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1. Introduction

In [3] and [4], the near-rings R with no zero divisors are studied. In
particular, a near-ring R is a near-field if it has a non-zero right distributive
element ([4], Theorem 1.2.). Also, (R, +) is a nilpotent group if not all non-zero
elements of R are left identities of R ([3], Theorem 2). The purpose of the present
paper is to extend the above results to a class of near-rings with zero divisors;
that is, the set of annihilators of an element x in R, T(x) = {gjxg = 0} is either
{0} or R. The examples of such near-rings are those R with (R, +) simple groups
and those R with no zero divisors as given in [1], [2], [3] and [4]. For this JR,
we can easily see that R = AvS where A = {x/T(x) = R} and S = {x/T(x)
= {0}}. Then the second part of this paper will give a structural theorem on
the semi-group (S, • ) , and more properties on R can be derived.

Throughout the present paper (R, +, •) is assumed a finite near-ring such that
for each x in R, T(x) = {yjxy = 0} is either R or {0}. If T(0) = {0} then each
0 a ^ 0 for each a # 0 in R. But then OR = R; and so 0a is a left identity of R
for each a ^ 0. From now on R is assumed not this kind just mentioned. So,
R has the property that T(0) = R.

Section 1. Assume T(x) is either R or {0} for each x in R, we shall show
that either the multiplication operation on R is trivial (that is, for r # 0 in R,
rg = 0 for all g in R or rg = g for all g in R), or the additive group (R, +) is
nilpotent. This extends Theorem 2 in [3].

LEMMA 1.1. Let S = {xjT{x) = {0}} and let A = {x/T(x) = R}; then (1)
R — A KJ S such that A o S is a void set and (2) sS = S and sA = A for each
s in S, where sA = {sa for a in A} and sS = {st for t in S}.
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PRCOF. For each x in R T(x) is either i? or {0}, so part (1) is trivial. Next
for each a in A saR = s(aR) = sO = 0, so sAc A. Let x be an element in S
and r in R such that sxr = 0. Then s{xr) = 0, xr = 0; and so r = 0. Thus
sS <= S. On the other hand, for any r' and r" in R such that sr' = sr", we have
s(r' - r") = 0. Hence r' = r" because T(s) = {0} . Therefore sA = A and sS = S.

LEMMA 1.2. By keeping the notations of lemma 1.1, if st = t for some
elements s and t in S, then sr = r for each r in R.

PROOF. Since tS = S and tA = A by lemma 1.1, tR = R; and so for each r
in R, r = tr' for some r' in R. Hence sr = s(tr') = (st)rr = tr' = r.

Using similar idea to [3] we can show our main theorem in this section.

THEOREM 1.3. By keeping the notations of Lemma 1.1, we have

(1) if T(x) = R for each x in R then R2 = {0};

(2) (/ T(x) = {0} with some x ^ 0 and if A contains no non-zero subgroups

of (R, + ) ; then either x is a left identity of R or (R, + ) is a nilpotent group.

PROOF. Part (1) is trivial by the definition of T(x). Next, since T(x) = {0}
with some x # 0 in R, x is in S; and so xR = R by lemma 1.1. Suppose x is
not a left identity of R. Then x2 ^ x. For otherwise xr — r for each r in R by
lemma 1.2. This contradicts that x is not a left identity. Hence we can have the
identity x" of the cyclic group generated by x under multiplication with n > 1;
that is x"x = xx" with a minimal integer n. Again since xR = R, x"(xr) is equal
toxr for each xr in xR; so x" is a left identity of R with n > 1. Futhermore, it
is not hard to show that ay defined by ay(r) = yr for each r in R is a group auto-
morphism of (R, +) if y is in S. Since n > 1, n = pm for some prime integer p
and an integer m. Noting that the element xm has order p, and that xm is in S,
we have that a(xm, is an automorphism of (R, + ) of order p. Also, a(A.m) is a fixed
point free automorphism. In fact, let a(xm)(r) = r, that is, xmr = r. Then there
are two cases.

Case 1. r is in S. Then rR = i? by Lemma 1.2; and so xm is a left identity
of R. Thus xmx = x , a contradiction to the minimal property of n such that
x"x = x . This implies that a(xm) is a fixed point free automorphism of order p.
Therefore (R, +) is a nilpotent group by [6].

Case 2. r is in A. Let C = {hjh in R and xm/i = h}. Then 0 and r are in C.
For each h' and /z" is C, xm(h' - h") = xmh' - xmh" = h' - h". Hence (C, + ) is
a subgroup of (R, + ) . Noting that C can be assumed a subset of A. For otherwise
there exists h in S such that xm/i = h; and so this leads to case 1. But by hypo-
thesis the set A has no non-zero subgroup of (R, + ) , so C = {0}. Hence r = 0.
Thus a(xm) is a fixed point free automorphism of order p; and so (R, +) is nilpotent.
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A near-ring R is a near-integral domain if and only if A = {0} and not all
elements of R are left identities ([3], Def. Section 2). Then our theorem extends
the Theorem 2 in [3].

COROLLARY 1.4. (Ligh) Let R be a finite near-integral domain. Then(R, + )
is nilpotent.

From J? = 4 u S with A n S a void set, it can be shown that a trivial multi-
plication on A implies a trivial multiplication on R.

PROPOSITION 1.5. If(S U {0}, + ) is a proper subgroup of (R, + ) and if sa-a

for each a in A and some s in R {and so in S), then sr = r for each r in R.

PROOF. For any element t in S, a + t is not in S because (S u {0}, + ) is a

subgroup of (R, + ) and because a is not in S U {0}. Hence s(a + t) = a + t.
But then sa + st = a + st = a + t, st = t for each t in S. Thus sr = r for each
r in R .

Since for each s in S, as defined by as(r) = sr is a group automorphism of
(R, +). Hence from Proposition 1.5 we have:

COROLLARY 1.6. If(S U {0},+) is a subgroup of(R,+) and if the automorph-
ism as has at least two non-zero fixed points in a same coset of (S u{0}, + ) ;
then as is an identity automorphism.

PROOF. Let a' and a" be two non-zero fixed points of as in a same coset of
(S U {0}, + ) in R. Then a' = a" + r for some r in S such that a /a ' ) = a' and
<xs(a") = a"; and so

<xs(a') = ccs(a" + r) = a" + r.

But as(a" + r) = as(a") + as(r) then as(a" + r) = a" + us(r) = a" + r. Hence
as(r) = r; that is, sr = r. This implies that st = t for all t in R by Lemma 1.2.
Thus <xs is the identity automorphism of (R,+).

(3) Section 2. By Lemma 1.1, R = AuS, so, in case S is a void set, we
have R2 = {0}, and in case A = {0}, we have a near-integral domain. In this
section, S is always assumed non-void. We shall give the following structural
theorem on the semi-group (S, •): S is partitioned as isomorphism multiplicative
groups. Consequently, some of the results of [4] can be extended.

LEMMA 2.1. For each element s in S, it has a unique right identity s'
which is also a left identity of R.

PROOF. Since T(s) = {0} and since R is finite, there is a multiplicative group
generated by s of order n,

{s = s " + 1 , s2,---,s").
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Hence s" is a right identity of s. Suppose t is also a right identity of s. Then
5/ = ss"; and so s(t — s") = 0. Thus t = s" = s' because T(s) = {0} again. This
implies that s' is unique. Moreover, noting that s's = s"s = s and that sR = R
we conclude that s' = s" is a left identity of R by Lemma 1.2.

DEFINITION. For any x and y in S, we call x equivalent to j> if and only if
the identity of x = the identity of y.

THEOREM 2.2. (a) The relation " ~ " defined above on S is an equivalence
relation;

(b) Each equivalence class of " ~ " , Rx = {y/the identity of
y = the identity of x], is a multiplicative group;

(c) Any two equivalence classes, Rx and Ry, for x and y in S,
are isomorphic.

PROOF. Part (a) is obvious. For part (b), let a and b be in Rx with the right
identity x". Then (ab)xn = a(bx") = ab. Also, aak~x — ak = x", where k is the
order of a, so ak~1 = a~l. Hence Rx is a multiplicative group with the identity
x". Finally for part (c), let Rx and Ry be any two equivalence classes with the
right identities x' and y' respectively. Define a map /? from Rx to Ry by fi(rx')
= (rx')y' for each rx' in Rx (for Rx = Sx') . Since x' is also a left identity of R
by Lemma 2.1,

ftrx') = ( rx ' ) / = K*' / ) = ry'.

We claim that /? is a group isomorphism from /?_,. onto /?>,. In fact, for any ax'
and bx' in /?^,

i5(ax'ftx') = p(abx') = (oft/) = (ab)y' = (a

(f lx ' /Xta ' / ) = p{ax')P{bx')

by Lemma 2.1. again. Next let P(ax') = / for an element ax' in Rx, then (ax ' ) /
= / . Since /J? = i?, ax' is a left identity of R; and so ax' is the identity of the

multiplicative group Rx. Hence ax' = x'. Thus /? is one to one. Furthermore,
let ay' be an element in Ry, then ax' is in Rx such that

p(ax') = (ax')y' = ay'.

This implies that (1 is onto and therefore the theorem is proved.

The following consequences are immediate.

COROLLARY 2.3. The number of elements in S = (order of Rx) times (the
number of equivalence classes of " ~ " ) .
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COROLLARY 2.4. The following statements are equivalent:

(a) Rx U {0} is a subnear-ring of (R, + , • ) ;

(b) R x u { 0 } is a near-field;

(c) (Rx U {0}, + ) is a subgroup of (R, + ) .

PROOF. Since Rx is a multiplicative group, the proof is trivial.

In theorem 1.3, we assumed that the set A contains no non-zero subgroups
of R under addition ([1], 2-3, example 6). But if R has a non-zero right distri-
butive element, then this assumption does not hold.

THEOREM 2.5. If R has a non-zero right distributive element, then (A, +) is
a normal subgroup of (R,+).

PROOF. Let x be a non-zero right distributive element in R. Then for any
elements a and b in A (a + b)x = ax + bx = 0; and so a + b is in A. Hence
(A, +) is a subgroup of (R, + ) . Moreover, for each c in R, ( — c + a + c)x
= (— c)x + ax + ex = — (ex) + 0 + ex = 0 because x in a right distributive ele-
ment. Thus (/I, + ) is normal in (R, + ) .

REMARK 1. The near-ring R under consideration is S U / 1 by Lemma 1.1.
From the definitions of A and S, we know that A — {0} is the set of left zero
divisors of R and that S is the set of elements without right zero divisors. Hence
if R has a right distributive non-zero elements, then the number of elements of R
is less than n2 where n + 1 is the order of the normal subgroup (A, + ) in Theorem
2.5 ([4], Th. 2.3).

REMARK 2. If R has a right distributive element in S with S u 0 a group
under + then S has only one equivalence class in the sense of Theorem 2.2.
S is equal to the class, so it is a multiplicative group. S U {0} is a near-ring, for
(S u {0}, + ) is a subgroup of (R, +) . This implies that R = S u {0} because,
the complement of S, (A, + ), is also a subgroup of (R, + ) by Theorem 2.5.
Thus this leads to Theorem 1.2. of [4]; and so R is a near-field. After this paper
had been submitted, the author learned that Theorem 2.2 for planar integral
domains had been proved by J. Clay.

References

[1] J. Clay, 'The near-rings on groups of low order', Math. Z. 104 (1968), 364-371.
[2] A. Frohlich,' The near-ring generated by the inner automorphisms of a finite simple group',

/ . London Math. Soc. 33 (1958), 95-107.
[3] S. Ligh, 'On the additive groups of finite near-integral-domains and simple D. G. near-

rings', Monatsh. Math. 16 (1972), 317-322.

https://doi.org/10.1017/S1446788700019911 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019911


[6] Finite near-rings 199

[4] S. Ligh and J. Malone, 'Zero divisors and finite near-rings', J. Austral. Math. Soc, Vol.
11 (1970), 374-378.

[5] J. Malone and C. Lyons, 'Endomorphism near-rings', Proc. Edinburgh Math. Soc. 17 (1970),
71-78.

[6] J. Thompson, 'Finite groups with fixed-point-free automorphisms of prime order', Proc. Nat I.
Acad. Sci., V. S. A. 45 (1959), 578-581.

Mathematics Department

Bradley University

Peoria, Illinois 61606

U. S. A.

https://doi.org/10.1017/S1446788700019911 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019911

