results whose largest term is

f
Jx

exp {(T-

which is small provided that
e ?> (m/t)* (5.17)
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We are left with

P{l+Xm2p2(b3p+b4mp2 +...)} exp {(T-x)j8 + i£m(l+<x-:l/y)/32}rfj?, (5.18)

which will differ from the same integral over D by an exponentially small
quantity if (5.14) holds. The integral (5.18) may be written in the form of (5.4),
the integral now being

1exp [(T-

The integral of this round the circle gives 1 independently of 5, and in the limit
as <5->0 the integral along the line /? = — 5 + iy gives

ni erf [(T-X){2Z/«(1 + * - l/y)}~*].

These results together with (5.18) give

{ipoly-ma1(d/dz)+m2a2(dldr)2-aob3xm2(d/dT)3

3 * ] } (5.19)

The condition that each term in this series should be negligible compared
with previous ones imposes further restrictions on e. It is readily verified that
if

e = O[(m/r)*] at most (5.20)
then

/T)"2], r odd,

= 0[e(m/T)(l" 1 ) / 2 ] , reven. (5.21)

A similar result holds for the series derived from exp( — ia3x). A conse-
quence of (5.21) is that because %/T = 0(1) near the sound wave, m(d/dz) and
Xm2(d/dr)3 are of order (m/t)*; and m2(d/dt)2 and ;WZ3(3/3T)4 are of order

6. Results and Discussion
The solution for x > 0 is given by adding (5.1), (5.6) and (5.19). The constant

terms cancel out and the solution consists of two error functions and the series
of their time derivatives. Because the solution is antisymmetric in x, (5.6) is
seen to represent a smoothed out discontinuity centred at the origin, namely
the contact surface. Expression (5.19) on the other hand is a wave travelling
with velocity xft = o. On a curve x — vt the argument of the error function
increases like T* SO that the width of the sound wave increases at this rate.
The arguments of the error functions in (5.6) and (5.19) become unbounded
when m = 0, unless 7 = 0 or / = T respectively, so that in the absence of dis-
sipation discontinuities are recovered.
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The contact discontinuity of non-dissipative gas dynamics vanishes if
= Po '< the largest order term in (5.6) due to the interaction is therefore

)* exp ( - x2y/mt).

Similarly the effect of the interaction on the sound wave is approximately

] . (6.1)

If the sound wave position is denned to coincide with a maximum of
{d/dx)s(x, x) no shift is found since the relevant maximum always occurs at
X = T i.e. at x = at. If the position of the sound wave is defined to occur where
the term involving the error function in (5.19) has value $po/y, it follows, since
(6.1) is of order

(m/t)*, (6.2)

that there will be a shift of this order in the wave position. This differs from
Goldsworthy's result that the shock speed is attenuated by an amount propor-
tional to T~*, but it is fundamental to linear theory to incorporate the fixed
wave speed a.

A measure of the shift can be obtained if E(T/W)* = o(l), for then the sound
wave is, from (6.1),

i(Po/y)[l + (2flim?/Po)(3/3T)] erf [Gr-T){2*ma + (T-l/y)}-*]. (6.3)

Suppose x is fixed, and that the value of T that makes (6.3) have value
ipjy is T*. The unperturbed solution may be written approximately

] erf [(z-T*){2zm(l + a-l/y)}-*}]. (6.4)

Expressions (6.3) and (6.4) have the same value if

T - T * = 2aimylp0 = m(yso/po-lXl + ff-2/y). (6.5)

In terms of the original coordinates the restrictions on e are

Oc/af2)* < e = O[(Klat2)i']. (6.6)

Here z = O(y) includes the possibility z = o(y).
It will be noticed that the asymptotic expansion (5.6) can be found just as

well if m = 0(1), but that the validity of (5.18) requires m = o(l). A suitable
choice for the length scale is therefore L = at, the distance travelled by the
sound wave. The assumption that m is small then means that »c/a2/ is small;
in other words the sound wave has travelled far enough for only a small amount
of dissipation to occur.

The length scale does not involve any objective length because none occurs
in the problem, but its apparent arbitrariness is unimportant, because when
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(5.6) and (5.19) are put back in the original co-ordinates L is absent. For
example

X(y/mi)* = x(ylKt)*,
and
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