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1. Introduction

In [3] and [4], the near-rings R with no zero divisors are studied. In
particular, a near-ring R is a near-field if it has a non-zero right distributive
element ([4], Theorem 1.2.). Also, (R, +) is a nilpotent group if not all non-zero
elements of R are left identitics of R ([3], Theorem 2). The purpose of the present
paper is to extend the above results to a class of near-rings with zero divisors;
that is, the set of annihilators of an element x in R, T(x) = {g/xg = 0} is either
{0} or R. The examples of such near-rings are those R with (R, +) simple groups
and those R with no zero divisors as given in [1], [2], [3] and [4]. For this R,
we can easily see that R = A US where 4 = {x/T(x) = R} and S = {x/T(x)
= {0}}. Then the second part of this paper will give a structural theorem on
the semi-group (S, - ), and more properties on R can be derived.

Throughout the present paper (R, +, - ) is assumed a finite near-ring such that
for each x in R, T(x) = {y/xy = 0} is either R or {0}. If T(0) = {0} then each
Oa # 0 for each a # 0 in R. But then OR = R; and so Oa is a left identity of R
for each a # 0. From now on R is assumed not this kind just mentioned. So,
R has the property that T(0) = R.

2

Section 1. Assume T(x) is either R or {0} for each x in R, we shall show
that either the multiplication operation on R is trivial (that is, for r # 0 in R,
rg = 0 for all g in R or rg = g for all g in R), or the additive group (R, +) is
nilpotent. This extends Theorem 2 in [3].

LEMMA 1.1. Let S = {x/T(x) = {0}} and let A = {x/T(x) = R}; then (1)
R = AU S such that AN S is a void set and (2) sS = S and sA = A for each
s in S, where sA = {sa for a in A} and sS = {st for t in S}.
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PrRCOF. For each x in R T(x) is either R or {0}, so part (1) is trivial. Next
for each a in A saR = s(aR) = s0 = 0, so sAc A. Let x be an element in S
and r in R such that sxr = 0. Then s(xr) = 0, xr = 0; and so r = 0. Thus
5§ = S. On the other hand, for any r’ and #” in R such that sr’ = sr”, we have
s(r’ —r") = 0. Hence r’ = r" because T(s) = {0} . Therefore sA = A andsS = S.

LEMMA 1.2. By keeping the notations of lemma 1.1, if st =t for some
elements s and t in S, then sr = r for each r in R.

ProoF. Since tS = S and 1A = A by lemma 1.1, tR = R; and so for each r
in R, r = 1r’ for some r’ in R. Hence sr = s(tr’) = (st)r' = tr' =r.

Using similar idea to [3] we can show our main theorem in this section.
THEOREM 1.3. By keeping the notations of Lemma 1.1, we have
(1) if T(x) = R for each x in R then R* = {0};

(2) if T(x) = {0} with some x # 0 and if A contains no non-zero subgroups
of (R, +); then either x is a left identity of R or (R, +) is a nilpotent group.

PROOF. Part (1) is trivial by the definition of T(x). Next, since T(x) = {0}
with some x # 0 in R, x is in §; and so xR = R by lemma 1.1. Suppose x is
not a left identity of R. Then x? # x. For otherwise xr = r for each r in R by
lemma 1.2. This contradicts that x is not a left identity. Hence we can have the
identity x" of the cyclic group generated by x under multiplication with n > 1;
that is x"x = xx" with a minimal integer n. Again since xR = R, x"(xr) is equal
to xr for each xr in xR; so x" is a left identity of R with n > 1. Futhermore, it
is not hard to show that «, defined by a,(r) = yr for each r in R is a group auto-
morphism of (R, +) if y isin S. Since n > 1, n = pm for some prime integer p
and an integer m. Noting that the element x™ has order p, and that x™ is in S,
we have that a(,m is an automorphism of (R, +) of order p. Also, «(,m is a fixed
point free automorphism. In fact, let am(r) = r, that is, x™r = r. Then there
are two cases. :

Case 1. risin S. Then rR = R by Lemma 1.2; and so x™ is a left identity
of R. Thus x™x = x, a contradiction to the minimal property of n such that
x"x = x. This implies that «,m, is a fixed point free automorphism of order p.
Therefore (R, +) is a nilpotent group by [6].

Case 2. risin A. Let C = {h/h in R and x™h = h}. Then 0 and r are in C.
For each h’ and h" is C, x™(h' — h") = x™h’ — x™h" = h’ — h". Hence (C, +) is
a subgroup of (R, +). Noting that C can be assumed a subset of 4. For otherwise
there exists & in S such that x™h = h; and so this leads to case 1. But by hypo-
thesis the set A has no non-zero subgroup of (R, +), so C = {0}. Hence r = 0.
Thus o, is a fixed point free automorphism of order p; and so (R, +)is nilpotent.
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A near-ring R is a near-integral domain if and only if A = {0} and not all
elements of R are left identities ([3], Def. Section 2). Then our theorem extends
the Theorem 2 in [3].

COROLLARY 1.4. (Ligh) Let R be a finite near-integral domain. Then (R, +)
is nilpotent.

From R = A U S with 4 N S a void set, it can be shown that a trivial multi-
plication on A implies a trivial multiplication on R.

PROPOSITION 1.5. If (S U {0}, +) is a proper subgroup of (R, +) and if sa=a
for each a in A and some s in R (and so in S), then sr = r for each r in R.

ProOF. For any element t in S, a + ¢ is not in S because (S U {0}, + )is a
subgroup of (R, +) and because a is not in S U {0}. Hence s(a +1) = a + t.
But then sa +st =a+st=a-+t, st = t for each ¢t in S. Thus sr = r for each
rin R .

Since for each s in S, a, defined by a(r) = sr is a group automorphism of
(R, +). Hence from Proposition 1.5 we have:

COROLLARY 1.6. If (S U {0},+) is a subgroup of (R,+) and if the automor ph-
ism oy has at least two non-zero fixed points in a same coset of (S U {0}, +);
then o is an identity automorphism.

PRrOOF. Let @’ and a” be two non-zero fixed points of «, in a same coset of
(Suw{0},+)in R. Then a’ = a” + r for some r in S such that «(a’) = a’ and
afa”) = a”; and so

afa’) =aa" +r)y=a"+r.

But «fa”+ r) = afa”) + a(r) then afa”"+7r)=a"+ afr) =a"+r. Hence
o r) = r; that is, sr = r. This implies that st = ¢ for all ¢ in R by Lemma 1.2.
Thus « is the identity automorphism of (R, +).

(3) Section 2. By Lemma 1.1, R=AUS, so, in case S is a void set, we
have R? = {0}, and in case A4 = {0}, we have a near-integral domain. In this
section, S is always assumed non-void. We shall give the following structural
theorem on the semi-group (S, - ): S is partitioned as isomorphism multiplicative
groups. Consequently, some of the results of [4] can be extended.

LEMMA 2.1. For each element s in S, it has a unique right identity s’
which is also a left identity of R.

ProOF. Since T(s) = {0} and since R is finite, there is a multiplicative group
generated by s of order n,

{s = s"*, 5%, s"}.
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Hence s" is a right identity of s. Suppose ¢ is also a right identity of s. Then
st = ss"; and so s(t — s") = 0. Thus ¢t = s" = s’ because T(s) = {0} again. This
implies that s’ is unique. Moreover, noting that s’s = s"s = s and that sR = R
we conclude that s = s" is a left identity of R by Lemma 1.2.

DEFINITION. For any x and y in S, we call x equivalent to y if and only if
the identity of x = the identity of y.

THEOREM 2.2. (a) The relation ‘“~ "’ defined above on S is an equivalence
relation;

(b) Each equivalence class of *~", R, = {y/the identity of
y = the identity of x}, is a multiplicative group;

(c) Any two equivalence classes, R, and R,, for x and y in S,
are isomorphic.

PROOF. Part (a) is obvious. For part (b), let a and b be in R, with the right
identity x". Then (ab)x" = a(bx") = ab. Also, aa*~! = a* = x", where k is the
order of a, so a*~! = a~'. Hence R, is a multiplicative group with the identity
x". Finally for part (c), let R, and R, be any two equivalence classes with the
right identities x’ and y’ respectively. Define a map f from R, to R, by p(rx’)
= (rx’)y’ for each rx’ in R, (for R, = S.’) . Since x' is also a left identity of R
by Lemma 2.1,

BUX) = (rx)y’ = r(x'y) = 1y,

We claim that  is a group isomorphism from R, onto R,. In fact, for any ax’
and bx’ in R,

Blax’bx’) = P(abx') = (aby’) = (ab)y’ = (ay')(by")) =
(ax'y"Wbx’y’) = Plax")B(bx’)
by Lemma 2.1. again. Next let f(ax’) = y’ for an element ax’ in R, , then (ax’)y’
= y’. Since y'R = R, ax’is a left identity of R; and so ax’ is the identity of the

multiplicative group R, . Hence ax’ = x’. Thus B is one to one. Furthermore,
let ay’ be an element in R, then ax’ is in R, such that

Blax’) = (ax")y’ = ay’.
This implies that § is onto and therefore the theorem is proved.

The following consequences are immediate.

COROLLARY 2.3. The number of elemenis in S = (order of R,) times (the
number of equivalence classes of “‘~’).
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COROLLARY 2.4, The following statements are equivalent:
(a) R, U {0} is a subnear-ring of (R, +,");
(b) R, U {0} is a near-field;
(c) (R, U {0}, +) is a subgroup of (R, +).
PrOOF. Since R, is a multiplicative group, the proof is trivial.

In theorem 1.3, we assumed that the set A contains no non-zero subgroups
of R under addition ([1], 2-3, example 6). But if R has a non-zero right distri-
butive element, then this assumption does not hold.

THEOREM 2.5. If R has a non-zero right distributive element, then (A4, +) is
a normal subgroup of (R, +).

PROOF, Let x be a non-zero right distributive element in R. Then for any
elements @ and b in A (@ + b)x = ax + bx = 0; and so a + b is in A. Hence
(A, +) is a subgroup of (R, +). Moreover, for each ¢ in R, (—c+a+ o)x
=(—¢)x+ax+ cx = — (cx) + 0+ ¢x = 0 because x in a right distributive cle-
ment. Thus (4, +) is normal in (R, +).

REMARK 1. The near-ring R under consideration is S U A4 by Lemma 1.1.
From the definitions of 4 and S, we know that 4 — {0} is the set of left zero
divisors of R and that S is the set of elements without right zero divisors. Hence
if R has a right distributive non-zero elements, then the number of elements of R
is less than n? where n + 1 is the order of the normal subgroup (4, +)in Theorem
2.5 ([4], Th. 2.3).

ReMARK 2. If R has a right distributive element in S with S U 0 a group
under + then S has only one equivalence class in the sense of Theorem 2.2.
S is equal to the class, so it is a multiplicative group. S U {0} is a near-ring, for
(S U {0}, +) is a subgroup of (R, +). This implies that R = S U {0} because.
the complement of S, (4, + ), is also a subgroup of (R, +) by Theorem 2.5.
Thus this leads to Theorem 1.2. of [4]; and so R is a near-field. After this paper
had been submitted, the author learned that Theorem 2.2 for planar integral
domains had been proved by J. Clay.
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