
Neutron Stars and Pulsars: Challenges and Opportunities after 80 years
Proceedings IAU Symposium No. 291, 2012
J. van Leeuwen, ed.

c© International Astronomical Union 2013
doi:10.1017/S1743921312023617

Testing gravity theories in the radiative
regime using pulsar timing arrays

K. J. Lee
Max-Planck-Institut für Radioastronomie, Bonn 53121, Germany

email: kjlee007@gmail.com

Abstract. General relativity has predicted the existence of gravitational waves (GW), which
are waves of the distortions of space-time with two degrees of polarization and the propagation
speed of light. Alternative theories predict more polarizations, up to a maximum of six, and
possible frequency dependent propagation speed from the light speed. The polarization and dis-
persion properties of GWs shed light on the spin and mass information of gravitons. Although
GWs have not been directly detected yet, their amplitude upper-bounds has been addressed
by research using different types of detectors. For example, the amplitude upper-bounds for
the stochastic background derived from pulsar timing observations have already become astro-
physically interesting. The present paper reviews proposals to test the gravity theories in the
radiation regime by observing GWs using pulsar timing arrays. We also present the estima-
tion for the upper-bounds on the amplitude of alternative modes for the stochastic background
of GW.
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1. Introduction
Two major characteristics of GWs are important to differentiate the validity of gravity

theories in the radiative regime; the polarization and dispersion of GW in vacuum. In
alternative metric theories, GW can have up to six possible polarization states, four
more than which are allowed by GR. Furthermore, the propagation speed of GW can
deviate from the predication of GR that GW propagates at light speed in vacuum, i.e.
the effective graviton mass is zero.

A pulsar timing array is a unique technique to detect nano-Hertz GWs by timing
multiple millisecond pulsars, which are very stable celestial clocks (Jenet et al. 2005). It
turns out that a stochastic GW background leaves an angular-dependent correlation in
pulsar timing residuals for widely spaced pulsars (Hellings & Downs, 1983): the correla-
tion C(θ) between timing residual of pulsar pairs is a function of angular separation θ
between the pulsars. One can analyse the timing residual and measure such a correlation
to detect GWs (Jenet et al. 2005). Lee et al. (2008, 2010) have found that the exact form
of C(θ) is very different from the one of GR, if the GW has extra polarization state or
graviton mass is not zero. By measuring the correlation function, we can directly test
gravity theories in the radiative regime.

2. Pulsar timing correlation functions and gravity tests
A GW introduces extra signal in pulsar timing data. Let the unit vector of the GW

propagation direction be êz , GW frequency be f , the direction from the observer to the
photon source (pulsar) be n̂i . The GW induced frequency-shift of a pulsar timing signal
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is (Lee et al. 2008, 2010; Baskaran et al. 2008)

Δω(t)
ω

=
n̂in̂j

2
(
1 + c

2πf kg · n̂
) [hij (t, 0) − hij (t − |D|/c,D)] , (2.1)

where the D is the displacement vector from the observer to the pulsar, hij (t, 0) and
hij (t − |D|/c,D) are the metric perturbations by GW at the Earth and at the pulsar
when the received pulse was emitted, ω is the angular frequency for the pulsar pulse,
fcut = mgc

2/h is the cut-off frequency of GW due to the graviton mass mg , and the kg
is the GW wave vector given by Lee et al. (2010)

kg(f) =
2π

(
f 2 − f 2

cut
) 1

2

c
êz . (2.2)

The induced pulsar timing residuals R(t) are given by the temporal integration of above
the frequency shift at Earth given above, thus R(t) =

∫ t

0
Δω (τ )

ω dτ .
The spatial metric perturbation hij (t, r) induced by a stochastic GW background

is a superposition of monochromatic GWs with random phases and amplitudes. It is
(Maggiore, 2000)

hij (t, ri) =
∑

P =+ ,×

∫ ∞

−∞
df

∫
dΩhP (f, êz )εP

ij (êz )ei[2πf t−kg
i (f )ri ], (2.3)

where Ω is the solid angle, index i, j run from 1 to 3, hP is the amplitude of the GW
propagating in the direction of êz per unit solid angle per frequency of polarization state
P , and the polarization tensor εP

ab of GWs are given in details in Lee et al. (2008). The
superscript P takes value of ‘+,×’ for the two Einsteinian modes of GW polarization,
‘b’ and ‘l’ for the breathing and the longitudinal mode respectively, and ‘sn, se’ for the
shear modes.

Such stochastic GW background leaves a correlation between timing residuals of pul-
sars pairs. Such correlation, C(θ), depends on the angular distance θ between two pulsars
as well as on the polarization of GW and graviton mass.

Lee et al. (2008) have calculated the pulsar timing correlation function for all the
polarization modes of GW. For the Einsteinian modes and for the breathing mode, the
cross-correlation function CP (θ) is independent of earth-pulsar distances and indepen-
dent of the GW characteristic strain spectrum. In contrast, for the modes that are not
purely transverse, the shear and longitudinal modes, the cross correlation functions de-
pend on the specifics of the strain spectra and on the pulsar distribution in distance.

Fig. 1 shows the correlation function according to different classes of GW polarization.
Clearly by comparison of these ‘theoretical’ correlation curves with observations we can
test the polarization state of GWs.

Lee et al. (2010) have calculated the pulsar timing correlation function for a GW
background with none-zero-mass graviton. They noted that the pulsar timing cross-
correlation function for a massive GW background depends on the graviton mass, specific
power spectra of the GW background, and on the observation schedule. The 5-year and
10-year correlation functions are reproduced in Fig. 2, where the graviton with the same
mass introduces more deviation to the 10-year correlation function than it does to the
5-year one.

Intuitively speaking, the necessary conditions for a positive detection of a graviton
mass should be: 1. The GW is strong enough such that the GW can be detected; 2. the
physical effects of alternative theories should be strong enough to see the deviation from

https://doi.org/10.1017/S1743921312023617 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921312023617


Testing gravity theories using PTAs 191

Figure 1. The normalized pulsar timing residual correlation coefficients. Here θ is the angular
separation between two pulsars. ‘GR’ stands for the two transverse traceless modes, ‘+’ and ‘×’.
Results are given for several values of α, the power-law index of the GW spectrum.
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Figure 2. The atlas for cross-correlation functions C(θ). The label of each curve indicates the
corresponding graviton mass in unit of electron-volts (eV). The left panel are the correlation
functions for a 5-year bi-weekly observations. The right panel shows correlation functions for
10-year bi-weekly cases. We take α = −2/3 for these results. These correlation are normalized
such that the C(0) = 0.5 for two different pulsars.

GR. These intuition is confirmed by simulations in, which show that the high detection
rate is achieved only if one has enough pulsar and if the graviton mass is large enough
or if GW of alternative polarization modes is strong enough.

For identifying the polarization modes, observation shows that if bi-weekly observations
are made for five years with RMS timing accuracy of 100 ns, then 60 pulsars are required
for the longitudinal mode; 60 for the two spin-1 “shear” modes; and 40 for the spin 0
“breathing” mode and 40 pulsars are needed for the detection of the GR modes.

For detecting massive graviton, simulations have shown that we need at least 60 pulsars
to be able to tell the difference between a massive GW background and a massless one.
For 5-year timing of 100 pulsar we can start to detect a graviton heavier than 2.5×10−22

eV and we can achieve a limit of mg = 10−22 eV by using 5-year observation of 300
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pulsars. We can achieve levels of 10−22 eV and 5 × 10−23 eV in a 10-year observation
using 100 and 300 pulsars respectively.

3. Estimation for the upper-bounds on the amplitude of the
alternative modes

The power spectra S(f) of the timing residual is defined as S(f) = 2
∫ ∞
−∞ dte−2πif t

〈R(t′)R(t′+t)〉, with f � 0. Assuming an power-law spectra for the stochastic background
of GW, i.e. characteristic strain hc ≡ Ac(f/fc)α , one can show that

S+ ,×
R (f) =

A2
c f

2α−3

24π2f 2α
c

Sb
R(f) =

A2
c f

2α−3

12π2f 2α
c

Ssn,se
R (f) =

A2
c (3 ln(4πfD/c) + 3γe − 7)f 2α−3

24π2f 2α
c

Sl
R (f) =

A2
c Df 2α−2

16cf 2α
c

, (3.1)

where the D is the distance of the pulsar, γe � 0.58 is the Euler’s γ constant. The
superscripts take the same meaning as in the polarization index ‘P ’ in the hP . One can
see that the power spectrum of the longitudinal mode and shear modes are proportional
to the distance of pulsar D and its logarithm lnD respectively. The physical reasons for
the phenomena is that the GWs of the two modes and pulsar signals traveled and kept
the phases along the similar path, in this way, the pulsar signals could accumulate the
GW effects. Recently, this has also been noted by Alves & Tinto (2011) and Chamberlin
& Siemens (2012).

These formulae can be used to “estimate” the upper-bounds for the alternative modes
by converting the results from upper-bounds for the GR modes. From Equations(3.1),
we can see that the spectra of the timing residuals are all power-law like for power-law
GW background. In this way, we can translate the upper-bounds as function of power
index α for GR modes to the alternative modes as

A(b)
up,(α) = A(GR)

up (α) (3.2)

A(shear)
up (α) =

A
(GR)
up (α)√

3 ln(4πf0D/c) + 3γe − 7
(3.3)

A(l)
up(α) =

A
(GR)
up (α + 1

2 )
π

√
4c

3Dfc
. (3.4)

Using the upper bounds derive by Jenet et al. (2006), we can estimate the upper
bounds for alternative modes, as given in the Figure. (3)

4. Conclusion and Discussion
The stochastic GW background produces extra timing signals in pulsar TOA data, and

one can detect the GW background by precise timing several pulsars and measuring the
angular dependent correlations between the timing signals of several pulsars. A precise
measurement of the angular correlation function can, in principle, determine the GW
polarization properties of the GWs making up the stochastic background as well as

https://doi.org/10.1017/S1743921312023617 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921312023617


Testing gravity theories using PTAs 193

−2 −1.5 −1 −0.5 0 0.5 1
−20

−19

−18

−17

−16

−15

−14

−13

l
o
g
(
A
c
,
 
u
p
)

α

GR, B

GR, B

GR, B

S

S

L

L

Figure 3. The upper-bounds for the characteristic strain of stochastic GW background of GR
and alternative polarization modes. The solid lines correspond to the current upper-bounds,
while the dashed lines are the potential upper-bounds given 5 year observing for 20 pulsars
with 100 ns intrinsic pulsar timing noise. On each line, the label ‘GR, B, S, L’ stand for the
upper-bounds for GR, breathing, shear, and longitudinal modes respectively. We have used a
5th order polynomial to make curves smooth compared with results of Jenet et al. (2006).

the graviton mass. A large number of pulsars with good timing precise of ∼ 100 ns
are required to successfully perform tests for gravity theories in radiative regime. In this
regard, pulsar surveys’ success in finding more millisecond pulsars is critical. To time such
large number of pulsars, the Large European Array for Pulsars (Stappers, Vlemmings,
& Kramer, 2009), the Five-hundred-meter Aperture Spherical Radio Telescope (Nan
et al., 2006, Smits et al., 2009) and the Square Kilometer Array (SKA) will offer unique
opportunities to detect the GW background and measure its properties.
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