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A methodology to generate sparse Galerkin models of chaotic/unsteady fluid flows
containing a minimal number of active triadic interactions is proposed. The key idea is
to find an appropriate set of basis functions for the projection representing elementary
flow structures that interact minimally one with the other, resulting in a triadic interaction
coefficient tensor with sparse structure. Interpretable and computationally efficient
Galerkin models are obtained, since a reduced number of triadic interactions are computed
to evaluate the right-hand side of the model. To find the basis functions, a subspace
rotation technique is used, whereby a set of proper orthogonal decomposition (POD)
modes is rotated into a POD subspace of larger dimension using coordinates associated
with low-energy dissipative scales to alter energy paths and the structure of the triadic
interaction coefficient tensor. This rotation is obtained as the solution of a non-convex
optimisation problem that maximises the energy captured by the new basis, promotes
sparsity and ensures long-term temporal stability of the sparse Galerkin system. We
demonstrate the approach on two-dimensional lid-driven cavity flow at Re = 2 × 104

where the motion is chaotic and energy interactions are scattered in modal space.
We show that the procedure generates Galerkin models with a reduced set of active
triadic interactions, distributed in modal space according to established knowledge of
scale interactions in two-dimensional flows. This property, however, is observed only if
long-term temporal stability is included explicitly in the formulation, indicating that a
dynamical constraint is necessary to obtain a physically consistent sparsification.

Key words: computational methods, low-dimensional models, machine learning

1. Introduction

From a physical standpoint, turbulence is a multi-scale phenomenon exhibiting a wide
hierarchy of spatial and temporal scales. This property, coupled with the intrinsic
nonlinearity of the governing equations, poses considerable difficulties to its modelling
and analysis. One of the major challenges to obtain a satisfactory mathematical description
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of this phenomenon arises from the fact that the dynamics of flow structures at a particular
length or time scale cannot be examined in isolation without also considering at the same
time the whole hierarchy of complementary scales (Domaradzki et al. 1994). In fact,
nonlinear interactions between triads of scales play a fundamental role as they are the
main driver of energy transfer between coherent structures (Pope 2001; Moffatt 2014).
In turn, the organisation of triadic interactions has a direct influence on the physics of
a number of flow phenomena, such as direct and inverse energy cascades (Kolmogorov
1991), or transition to turbulence (Craik 1971; Rempfer & Fasel 1994a,b) in different
flow configurations (Schmidt 2020). Overall, this property makes the development of
computationally efficient and physically interpretable reduced-order dynamical models a
challenging task.

Historically, the study of triadic interactions has been conducted by first employing
an appropriate decomposition technique to educe coherent structures from the turbulent
motion and then characterising the intensity of the intermodal couplings through the
perspective of the resulting Galerkin model (Noack et al. 2008). For homogeneous
isotropic turbulence, Fourier modes provide an optimal representation (Brasseur & Wei
1994; Laval, Dubrulle & Nazarenko 1999), but for flows in complex geometries, modes
identified from data with proper orthogonal decomposition (POD) (Rempfer & Fasel
1994a; Couplet, Sagaut & Basdevant 2003) or with frequency domain decomposition
methods (Schmid 2010; Towne, Schmidt & Colonius 2018; Symon, Illingworth & Marusic
2020) have been often adopted. One of the key findings of such studies is that energy
transfers are not uniformly distributed in modal space. In fact, not all interactions have
the same importance and energy flows along preferential directions. Specifically, there is
evidence suggesting that the nonlinear interaction pattern among coherent structures is
often sparse. In other words, the evolution of structures at a certain length scale depends
predominantly upon a subset of all other structures (Kraichnan 1971; Ohkitani 1990;
Brasseur & Wei 1994), and the influence of interactions with the complementary set
of structures can be neglected generally with minor global effects. This behaviour has
been observed for a multiplicity of different flows, ranging from bluff body wakes (Jin,
Symon & Illingworth 2021) to transitional boundary layers (Rempfer & Fasel 1994a,b) and
separated flows (Couplet et al. 2003). However, these studies have focused typically on the
interaction between modes educed using a predetermined flow decomposition technique
that does not necessarily capture faithfully or optimally the aforementioned physics of
scale interactions, since no information regarding nonlinear mechanisms that may produce
such interactions is utilised in the decomposition. Hence rationalising scale interactions in
these models and identifying relevant physical mechanisms may be challenging, especially
in high-dimensional systems Schmidt (2020).

In a previous work (Rubini, Lasagna & Da Ronch 2020b), we utilised l1-based
regression methods (Brunton, Proctor & Kutz 2016; Loiseau & Brunton 2018) to extract
sparsity patterns in the intermodal energy transfers in large Galerkin models of multi-scale
flows, to construct sparse, computationally efficient and interpretable models.

This technique consists of calibrating all model coefficients by solving a regression
problem (Cordier, El Majd & Favier 2010) augmented with a term that penalises the l1
norm of the coefficients vector. This type of penalisation is known to promote sparse
solutions (Tibshirani 1996, 2013), and thus results in calibrated models where weak
triadic interactions that do not contribute significantly to the overall dynamics are pruned.
However, a rigorous connection between the modal structures and the projection model
is necessarily lost, since the procedure involves calibrating model coefficients without
modifying the basis functions. Hence the analysis of energy paths in the model is not
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necessarily consistent with the spatial structure of the basis functions. In addition, it was
demonstrated that the organisation and sparsity of energy interactions is not invariant with
respect to a change of the basis functions utilised for the analysis of the energy budget.

One avenue in this direction that has been explored recently is to utilise sparse coding
methods (Olshausen & Field 1996) and sparse principal component analysis (Jolliffe,
Trendafilov & Uddin 2003) to encode sparsity directly in the spatio-temporal structure of
the reduced basis. For instance, Deshmukh et al. (2016) utilised sparse coding techniques
to develop a modified version of POD, producing a compact representation that spans
all scales of the observed data. To this end, the authors augmented the POD variational
statement with a sparsity-promoting l1 penalisation term on the temporal coefficients
matrix. This forces the temporal coefficients to display a marked intermittent character to
capture local dynamics, i.e. periods of activity alternated with periods of low amplitude,
with only a subset of the entire set active at any instant. However, the orthogonality
between modes is not necessarily preserved. Erichson et al. (2020) generalised the same
approach and proposed more efficient computational algorithms for its solution that
include orthogonality constraints for the spatial modes. The authors demonstrated that
this formulation can be a useful diagnostic tool for problems with rich spatio-temporal
behaviour, since it can provide a cleaner data description by identifying localised spatial
structures in the data and can disambiguate between distinct time scales. However, spatially
or temporally localised modal structures obtained using these techniques may not result
directly in a sparser triadic interaction pattern once Galerkin projection is performed. In
fact, these techniques utilise only flow data, and it is unclear if this is sufficient to capture
the sparse nature of scale interactions.

In this paper, we attempt to bridge this gap. We propose a novel sparsification method in
which the goal is to seek directly modal structures that capture energy transfer mechanisms
efficiently. More precisely, we seek a new basis set that produces a sparse quadratic
coefficient tensor regulating triadic interactions, without the need for an a posteriori
tuning based on l1-based regression. The computational approach is inspired by the
subspace rotation technique of Balajewicz, Dowell & Noack (2013) and Balajewicz, Tezaur
& Dowell (2016), where a small rotation of the POD subspace was sought to absorb
the unresolved dissipative scales into the basis functions and stabilise the long-term
behaviour without the need for empirical eddy-viscosity terms. Here, the key idea is to
seek a small rotation of the original POD subspace to alter and sparsify energy transfer
paths. In practice, the rotation is found by solving a constrained optimisation problem,
minimising the loss of energy optimality subject to a constraint on the sparsity of the
quadratic coefficient tensor. We refer to this method as a priori sparsification, since sparse
characteristics are obtained before the projection step, not after.

As a demonstration, we use two-dimensional incompressible lid-driven cavity flow with
uniform lid velocity at Reynolds number Re = 2 × 104, where fluid motion is chaotic
(Auteri, Parolini & Quartapelle 2002). As opposed to flows at lower Reynolds number
just beyond bifurcation to time-dependent flow, energy transfers between modal structures
obtained with POD are scattered in modal space and dense Galerkin systems with full
model coefficient tensors are obtained. This dynamically complex flow exhibiting a
‘light turbulent’ regime represents a suitable benchmark problem to understand how the
proposed optimisation procedure captures the sparsity inherent to the energy cascade of
a multi-scale flow. The two-dimensional lid-driven cavity flow is also an established test
case for the development and validation of model order reduction techniques (Cazemier,
Verstappen & Veldman 1998; Terragni, Valero & Vega 2011; Balajewicz et al. 2013;
Deshmukh et al. 2016; Arbabi & Mezić 2017; Fick et al. 2018), and we thus consider
it here as an exemplar to demonstrate our approach.
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The paper is organised as follows. Section 2 outlines the general methodology to
generate reduced-order models by Galerkin projection and how energy interactions
between modes defining such models can be analysed. Subsequently, the subspace rotation
technique to generate sparse models is described. Results are reported in § 3.

2. Methodology

2.1. Galerkin models and energy analysis
We consider the space of square integrable solenoidal velocity vector fields defined over a
spatial domain Ω , endowed by the standard inner product

(u, v) :=
∫

Ω

u · v dΩ, (2.1)

where u, v are two elements of such space. The resulting L2(Ω) norm is denoted as
‖u‖2 = √

(u, u). Using the time-averaged velocity field ū(x) as a base flow, and denoting
by u′(t, x) = u(t, x) − ū(x) the velocity fluctuation, the N-dimensional Galerkin ansatz

u(t, x) = ū(x) + u′(t, x) = ū(x) +
N∑

i=1

ai(t)φi(x) (2.2)

is introduced to describe the space–time velocity field, where ai(t) and φi(x),
i = 1, . . . , N, are the temporal and global spatial modes, respectively. We assume
throughout that the spatial modes form an orthonormal set and satisfy homogeneous
boundary conditions on Ω . Reduced-order models are then derived by projecting the
Navier–Stokes equations for incompressible flows onto the subspace defined by the spatial
modes (Rowley & Dawson 2017) using the inner product defined in (2.1).

Considering configurations where the boundaries are either no-slip walls or periodic and
do not change over time, the pressure term arising from the projection vanishes identically
for solenoidal modes (Schlegel & Noack 2015; Lee & Dowell 2020). The system of
coupled nonlinear ordinary differential equations (ODEs)

ȧi(t) = Ci +
N∑

j=1

Lij aj(t) +
N∑

j=1

N∑
k=1

Qijk aj(t) ak(t), i = 1, . . . , N, (2.3)

is then obtained, defining the temporal evolution of the coefficients ai(t). Here, the tensors
C ∈ ReN , L ∈ ReN×N and Q ∈ ReN×N×N are defined by suitable inner products involving
the spatial modes. In particular, the coefficients are

Ci = 1
Re

(ū, ∇2ū) − (ū, ū · ∇ū), (2.4a)

Lij = 1
Re

(φi, ∇2φj) − (φi, φj · ∇ū) − (φi, ū · ∇φj), (2.4b)

Qijk = −(φi, φj · ∇φk). (2.4c)

The expansion (2.2) provides a suitable foundation to examine interactions between
coherent structures in complex geometries. Here, we follow established approaches
(Rempfer & Fasel 1994b) and analyse such interactions by introducing the modal energies
Ei(t) = 1

2 ai(t) ai(t), i = 1, . . . , N. For an expansion consisting of N modes, the domain
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integral of the kinetic energy of velocity fluctuation expressed by the ansatz (2.2) is then
given by

E(t) =
N∑

i=1

Ei(t). (2.5)

The instantaneous rate of change of the modal energies is given by

Ėi(t) = Ci ai(t) +
N∑

j=1

Lij ai(t) aj(t) +
N∑

j=1

N∑
k=1

Qijk ai(t) aj(t) ak(t), i = 1, . . . , N, (2.6)

obtained by multiplying (2.3) by ai(t). The right-hand side of (2.6) is composed of
three terms describing energy transfers between the hierarchy of modes (Noack et al.
2008; Noack, Morzynski & Tadmor 2011). The first two describe variations of energy
due to production/dissipation arising from interactions with the mean flow and from
viscous effects. The third term defines variations of energy arising from inviscid nonlinear
interactions between triads of modes. Additional insight can be gained by taking the
temporal average of (2.6), i.e. by examining the time-averaged energy budget of system
(2.3). Exploiting that the temporal coefficients have zero mean as POD modes have
vanishing mean, we obtain

N∑
j

Lij aiaj +
N∑

j=1

N∑
k=1

Qijk aiajak = 0, i = 1, . . . , N, (2.7)

where the summation over j in the linear term accounts for the case where temporal
coefficients are not uncorrelated in time. Equation (2.7) shows that, on average, the energy
balance is regulated by the production/dissipation described in the linear term and by the
nonlinear energy transfer rate described by the quadratic term. As explained in Balajewicz
et al. (2013), the residual of (2.7) vanishes only when N → ∞ and it is generally expected
to be positive for finite-dimensional Galerkin models.

Following Rempfer & Fasel (1994a), to better visualise the relative importance of the
triadic interactions in an average, we introduce the tensor N ∈ ReN×N×N with entries

Nijk = Qijk aiajak, (2.8)

defining the the average nonlinear transfer rate between triads of modes. The study of the
organisation and structure of this tensor and how these are altered by the sparsification
algorithm is the main focus of this work.

2.2. Subspace rotation technique
To identify the new set of modal structures, we utilise a subspace rotation technique
introduced in the context of stabilisation of Galerkin models by Balajewicz et al. (2013)
(see also Amsallem & Farhat 2012). Geometrically, this technique consists of seeking a
rotation of an N-dimensional POD subspace within a larger POD subspace of dimension
M. The rotation is defined by a transformation matrix X ∈ ReM×N , satisfying X TX = I to
ensure that the rotated spatial basis functions remain an orthonormal set. The rotated basis
functions and the associated temporal coefficients, denoted in what follows with a tilde,
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are expressed as a linear combination of the original POD spatial and temporal modes as

φ̃i(x) =
M∑

j=1

Xji φj(x), (2.9a)

ãi(t) =
M∑

j=1

Xji aj(t). (2.9b)

It is worth pointing out that finding a new set of modal structures directly would be a much
higher dimensional problem to tackle. The number of unknowns would be proportional to
the numbers of modes sought multiplied by the number of degrees of freedom of the
problem at hand. Seeking new modal structures as a linear combination of POD modes
represents a significant reduction in complexity, controllable by varying the dimension M.
Using POD modes as building blocks also has the advantage of producing a basis with
good energy reconstruction properties.

The linear and quadratic coefficients of the Galerkin system (2.3) obtained by projection
on the rotated subspace are then given by the matrix expressions

C̃ = X TC and L̃ = X TLX , (2.10a,b)

while the quadratic coefficients are cubic polynomial functions of the entries of the
rotation matrix

Q̃ijk =
M∑

p,q,r=1

Qpqr Xpi Xqj Xrk, i, j, k = 1, . . . , N. (2.11)

In these expressions, the tensors C ∈ ReM , L ∈ ReM×M and Q ∈ ReM×M×M are the
Galerkin coefficient tensors obtained from the M-dimensional set of original POD modes.

Our goal is to seek a rotation matrix for which the rotated quadratic interaction
coefficient tensor Q̃ has a sparse structure, i.e. where as many as possible of the quadratic
interaction coefficients are identically zero.

At this stage, it is worth noting that any rotation is necessarily accompanied by a
loss of average fluctuation kinetic energy reconstructed by the new basis. The energy
reconstructed by a set of P POD modes can be quantified by utilising the average modal
energies λi = aiai, i = 1, . . . , P. Arranging them into a diagonal matrix ΛP ∈ ReP×P, the
trace Tr(ΛP) defines an upper bound for the reconstructed energy for any P-dimensional
set of basis functions, due to well-known optimality properties of POD. Similarly, the
energy reconstructed by the rotated basis can be expressed with the average modal energies
λ̃i = ãiãi, i = 1, . . . , N, of the rotated temporal coefficients (2.9b) and arranging them
into the diagonal matrix Λ̃N = X TΛMX ∈ ReN×N . The loss of reconstructed average
fluctuation kinetic energy with respect to an N-dimensional POD subspace is then
quantified as

J (X ) = Tr(ΛN − X TΛMX ). (2.12)

As observed in Balajewicz et al. (2013), this quantity is necessarily non-negative due to
the optimality of the original POD basis, i.e.

∫
Ω

‖u′(t, x)‖2 dΩ = Tr(Λ∞) > Tr(ΛN) ≥ Tr(Λ̃N), (2.13)
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where the last equality holds for M > N in trivial cases only. In addition, the quantity (2.12)
is also always identically zero when M = N, for any X , since any linear combination of N
POD modes necessarily spans the same original N-dimensional subspace.

To measure sparsity of the quadratic interaction coefficient tensor, we use the l1 norm
operator, denoted as ‖·‖1, in light of the practical intractability of the zero norm in
optimisation (Jovanović, Schmid & Nichols 2014). Then the trade-off between energy
optimality and sparsity is expressed by formulating the following constrained optimisation
problem:

min
X

Tr(ΛN − X TΛMX ), (2.14a)

subject to ‖Q̃‖1 ≤ ‖Q‖1/ξ, (2.14b)

X TX = IN×N, (2.14c)

referred to as problem P1 in what follows. The role of the objective function (2.14a) is to
favour transformation matrices that minimise the loss of energy optimality, producing a set
of basis functions with good energy representation ability, as in Balajewicz et al. (2016).
On the other hand, the constraint (2.14b) encourages sparse solutions, because some entries
of Q̃ are shrunk to zero during the solution of (2.14) by the non-differentiability of the l1
norm (Friedman, Hastie & Tibshirani 2008; Tibshirani 2013). Sparsification of the linear
coefficients tensor L̃ should not be expected. Then the weight ξ is an arbitrary penalisation
parameter that controls the relative l1 norm of the rotated quadratic coefficient tensor and
the sparsity of the resulting Galerkin model. This parameter ranges from 1 to arbitrarily
large values. When it is equal to 1, the l1 norm of the rotated tensor is not affected
and no sparsification is obtained. Conversely, using larger ξ constrains the norm of the
rotated tensor to decrease. This promotes sparsity due to the non-differentiability of the
l1 norm, with a mechanism (see Appendix A) similar to well-known LASSO methods
(Tibshirani 1996). In addition, different definitions of the sparsification constraint (2.14b)
can be used to highlight different physical aspects of the resulting bases. As an example, in
an exploratory study we observed that applying the l1 norm constraint on Ñ instead of Q̃, it
is possible to promote sparsity in the average triadic interaction tensor. Interestingly, with
this formulation, sparsification is promoted by penalising the entries ãiãjãk more than the
entries of Q̃. As a result, the temporal coefficients display intermittency behaviour similar
to what is observed by Deshmukh et al. (2016).

It is worth noting that using the a posteriori LASSO-based sparsification method
(Brunton et al. 2016; Rubini et al. 2020b), all quadratic coefficients could, in principle,
be set to zero by using a large regularisation weight in the LASSO optimisation problem.
This is because the constant, linear and quadratic coefficients of the Galerkin model are
directly the optimisation variables. In the present case, the model coefficients cannot be
modified directly, but the model tuning is performed indirectly through the rotation matrix
X , which is the actual optimisation variable of the problem. The important consequence is
that it might not always be possible to find a rotation that sets an arbitrarily large number
of model coefficients to zero. This indicates that problem (2.14) might not have a feasible
solution if the penalisation weight is too large.

An important characteristic of optimisation problem (2.14) is that while the objective
(2.14a) is convex, the sparsity-promoting constraint (2.14b) is not, as it involves cubic
polynomials in the optimisation variables, the entries of the transformation matrix X .
Consequently, the solution might not be unique, and several local minima, corresponding
to different sets of basis functions, may be obtained by starting the optimisation
from different initial guesses. However, as demonstrated in Appendix B, starting the
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optimisation from small random perturbations of the original POD basis (justified by
the need to retain good energy reconstruction properties) produced consistently the same
optimal solutions, which will be presented in § 3.

Assuming that a feasible solution of problem (2.14) can be found, the Galerkin model
constructed from projection onto the optimal rotated basis does not necessarily possess
better long-term temporal stability characteristics than the original POD model. In fact,
it is well known that POD-Galerkin models exhibit long-term instability because of the
deficit of energy dissipation attributed to the truncation of small dissipative scales (Noack
et al. (2008), Schlegel & Noack (2015); see also the recent work of Grimberg, Farhat &
Youkilis (2020) for a point against this argument). In the present case, the transformation
X obtained from solution of (2.14) does not necessarily result in an improved description
of dissipative processes. Classically, this issue is cured by introducing, a posteriori, an
eddy-viscosity-type term in the Galerkin model (Galletti et al. 2004; Noack, Papas &
Monkewitz 2005; Östh et al. 2014). However, an a posteriori correction would not remain
in the spirit of the present work. We thus favour the subspace-rotation-based stabilisation
approach proposed by Balajewicz et al. (2013, 2016), which can be introduced naturally
in the present formulation. In practice, we augment problem (2.14) with the additional
implicit constraint

Tr(L̃) = Tr(X TLX ) = −η, (2.15)

where the auxiliary variable η ∈ Re+ is chosen such that

χ(η) = E(t) − EDNS(t)

EDNS(t)
= 0, (2.16)

i.e. such that the relative difference of the average fluctuation kinetic energies from direct
numerical simulation (DNS) and from numerical simulation of the new model vanishes.
The variable η controls dissipation mechanisms in the Galerkin model by altering the
spectrum of L̃ and ensures long-term stability. As observed by Balajewicz et al. (2013),
η is not known a priori, but can be found in an inner optimisation loop to ensure that
the excess average fluctuation kinetic energy defined by χ(η) is zero. With this additional
constraint, problem (2.14) becomes

min
X

Tr(ΛN − X TΛMX ), (2.17a)

subject to ‖Q̃‖1 ≤ ‖Q‖1/ξ, (2.17b)

Tr(X TLX ) = −η withχ(η) = 0, (2.17c)

X TX = IN×N . (2.17d)

In this formulation, denoted as P2 henceforth, there is still only one free parameter,
ξ . The additional constraint guarantees long-term stability but it can be satisfied (i.e.
the problem is feasible) only if M > N. In fact, any rotation X ∈ ReN×N cannot alter
the subspace spanned by the original N POD modes and the associated description of
dissipation mechanisms captured by the model. In what follows, we consider models with
ratio M/N = 2 and 3.

In practice, a small random perturbation of the original N-dimensional POD basis
was used as initial guess for the optimisation, and successive optimisation problems
for different penalisations ξ were started from the solution of the previous problem.
Problem (2.17) was solved with the open-source package for nonlinear and non-convex
optimisation NLopt (Johnson 2014). We utilised a solver implementing the method of
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moving asymptotes (MMA) algorithm (Svanberg 2014), which requires the gradient of
the objective function and of the constraints. The key element to make the procedure
viable is to evaluate the sparsity-promoting constraint and its gradient as efficiently as
possible. A naive implementation requires O(M3N3) operations for the evaluation of the
sparsity-promoting constraint, and O(M4N4) for the evaluation of its gradient with respect
to the rotation X , and costs become intractable quickly. A significantly more efficient
algorithm to compute these two quantities – with costs scaling as O(MN3 + M2N2 +
M3N) for the evaluation of the sparsity-promoting constraint and its gradient – can be
derived and is key to making the procedure viable (see discussion of the method in
Appendix C).

One further technical remark is that the sparsity-promoting constraint is a non-smooth
function of the transformation matrix X , posing difficulties for the utilisation of
gradient-based optimisation algorithms. One approach is to implement a subgradient
descent method, often used for the solution of the LASSO method (Friedman et al.
2008). However, this algorithm can be implemented only if an analytical solution of the
optimisation problem is known, which is not the case here. In this work, we used a manual
soft-thresholding approach where entries of the rotated tensor Q̃ smaller that the numerical
tolerance specified to the gradient-based optimiser (typically tol = 10−5) are set to zero at
the end of the optimisation.

The Galerkin models obtained from solution of (2.17) are then characterised by
examining the density of the rotated triadic interaction tensor, defined as

ρ = ‖Q̃‖0

‖Q‖0
, (2.18)

where the l0 norm ‖·‖0 counts the non-zero elements of a tensor. The density can also be
expressed as the average

ρ = 1
N

N∑
i=1

ρi, (2.19)

with the modal densities ρi = ‖Q̃i‖0/‖Qi‖0, i = 1, . . . , N, being the relative number of
non-zero coefficients in the slices Qi of the quadratic coefficient tensor associated with
each modal index. To express the energy captured by the N-dimensional rotated basis, we
also introduce the global energy reconstruction factor

eN = Tr(Λ̃N)/Tr(Λ∞), (2.20)

a quantity always strictly lower than 1. The density and the reconstruction factor of the
rotated Galerkin models depend on the dimensions M and N, and on the penalisation
weight ξ . To characterise the effects of these parameters, we visualise the rotated systems
on the ρ–eN plane, similar to the approach used in Rubini et al. (2020b).

3. Demonstration: two-dimensional lid-driven unsteady cavity flow

We now apply this methodology to two-dimensional unsteady flow in a lid-driven square
cavity. This is the same test case that we utilised in our previous work (Rubini et al. 2020b)
to demonstrate the properties of l1-based sparsification of Galerkin models.
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Figure 1. (a,b) Instantaneous vorticity fields for two different flow snapshots. (c) Amplitude of the Fourier
transform of the fluctuating kinetic energy signal (2.5).

3.1. Problem definition and proper orthogonal decomposition
The Reynolds number is defined as Re = LU/ν, where L and U are the cavity dimension
and the (uniform) lid velocity, respectively, and ν is the kinematic viscosity. All physical
variables introduced later are scaled with L, U and combinations thereof. We consider the
flow regime establishing at Re = 2 × 104, where the motion is chaotic (Auteri et al. 2002;
Peng, Shiau & Hwang 2003). The domain is defined by the non-dimensional Cartesian
coordinates x = (x, y), and the velocity vector u(t, x) is defined by the components u(t, x)

and v(t, x). For visualisation purposes, we introduce the out-of-plane vorticity component
ω = ∂v/∂x − ∂u/∂y.

Numerical simulations were performed in OpenFOAM with the unsteady incompressible
flow solver icofoam. The convective and viscous terms are discretised spatially with
a second-order finite-volume technique, and the temporal term with a semi-implicit
Crank–Nicolson scheme. A grid independence study was performed, examining average
and unsteady flow quantities on increasingly finer meshes. The final mesh is composed of
300 × 300 cells, with refinement at the four cavity boundaries. This mesh is sufficiently
fine to resolve the unsteady high-shear regions bounding the main vortex and the high
vorticity filaments characteristic of two-dimensional turbulence, as well as the spatial
structure of the lowest energy POD modes utilised in this study. Similar grid resolutions
have been used by Cazemier et al. (1998) at similar Reynolds numbers.

Two snapshots of the vorticity field obtained from these simulations are shown in
figures 1(a,b). Most of the dynamically interesting features in this regime originate at the
bottom-right corner of the cavity. Specifically, the secondary vortex in the recirculation
zone is shed erratically, producing wave-like disturbances advected along the shear layer
bounding the primary vortex. These structures produce a strong quasi-periodic oscillation
of the turbulent kinetic energy, as shown in figure 1(c), where the amplitude of the Fourier
transform of the fluctuation kinetic energy signal (2.5) is shown, as a function of the
Strouhal number St = fL/U, with f the dimensional frequency. Due to the chaotic nature
of the flow, the energy spectrum has a strong broadband component with energy uniformly
distributed across all the frequencies/spatial structures of the flow. This implies that unlike
for periodic flows (Noack et al. 2011; Symon et al. 2020), the mean triadic interaction
tensor N is dense, with energy transfers highly scattered in modal space. However, the
wave-like motion characterising the shear layer dynamics produces a strong energy peak
at a characteristic non-dimensional Strouhal number St = 0.7 and its harmonics.
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N 1 5 10 20 30 40 60 80 90 120

eN 0.26 0.74 0.9 0.96 0.97 0.98 0.985 0.99 0.995 0.998

Table 1. Normalised cumulative energy reconstruction of the original POD basis functions.

From these simulations, we extract NT = 1000 snapshots after initial transients have
decayed, using a non-dimensional sampling period 
t = 0.1. These settings are sufficient
to time-resolve adequately the fastest scales of motion as well as to include many shedding
events originating at the bottom right corner. The snapshot POD of this dataset is then
performed (Sirovich 1987). The normalised cumulative reconstructed energy (2.20) is
reported in table 1 as a function of the mode number N.

3.2. Analysis of energy interaction of the original POD-Galerkin models
Before examining the properties of the sparsified Galerkin models, we first present some
aspects of energy transfers of Galerkin models constructed using the original POD modes,
using a reference model size N = 30. This dimension is chosen as a compromise between
the need to observe a sufficient complexity of modal interactions and the need to limit
computational costs associated with the solution of the optimisation problem (see scaling
of costs in Appendix C). The POD model for N = 30 resolves approximately 97 % of the
average fluctuation kinetic energy, which is sufficient to observe a wide dynamic range in
the amplitude of the temporal coefficients and in the strength of energy interactions.

Figure 2(a) shows the organisation of the quadratic coefficients Q. The slice for mode
i = 1 is used as an illustrative example; other modes have similar characteristics. The
coefficient tensor is dense as most coefficients are non-zero. No clear structure in the
distribution of the coefficients can be observed, except for a slight asymmetry where
coefficients for k > j are often larger in magnitude, for mode i = 1 but also for most of the
other modes. This asymmetry is a consequence of the definition of the quadratic coefficient
tensor (2.4c), characterising convective transport mechanisms, and the range of spatial
length scales described by the POD modes, as already observed in Rubini et al. (2020b).
One slice of the average energy transfer rate tensor N is reported in figure 2(b) using the
base 10 logarithm of the magnitude. All entries of N are generally non-zero, although
the intermodal transfers in the Galerkin model are highly organised and the intensity of
interactions varies across several orders of magnitude. This is the combined result of the
structure of the quadratic coefficients tensor and the complex spectral structure of the
temporal coefficients.

To further characterise energy paths, we split the interactions into four regions, denoted
as LL, LH, HL and HH, with L and H denoting low and high index modes, respectively.
These four regions represent a coarse-grained grouping of energy transfers between scales
resolved by the model, assuming that low-index modes map to the largest scales of
motion in the cavity, and high-index modes describe small-scale, low-energy features. This
property has been verified for certain problems (Couplet et al. 2003; see also discussion
in Grimberg et al. 2020) and is confirmed in the present case by visual inspection of the
POD modes. We then compute the sum of the magnitudes of the average transfer rates
contained in these four regions for each mode, to characterise in a coarse-grained fashion
energy transfers between triads of high-energy modes and smaller, dissipative scales.
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Figure 2. Organisation of (a) the quadratic coefficients Q, and (b) the average nonlinear transfer rate N , for
mode i = 1. (c) Collective energy transfer rates associated with the four regions defined in (b), as functions of
the modal index i.

For instance, for the region LL we compute

SLL =
n∑

j=1

n∑
k=1

|Nijk|. (3.1)

The subscript on S in expression (3.1) denotes one of the four regions. The other regions
are defined by analogous expressions, differing in the range spanned by the indices j
and k. Here, we arbitrarily select the cut-off at half of the spectrum (n = 15), but other
choices are possible and do not change the following results qualitatively. For graphical
convenience, we define the notation S(·) where the dot represents the quantity (3.1) for
the four regions defined in figure 2(b). The result of this analysis is shown in figure 2(c),
as a function of the modal index i. First, energy transfers in the regions LL, HL and LH
are generally more intense than those in region HH. This follows from the observation
that large-scale/large-scale and large-scale/small-scale interactions are more relevant with
respect to the small-scale/small-scale interactions, across the entire hierarchy and in a
mean sense. In addition, we observe that the interactions LH are always more intense
than the HL interactions. This is a consequence of the asymmetry observed previously
in the tensor Q, and not of the temporal coefficients, due to definition (2.8), where the
indices j and k commute. This lack of symmetry is in agreement with the picture of energy
transfers between scales in homogeneous isotropic two-dimensional turbulence (Ohkitani
1990; Laval et al. 1999), where the large scales interact with the small ones in a non-local
fashion.

3.3. Model sparsification
We now consider models with dimension N = 30, for ratios M/N = 2 and 3, and examine
in more detail the effect of the sparsity-promoting constraint (2.17b). For each ratio,
a family of models with different density and reconstructed average kinetic energy is
generated by increasing the penalisation parameter ξ . Optimal solutions are displayed
on the 1/ξ–‖Q̃‖1/‖Q‖1 plane in figure 3(a). The red dashed line separates solutions
that satisfy the sparsity-promoting constraint (2.17b) (white area feasibility region) from
solutions that do not (red area). Note that the stability constraint is satisfied for all points
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Figure 3. (a) Visualisation of the sparsity-promoting constraint (2.17b) on the 1/ξ–‖Q̃‖1/‖Q‖1 plane. The
red region denotes the infeasibility set. (b–d) Plots of ρ versus eN for families of models with dimensions
N = 30, 20, 40 and ratios M/N = 2, 3 (open squares and open circles, respectively). The labels in the legends
indicate values of M × N.

reported in this figure, as we have noted that the optimiser is still able to satisfy (2.17c)
when it first fails to satisfy the sparsity-promoting constraint (2.17b).

For small penalisation weights, the optimisation problem has feasible solutions that fall
on the boundary of the feasibility region. This suggests that rotations of the original POD
basis that minimise the energy loss are found on the boundary, i.e. there is competition
between sparsification and energy representation. The key feature of figure 3(a) is
that there exists a threshold value ξt above which the optimisation problem terminates
unsuccessfully in the infeasible region, i.e. no rotation exists that can reduce the l1 norm of
the rotated quadratic coefficient tensor below ‖Q‖1/ξt. This is manifested in figure 3(a) by
a sudden turn of the solution traces from the feasible region boundary upwards into the red
region. This occurs because, for a given dimension M, there are only a limited number of
coefficients in the tensor Q̃ that can be shrunk to zero by any rotation of the basis functions.
The threshold value increases with the ratio M/N, i.e. the l1 norm of the rotated coefficient
tensor Q̃ can be decreased further when larger dimensions M are used. This is arguably
a consequence of the fact that higher ratios M/N correspond to more degrees of freedom
available to the optimiser to ensure that the sparsity constraint is satisfied. It is worth
noting that in LASSO-based sparsification methods (Rubini et al. 2020b), the optimiser
operates directly on the model coefficients and feasible solutions can always be found,
with all coefficients shrunk to zero in the limiting case. However, highly sparsified models
were observed to have little physical significance and poor temporal behaviour. Here,
all feasible systems with varying sparsity/energy reconstruction properties are temporally
stable and provide physically consistent predictions. This result is an effort to try to develop
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a methodology to ensure global stability in data-driven models, extending the work done
by Kaptanoglu et al. (2021).

In figure 3(c,b,d) the trade-off between sparsity and the energy reconstruction properties
of the rotated basis is presented on the ρ–eN plane for models constructed with N =
20, 30, 40, respectively. The horizontal line in each panel corresponds to the fraction
of reconstructed energy of the original dense POD-Galerkin model. In these panels,
squares are used to denote data for M/N = 2, while circles denote data for M/N = 3.
First, it can be observed that systems for ρ = 1 (ξ = 1) do not reconstruct the entire
average fluctuation kinetic energy captured by the original POD basis. This is due to the
stability constraint (2.17c), producing a small rotation of the optimal POD basis so that
dissipative mechanisms in the Galerkin models to ensure long-term stability are better
resolved. Second, when the penalisation ξ is increased, sparser models are obtained, with
higher ratios M/N enabling further reduction in density. This, however, comes at the cost
of decreasing the energy optimality of the rotated basis. More importantly, the larger
the model size, the more the model can be sparsified without affecting significantly the
ability of the new basis to reconstruct the fluctuation kinetic energy. This suggests that the
sparsification technique becomes more effective as the model complexity, and the range
of scales resolved by the basis, increases. This appears to be a general trend, since similar
behaviour was observed in Rubini et al. (2020b) using the LASSO-based a posteriori
sparsification.

3.4. Analysis of the rotated modal structures
We now move to the analysis of the rotated spatial and temporal basis functions. We
analyse a model with N = 30, M/N = 3 and density ρ = 0.87, obtained for ξ = 3 just
before the solution falls into the infeasible region in figure 3(a). Figure 4(a) shows the
magnitude of the entries of the rotation matrix X , found from the solution of (2.17).
Figure 4(b) compares the modal energies of the original POD temporal coefficients with
those of the rotated modes. Figure 4(c) shows the cosine of the angle between each pair of
original and rotated spatial modes, cos(θi) = (φi, φ̃i), which is clearly also the diagonal
of X , because of the orthogonality constraint (2.17d). The transformation matrix X has
large diagonal entries, but significant off-diagonal terms can be observed for i, j � 5.
This indicates that the rotated basis functions bear a strong resemblance to the original
POD modes, but that the optimisation has introduced into the new basis small-scale,
low-energy features to both stabilise and sparsify the rotated Galerkin model. It is observed
that the high-energy temporal and spatial modes are not affected significantly by the
rotation and do not differ significantly from the original POD modes. For instance, the
first pair of modal energies, corresponding to the dominant fluid oscillation in the cavity,
is virtually unchanged. Conversely, high-index, low-energy modes are more significantly
rotated away from the corresponding original POD mode, and more significant relative
differences of the modal energies are observed. We argue that this behaviour derives from
the formulation of problem (2.17), constructed with the aim of generating a basis that
minimises the energy loss with respect to the energetically optimal POD. As a result,
the optimisation leaves mostly unchanged the most energetic modes that contribute more
pronouncedly to the overall energy, and rotates by a larger extent the less energetic modes
to gain in sparsity and to achieve stability.

Figures 5(a,d) show the out-of-plane vorticity component ω for the original POD
spatial mode, and figures 5(b,e) the rotated mode, for indices i = 1 and 19, respectively.
Figures 5(c, f ) show the absolute value of the difference between the original and
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Figure 4. Optimisation results for the case M/N = 3, N = 30, ξ = 3 (with density ρ = 0.87). (a) Magnitude
of the entries of the transformation matrix X . (b) Distribution of the average modal energies of the original
(squares) and rotated (circles) basis functions. (c) Cosine of the angle between the modes of the original and
rotated basis.

rotated modes. As expected, the spatial structure of the first mode is not changed
considerably by the rotation. On the other hand, mode i = 19 is more pronouncedly
affected by the rotation, with small-scale vorticity features appearing all along the shear
layer. We argue that the introduction of small-scale features is a combined effect of the
stability constraint (2.17c), which enhances dissipation in the system (Balajewicz et al.
2016), and of the sparsity-promoting constraint (2.17b) since spatially fluctuating modes,
with stronger gradients, are likely more effective to produce globally zero spatial averages
involved in the projection coefficients (2.4c).

The temporal modes are affected in a similar way. This is illustrated in figures 6(a,b),
showing the temporal evolution of modes a1(t) and a19(t) over twenty time units, and in
figures 6(c,d), showing their amplitude spectra, respectively. Since the first column of X is
close to zero except for X11, mode a1(t) and its spectral content are not affected appreciably
by the rotation, except for a small general decrease of the amplitude due to decrease
in energy content (see figure 4b). Conversely, the spectral content of mode a19(t) is
remodulated by the rotation by introducing higher energy at high-frequency components,
consistent with the introduction of small-scale features into the corresponding spatial
mode.

3.5. Interactions identified in the sparse model
The structure of the spatial and temporal modes is only weakly modified by the
optimisation, but this is sufficient to introduce sparsity in the rotated quadratic coefficient
tensor Q̃ and in the rotated average triadic interaction tensor Ñ when the domain integrals
(2.4c) and the temporal averages (2.8) are computed.
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Figure 5. Vorticity fields of (a) the first original POD mode, (b) the first rotated mode (denoted as ω̃), and (c)
the absolute value of their difference. Panels (d–f ) show the same quantities for mode i = 19.
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Figure 6. (a) Temporal evolution and (c) amplitude spectrum of a1(t). (b) Temporal evolution and (d)
amplitude spectrum of a19(t). Data are reported for the original POD temporal modes and for the rotated
modes of the sparse system obtained from formulation P2.

To visualise how sparsity in these tensors varies when the penalisation weight ξ is
increased, we introduce the tensor ξ with entries ξijk defined as the value of ξ in (2.17)
at which the corresponding coefficient Q̃ijk is first shrunk to zero.

Figure 7 shows two slices of ξ for i = 1 and i = 30, for a model with N = 30 and
M/N = 3. Results in figures 7(a–c) are obtained with the complete formulation P2,
including both the stability and sparsity-promoting constraint, while those in figures 7(d–f )
are obtained with formulation P1, which includes only the sparsity-promoting constraint.
Figures 7(c, f ) show the modal density ρi as a function of the global density ρ for
four modes across the hierarchy. By using formulation P2, which includes the stability
constraint (2.17c), we observe that small-scale/small-scale interactions disappear first, for
moderate penalisations, especially for the high-index modes, but generally across the entire
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Figure 7. (a,b) Entries of the tensor ξ for i = 1, 30, respectively, obtained by solving problem P2.
(c) Modal densities ρi as functions of ρ. In (d–f ), the same quantities are shown from solution of the
optimisation problem P1.

hierarchy of modes. Increasing the penalisation, coefficients corresponding to interactions
that are local in modal space are pruned progressively, leaving only coefficients capturing
non-local interactions with the low-index modes for large penalisations. The key remark is
that the structure of the sparsified quadratic coefficient tensor Q̃, solution of the proposed
optimisation approach, follows the same pattern displayed by triadic energy interactions
shown in figure 2(b), i.e. coefficients corresponding to energetically weak interactions are
pruned first, and only relevant interactions are preserved. Interestingly, figure 7(c) indicates
that high-index modes can be sparsified more efficiently. This might be related to the
fact that high-index modes are also rotated more aggressively during the optimisation, to
ensure that the sparsity-promoting constraint (2.17b) is satisfied and with minor effect of
the overall energy reconstruction ability.

Nonetheless, considering now the solution obtained from formulation P1 in
figures 7(d–f ), it is clear that many quadratic coefficients are indeed shrunk to zero during
the optimisation, and similar global densities are obtained. However, the sparsity pattern
does not have a clear relation with the original structure of energy interactions. By contrast,
coefficients corresponding to important energy interactions have been shrunk to zero
since the optimisation problem P1 is driven entirely by the sparsity-promoting constraint.
While in both formulations the same penalisation on the l1 norm of the rotated tensor
Q̃ is used, formulation P1 lacks any information regarding the dynamics and temporal
evolution of the Galerkin model and the structure of intermodal energy transfers. This
results in an unphysical equal contraction of all quadratic coefficients, across all modes
and independently of the strength of the energy interactions that they represent. The
effect of this behaviour can also be noticed in the ρi–ρ curves in figure 7( f ), where
different individual modes are sparsified by a similar amount. Nevertheless, no significant
differences are observed between models obtained from the two formulations on the

941 A43-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

31
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.318


R. Rubini, D. Lasagna and A. Da Ronch

0 20 40 60
t

E(
t)

P(E(t))
80 100 0

0 100 200

50 000 80 000

10–5

10–4

10–3

10–2

10–5

10–4

10–3

10–2DNS

POD-Galerkin

P1

P2

(a) (c)

(b)

Figure 8. (a) Temporal evolution of the integral fluctuation kinetic energy E(t). The temporal performances
of the two sparse models obtained by solving problem (2.14) are compared against DNS and the dense model
obtained with Galerkin projection. Panels (b,c) show the probability distribution of the energy E(t), obtained
for long-time integration of the Galerkin models.

ρ–eN plane. From a physical standpoint, this suggests that the proposed approach can
produce sparse models with realistic physics only if some notion of the flow dynamics
is included in the optimisation procedure. In other words, only targeting the sparsity of
the rotated coefficient tensor is not conducive to realistic flow models. In the present
case, this is achieved through constraint (2.17c). This, however, ensures only that the
model reproduces that same average fluctuation energy observed in DNS. Interestingly,
this global metric is sufficient to capture correctly the local nature of intermodal energy
transfers.

3.6. Temporal integration and energy analysis of the sparsified system
In this section, we analyse the temporal behaviour of the sparse reduced-order models
obtained by solving problems P1 and P2, and consider their rotated triadic interactions
tensors Ñ and the average energy budget of (2.7). The same minimum-density
configuration studied in previous sections, with M/N = 3, N = 30 and ξ = 3, is
considered. This configuration is used here as a representative example of the sparse
models obtained with the proposed approach. In fact, the spatio-temporal statistical
behaviour of these models is affected only weakly by the regularisation parameter ξ , but
is mostly dominated by the inclusion of the stability constraint, regardless of the sparsity.
Models are integrated forward in time with an implicit time-stepping scheme for T = 500
time units, from an initial condition obtained from one of the snapshots. Figure 8(a) shows
the first one hundred time units of the temporal evolution of the turbulent kinetic energy
(2.5) for these two models, compared with the evolution from DNS and from the original
POD-Galerkin model. Figures 8(b,c) show the probability density function of the same
quantity, computed over a longer time span. As expected, the deficit of dissipation in the
original POD-Galerkin model produces fluctuation kinetic energy levels approximately
two orders of magnitude larger than the reference value from DNS. This behaviour is well
known (see e.g. Östh et al. 2014; Noack et al. 2016).

The sparse Galerkin model obtained without the stability constraint (problem P1) also
reproduces this behaviour. Interestingly, the sparse model obtained from this formulation
spans a much wider range of flow scales than the POD model (N = 30 modes are rotated
within a space of M = 90 dimensions), but it still displays dynamical behaviour that is
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Figure 9. (a–c) Intensity of the average nonlinear energy transfer rate Ñ for mode i = 1 in models obtained
from projection and formulations P2 and P1, respectively. Panels (d–f ) show the same quantity for mode i = 30.

usually attributed to a lack of viscous dissipation. This shows that optimising for sparsity
alone is not sufficient to obtain physically realistic models, because energy transfers from
energy-producing eddies and dissipative structures are not necessarily captured correctly
during the optimisation. Conversely, the sparsified and stabilised model obtained from
problem P2 has realistic temporal behaviour and resolves correctly the average energy
and its fluctuation observed in DNS. This suggests that including in the optimisation
information on how modal structures are supposed to interact with each other to satisfy
the overall power budget is key to obtaining sparse Galerkin models with adequate
predictive ability. Note that the long-term performance of the models obtained in the
present work is generally superior to that of models sparsified a posteriori, using a
LASSO-based approach (Rubini et al. 2020b; Rubini, Lasagna & Da Ronch 2020a). More
specifically, LASSO-based models have been found to be temporally accurate over a time
span comparable to that of the data used for the sparsification. Conversely, the present a
priori sparsified systems are temporally stable for much longer time horizons. In addition,
numerical solutions converge to the asymptotic attractor for much larger perturbations of
the initial conditions. We argue that this is likely the consequence of enforcing a stronger
consistency between the modal structures and the corresponding Galerkin model.

The structure of the nonlinear energy transfer rate tensor Ñ for the rotated Galerkin
models is reported in figures 9(a–c) and 9(d–f ), showing two slices for i = 1, 30,
respectively. Figures 9(a,d) refer to the model obtained from Galerkin projection onto
the original POD subspace and will be used as reference. Here, the temporal coefficients
are the projections onto the DNS snapshots. Data for the model obtained from problem P2
are shown in figures 9(b,e), while data for the model obtained with the P1 formulation are
shown in figures 9(c, f ). For these models, temporal coefficients are obtained from forward
integration of the Galerkin models. It can be observed that the model from formulation
P2 displays a pattern of interactions consistent with the DNS data projected onto the
original POD modes, in terms of both organisation across modes as well as strength.
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The organisation of the interactions is similar to that in the dense Galerkin model obtained
using the a priori stabilisation method of Balajewicz et al. (2013), although a more
aggressive reduction in the strength of the interactions between the high-index modes is
observed. This might be a physical effect (small scales tend to be advected primarily by the
large ones), but a second possible explanation is that this is the product of the optimisation
procedure adopted in this work. To meet the sparsity constraint with minimum impact on
the energy reconstruction ability of the rotated basis, the optimiser rotates the high-index
modes more aggressively, causing higher sparsity in the dynamical equations of modes
associated with small scales. By contrast, energy interactions in the model obtained from
the formulation P1 are orders of magnitude more intense, across all triads. This is a
manifestation of the lack of dissipation and the consequential over-prediction of energy,
across all modes. Interestingly, it can be observed that the HL/LH asymmetry observed
in figure 2 is preserved throughout the sparsification. Conversely, this physical feature is
lost in the a posteriori approach (Rubini et al. 2020b) for numerical reasons. It is argued
that the a priori approach is preferable for systems where the tensor N has a non-trivial
structure, because the link between modal structures and energy interaction tensor is fully
preserved.

To conclude this section, we analyse the energy budget of the original and rotated
Galerkin models, examining the linear and quadratic energy transfer terms in the average
energy budget equation (2.7) on a mode-by-mode basis (Noack et al. 2008). To characterise
the total nonlinear energy transfer, we use the quantity

Ti =
N∑

j=1

N∑
k=1

Qijk aiajak, i = 1, . . . , N, (3.2)

satisfying
∑

i Ti = 0 when the quadratic term conserves energy. In addition, the linear
energy transfer term is decomposed into its three constitutive components and we use
L(m) for the mth term of the definition (2.4b). These are, in order, the viscous dissipation
rate and the production and convection rates mediated by ‘macroscopic’ interactions with
the mean flow. The average energy flows associated with these terms are displayed in
figure 10 as a function of the modal index. Data for three models are reported: the
original POD-Galerkin model (figures 10a,d,g,j,m) with temporal modes obtained from
projection on the DNS data, the model obtained from the complete formulation P2 at
the minimum density (figures 10b,e,h,k,n), and the model obtained from formulation
P1 (figures 10c, f ,i,l,o). For these two models, temporal coefficients are obtained from
long-time integration. All models are constructed with N = 30 and, where applicable,
M/N = 3.

Figures 10(a–i) show the viscous, production and convection components of the linear
energy flow term, while their sum is reported in figures 10(j–l). The nonlinear transfer term
is reported in figures 10(m–o). It can be observed that all three models describe viscous
dissipation effects in a quantitatively similar manner, and that convection is the only other
relevant term of the linear energy flow, while the production term is negligible. This result
can be explained by noting that the advection of small-scale features on the shear layer
bounding the primary vortical structure operated by the mean recirculatory motion is a
significant dynamical feature of the lid-driven cavity flow. However, the model obtained
with the P1 formulation, where the rotation of the original POD basis is driven only by
the requirement to satisfy the sparsity constraint, results in higher average production
rates across the entire spectrum of modes. Overall, the linear energy flow term for the
original POD-Galerkin model (figure 10j) exhibits a positive net energy flow for the first
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Figure 10. Distributions of time-averaged energy flows as functions of the modal index for models with
N = 30. Data are reported for the original POD-Galerkin model, (a,d,g,j,m), and for the rotated models from
formulations P2 and P1, (b,e,h,k,n) and (c, f,i,l,o), respectively. Panels (a–i) include the energy flows associated
to the three components of the linear coefficient tensor (2.4b), corresponding to the viscous dissipation rate
and the production and convection energy flow mediated by the mean flow. The sum of the linear energy flows
is reported in (j–l). The average nonlinear transfer rates are reported in (m–o).

four modes, corresponding to the dominant structure and flow oscillation in the cavity, but
only moderate dissipation in the remaining modes. This results in an imbalance between
extraction of energy from the mean flow and dissipation, leading to the over-prediction
of kinetic energy as shown in figure 8(a). The mean nonlinear transfer rate Ti shown
in figure 10(m) displays the correct transfer direction, with energy injected from the
large scales (negative transfer rate for low-index modes) to the small scales (positive
rate for the remaining modes). The model obtained from the solution of the complete
formulation P2 (figure 10k) displays a better balance, since a negative net energy flow rate
is observed for i > 4, due to effect of the stability constraint (2.17b). The distribution and
direction of the nonlinear transfers is also well preserved, although lower transfer rates are
observed for all modes. This results from the combined effect of the sparsity-promoting
constraint, which reduces the magnitude of the quadratic coefficients, and the reduction
of the modal energies, due to the loss of optimality from the POD. On the other hand,
energy transfers in the model obtained from formulation P1, which does not include any
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dynamical information on the fluctuation kinetic energy budget (2.7), have a significantly
different structure. In fact, both the linear and nonlinear transfer rates show a marked
increase, and the organisation of energy flows across the hierarchy of modes has lost the
original physical character.

These results show that to obtain a sparse model that is consistent with the flow physics
observed in direct simulation, it is of paramount importance to retain in the sparsification
algorithm some information regarding the temporal dynamics. This is consistent with what
was observed by Loiseau & Brunton (2018), who showed that an additional constraint on
the energy conservation is one way to enhance the temporal accuracy of a fluid model
reconstructed from data.

4. Conclusions

Scale interactions in turbulent flows are sparse, and the motion at any given length scale
depends most prominently on the dynamics of a subset of all other scales. In addition
to the recent work of Schmidt (2020), this paper is one attempt at developing a model
order-reduction technique that leverages this fact, so that the analysis and interpretation
of scale interactions in complex flows is facilitated. Here, we have proposed an a priori
sparsification approach, whereby a set of basis functions describing coherent structures
that interact minimally with one another is sought for. Scale interaction sparsity is
then defined by the sparsity of the quadratic coefficient tensor of the Galerkin model
constructed from projection on this basis. As opposed to our previous sparsification
approach (Rubini et al. 2020b), where model coefficients corresponding to weak nonlinear
interactions between a predetermined set of basis functions are pruned a posteriori using
l1 regression, the present methodology maintains the exact link between the (sparse)
Galerkin model and the modal structures utilised for the projection.

In practice, a set of N basis functions is expressed as a rotation of N proper orthogonal
decomposition (POD) modes within a larger POD subspace (of dimension M > N), with
the idea of altering energy paths across the model by rotating the subspace utilised for
projection whilst minimising the loss of energy representation ability of the original POD
basis. The rotation matrix is then found from the solution of a constrained optimisation
problem where (i) the energy loss with respect to the original POD basis is minimised,
and (ii) an inequality constraint involving the l1 norm of the quadratic coefficient tensor
associated to the rotated basis promotes sparsity. This formulation is augmented with a
further constraint that enforces long-term temporal stability, following the approach of
Balajewicz et al. (2016). This optimisation problem depends on a single user-controllable
parameter controlling the l1 norm of the rotated quadratic coefficient tensor and the
trade-off between energy reconstruction and sparsity.

To demonstrate the approach, we considered the incompressible two-dimensional
lid-driven cavity flow at Reynolds number Re = 2 × 104, where the motion is chaotic
and energy interactions are scattered in modal space. Results show that there is
competition between sparsification and energy representation, and that this trade-off
depends on the model size N and the ratio M/N. In particular, larger models can be
sparsified more aggressively with less impact on the energy reconstruction ability. On
the other hand, higher sparsity can be obtained by rotating the same N POD basis
functions within larger subspaces (a higher ratio M/N), since the increased flexibility
allows shrinking to zero a larger fraction of quadratic interaction coefficients. A deeper
analysis of energy paths shows that the distribution of intermodal energy transfers in
the rotated model is qualitatively similar to that of the original POD-Galerkin system.
More specifically, coefficients of the quadratic interaction tensor corresponding to
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large-scale/large-scale and large-scale/small-scale interactions are preserved, but those
defining weaker small-scale/small-scale interactions are shrunk to zero during the
optimisation. This result is in agreement with the established picture of triadic interactions
in two-dimensional flows and with previous results of sparsification of reduced-order
models (Rubini et al. 2020b). More interestingly, we observed that a physically consistent
organisation of the interactions and a stable long-term behaviour can be obtained only
by augmenting the sparsification procedure with the temporal stability constraint. In fact,
models obtained without such a constraint inherit well-known temporal stability issues
displayed by dense POD-Galerkin models.

Some aspects deserve further discussion. Unlike in l1-regression-based sparsification
methods (Loiseau & Brunton 2018; Rubini et al. 2020b), where the model coefficients
are the optimisation variables, here these coefficients are cubic polynomial functions of
the optimisation variables, the entries of the rotation matrix. The first consequence is
that the optimisation problem is non-convex, and many local optima, i.e. many different
sets of basis functions, exist. It was observed that initial guesses close to the original
POD basis, i.e. with good energy representation ability, converge repeatedly to the same
optimal solution, which has a consistent physical interpretation. Arguably, initial guesses
lying farther from the POD might lead to sparser solutions at the cost of a worse energy
reconstruction capability. However, the lack of strong uniqueness guarantees (as for many
other modal decomposition techniques) may render the approach questionable. Second, it
is not possible to shrink to zero an arbitrary number of model coefficients, as the strong
link between the basis functions and the Galerkin model must always be maintained. As
a result, the present a priori sparsification technique produces relatively denser Galerkin
models than the a posteriori LASSO-based approach considered in Rubini et al. (2020b)
for the same test case. Rotating the original POD basis into higher-dimensional subspaces,
with ratio M/N higher than that considered in the present work, to further increase sparsity
is possible, although it would necessarily result in increased computational costs for the
optimisation.
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Appendix A. Sparsity-promoting effect of the l1-based constraint

In this appendix we visualise how the l1 norm appearing in the constraint (2.17b) favours
sparse solutions. For simplicity, we use a small (N = 3, M = 5) reduced-order model of
the lid-driven cavity flow considered in the previous sections. A more formal discussion
based on the proximity operator theory can also be formulated, using the classical LASSO
formulation as a starting point (Friedman et al. 2008). In figure 11(a), the ratio ‖Q̃‖1/‖Q‖1
is shown as a function of the entries X23 and X12 of the rotation matrix. When these
two parameters are varied, all the other off-diagonal entries of X are set to zero. Several
sharp valleys can be observed, arising from the non-smooth nature of the l1 norm. Note
that ‖Q̃‖1/‖Q‖1 is a non-convex cubic function of the entries of the rotation matrix,
and several local minima can be identified. Figure 11(b) shows a cut of figure 11(a)
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Figure 11. (a) Map of ‖Q̃‖1/‖Q‖1 projected on the X12–X23 plane. (b) One-dimensional cut of the same
quantity along the coordinate X12. (c) The twenty-seven entries of the rotated Q̃ as a function of X12. The
six entries that vanish identically at one of the sharp points of ‖Q̃‖1 are highlighted in red.

along the X12 coordinate, where minima are identified by the dashed vertical lines.
Each minimum corresponds to a point where one of the entries of Q̃ijk crosses the zero axis,
as illustrated in figure 11(c). During the optimisation, the sparsity-promoting constraint
pushes the solution towards one of these valleys, due to the strong gradient at the point
of non-differentiability, resulting in a sparse coefficient tensor Q̃. However, unlike in the a
posteriori LASSO-based sparsification methods (Brunton et al. 2016; Rubini et al. 2020b),
not all quadratic coefficients can be set to zero simultaneously by an arbitrary rotation, as
is clear from figure 11(c). In fact, the tensor Q̃ depends nonlinearly on the rotation X , while
in LASSO-based methods the tensor coefficients are directly the optimisation variables of
the problem.

Appendix B. Dependence of the solution from the initial condition

Problem (2.17) is non-convex due to the constraint on the l1 norm of the rotated quadratic
interaction coefficient tensor Q̃.

To understand how this feature affects the results of § 3, we consider in this appendix
different sets of initial guesses constructed as increasingly larger perturbations of the
identity as

X =
[

IN×N
0

]
+ εR, (B1)

with R ∈ ReM×N a randomly generated rotation matrix, satisfying RTR = IN×N . We
generated ten random rotation matrices for five values of ε in the range [10−8, 10] and
solved problem (2.17) by keeping ξ = 2 to target an intermediate density in the feasibility
region, using N = 30 and M = 90.

Results are shown in figure 12. Figure 12(a) quantifies the effects of ε on the average
rotation angle θ between columns of the initial guess and those of the matrix [IN×N, 0]T.
Circles and vertical bars identify the average and standard deviation of this quantity across
the ten different samples. In figures 12(b,c), the largest modal energy λ̃1 of the rotated
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Figure 12. Effect of the initial guess on the optimisation results. (a) Relation between the initial guess
perturbation size ε and the average rotation angle θ away from the original POD basis. Mean and standard
deviation of (b) the first modal energy λ̃1, and (c) density ρ, from rotated systems obtained from initial guesses
of increasing distance from the original POD basis.

temporal coefficients and the density ρ of the optimal Galerkin model, respectively, are
shown as functions of the average θ . Results show that for small perturbations of the
original POD basis, all initial guesses converge to the same solution, since λ̃1 and ρ

are the same (up to the tolerances set in the optimisation). Conversely, initial guesses
corresponding to larger (random) rotation of the original POD basis converge to different
solutions, corresponding to modal structures with lower reconstruction ability, but similar
model density.

Appendix C. Optimisation of tensor operations and scaling of costs

The sparsity-promoting constraint involves polynomial functions of the optimisation
variables. An analytical expression of the gradient of this constraint with respect to the
rotation X can also be obtained, enabling fast gradient-based optimisation to be utilised. In
addition, a careful examination of the tensor operations involved in the computation of the
constraint and its gradient shows that a significant reduction of the scaling of costs can be
obtained by reorganising some tensorial computations and using intermediate temporary
variables (see Pfeifer, Haegeman & Verstraete 2014). For instance, a naive calculation of
all entries of the rotated tensor (2.11), required in the evaluation of the sparsity-promoting
constraint (2.14b), takes O(M3N3) operations since six different nested for loops (one for
each index) are involved in total. However, a careful examination of (2.11) shows that the
rotated tensor can also be obtained by first introducing the auxiliary temporary tensors
A ∈ ReM×M×N and B ∈ ReM×N×N , and then computing

Aqri =
M∑

p=1

QpqrXpi, (C1a)

Brij =
M∑

r=1

AqriXqj, (C1b)

Q̃ijk =
M∑

q=1

BrijXrk, (C1c)
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with i, j, k = 1, . . . , N and q, r = 1, . . . , M. Collectively, these steps take only O(M3N) +
O(M2N2) + O(MN3) operations, as can be inferred from the summation indices.

On the other hand, the gradient of the sparsity-promoting constraint with respect to the
entries Xmn of the rotation matrix X requires the computation of

∂‖Q̃‖1

∂Xmn
=

N∑
i,j,k=1

∂Q̃ijk

∂Xmn
sign(Q̃ijk), (C2)

where the gradient ∂Q̃ijk/∂Xmn can be expanded using Kronecker’s delta δij as

∂ Q̃ijk

∂Xmn
=

M∑
p,q,r=1

Qpqr(XpiXqjδknδrm + XpiXrkδjnδqm + XrkXqjδinδpm). (C3)

Overall, a naive computation of (C3) would require O(M4N4) operations, since the tensor
expressions involve a total of eight indices. A reorganisation of the operations involved
in (C3) similar to that described above leads to tensor operations over four tensor indices
only, with computational costs scaling similarly to the rotation.

Lastly, we underline that in the present implementation, we chose to store the whole
tensors (2.11), (C3) and (C2) in memory. This approach is computationally efficient since
it enables us to use optimised packages for tensorial calculus, but it is very expensive
memory-wise. A further optimisation can be obtained by assembling (2.11) and (C2)
without fully storing of the intermediate steps.
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