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A CHARACTERIZATION OF CHAOS

K. JankovA AnD J. SMITAL

Consider the continuous mappings f from a compact real interval
to itself. We show that when f has a positive topological

entropy {(or equivalently, when f has a cycle of order

# Zn, n=0,1, 2, ...} then f has a more complex behaviour
than chaoticity in the sense of Li and Yorke: something like
strong or uniform chaoticity, distinguishable on a certain level
€ > 0 . Recent results of the second author then imply that any
continuous map has exactly one of the following properties:

It is either strongly chaotic or every trajectory is approximable
by cycles. Also some other conditions characterizing chaos are

given.
Denote by CO(I,I) the class of continuous mappings I - I , where

I is a compact real interval. An f € CO(I,I) is said to be chaotic in
the sense of Li and Yorke [5], when there is an uncountable set S < I

such that for any x, y € S, x # y , and any periodic point p of f ,

(1) lim sup |F(x) - fiy)| > 0

n >
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(2) lim inf |f(x) - fiy)| =0
n o+

(3) lim sup |[f'(x) - fHp)| > 0
n >

Here fn denotes the n-th iterate of f . Any set S whose points
satisfy condition (1) - (3) is called a scrambled set for f .

In [10] is given the following stronger concept: given € > 0 , a

set § I is an e-scrambled set for some f € CO(I,I) if for any
x, y € S, *#y , and any periodic point p of f ,

(4) lim sup |fn(x) - fn(y)l > €
n > o

(5) lim sup |fn(x) - fn(p)| > €
n > o

and (2) is true.

Moreover, in [10) it is shown that for any f € CO(I,I) with zero
topological entropy (or equivalently, without cycles of order divisible
by an odd prime, see [6]) the chaoticity in the sense of Li and Yorke is
equivalent to the existence of a perfect non-empty e-scrambled set, for
some € > 0 . The following main result of this paper shows that this is

also true for mappings with positive topological entropy.

THEOREM 1. Let f ¢ CO(I,I) have a cycle of order divisible by
an odd prime. Then for some € > 0, f has a non-empty perfect e-
scrambled set 8.

In the proof we use methods of symbolic dynamics, see, for example,

[2] or [7] . First we recall the following well-known result.

LEMMA 1. (Block [11, see also [121). If fe (P(1,I) has a cycle

of order # Zn, n=20, 1, 2, ..., then there are closed disjoint

intervals JO, Jl c I and an integer m > 0 such that

(6) j’”(Jo) A fm(Jl) 2,0,

Next we give a generalization of this lemma.
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LEMMA 2. Let f, J,, J, and m be as in Lemma 1. Then there are

0’ 1
closed intervals
0_ 0_ 0 1
Jpg=dp2d; 2992 .. and Jl—JoiJ';_D_Jéz...

and a sequence {m(k) }Z=0 of positive integers such that for every

k=0,1,2, ... and G =0, 1,

(7) m(k) is divisible by k! and m ,
(k) , g

(8) ) 20,00,
. .

(9) W) < g ulay)

where 1y 1s the Lebesgue measure.

Proof. Put m(0) = m and assume by induction that m(k), JZ and
1 . . 0
Jk are defined for k s n . Choose a closed interval qj E_Jn such that

fM(n)(Ub) = Jj , for jg =0, 1. Then at least one of the sets UO’ UZ

has Lebesgue measure less than %-u(JZ) . Denote this set by Jg+1 and

put m(n + 1) =m(n) + p , where p 2 m 1is choosen such that (7) is true
for k=n+ 1. Then by (6)

(n+1) ,.0 _ an(n)+p, .0 _
i ) =1 (7,7 = fp(Jo) 27,07,

since p is divisible by m . Similarly we find Ji+1 . 0

In the sequel the following notation will be useful. Let X(k) be

the set {0, l}k of all ordered k-tuples and X = {0, J}N the set of
all sequences of two symbols 0, 1. If a e X(k) , B € X(s) then

aB € X(k + s) is the concatenation of a and B . For a ¢ X(k) or

a € X, a(j) will denote the j-th coordinate of o . Assume X is

equipped with the topology of pointwise convergence (given for example by

the metric ¢ (a, B) = ) 2™ |a(n) - B(n)|)
n

LEMMA 3. There is a perfect, non-empty set Y c X such that any
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a € Y has infinitely many O0's and 1's, and for any two a, B e Y ,
a # 8 implies afn) # B(n) for infinitely may n.

Proof. ILet £ be an irrational number. Define t : [0, 1] + X

in the following way: For ¢t € [0, 1] , t(t) = {a(k)}z=1 , where

0 if N(t + &) e (0, 1/2)
a(k) = {
1 if N(t + gk) e [1/2, 1)
Here N(x) ¢ [0, 1) is the fractional part of % . Considering the well-
known fact that {N(Ek)}:zl is uniformly distributed and hence dense in

[0, 1] , we can easily verify that t(¢t)(n) # t(s8)(n) for infinitely many

n , whenever ¢, s e {0, 11, t # s .

Next observe that T has at most a countable set of discontinuity
points: for each Kk there is exactly one t € [0, 1] so that

N(t + £€k) = 1/2 . Denote this t by ¢(k) . Clearly Tt is continuous
on B=1[0, 1]\ {t(k)}:zl . Since B 1is a Borel set we have that

T(B).E X 'is analytic and uncountable and by [4] it contains a non-empty

perfect set P .
For any o € P write
a* = afl) 0 a(2) 1 af3) 0 af4) 1 o(5) 0 ...

and let Y = {a* ; a € P} . It is easy to see that Y is closed (as
the intersection of closed sets) and has no isolated points, that is Y

is perfect. ]
LEMMA 4. Let f have a cycle of order divisible by an odd prime.

Then there is a set {Iu ; o€ X(k) }Z=1 of closed intervals and a

sequence {n(k) }Z=1 of positive integers such that, for every k, s,

k>s ,

(10) I ¢TI for a € X(k - s), B e X(s) ,
af — «a

(1) A = 2K ihenever o € X(K)

(12) n(k) - n(s) is divisible by s! ;
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here J; are the intervals from Lemma 2.

Proof. Xeep the notation from Lemma 2., Since fM(O)(JZ) 3_J0 ] J]’

there is a closed interval Iﬁ c JZ = Jj such that fM(O)(Ij) = Jj R

Jg=0,1. Put n(l) =m(0) .
Now assume by induction that we have defined intervals
{Ia ; ae X(r)} and n(r) . Let o€ X(r+ 1) , Then a = B0 or

JB(r)

a = Bl where B ¢ X(r) . By the hypothesis, fn(r)(IB) =4J,

and Lemma 2 gives

(r)+m(r)
il (Ig) 21,v 1,

Hence there is a closed interval Ia E_IB such that fn(r)ﬁW(r)(Ia) =

Jﬁi§+1) . If we take n(r + 1) = n(r) + m(r) , then by (7) and hypothesis,

(12) if true for kK =»r + 1 . The other conditions are clearly satisfied.[]
Now we are ready to give

Proof of Theorem 1. Keep the notation from Lemmas 1 - 4 . Write

F, =u{I ; o e X(k)} and 4 = n F, . Dpefine a mapping ¢ : A > X
k o k=1 k

in the following way:
For any z € A let ¢(x) = a € X be such that x € Mu , where

My = Tor1) " Latniacz) " Tat)at2)atn™ 0

(it is easy to see that for every & there is exactly one a with

X e M&) , Since M& #J for every o , ¢ 1is surjective.

The mapping ¢ is also continuous. Indeed, let 0(a) be a
neighbourhood of o € X . Then there is an 7n such that
0(a) 2 0™(a) = (B € X; B(k) = a(k) for k=1, ..., n} .

Write G Let x € A with ¢(x) = a. Then (G is a

= Tatn). . atn)
relatively open neighbourhood of x in A , and clearly ¢(G) < 0(a)

Note that for every «a, Mu is closed and connected, and ¢ is

constant on M; . Let z, be the left-end point of M& . Then clearly
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B={x ; ae X} €A is an uncountable Borel set and ¢ restricted to
o =
B is a bijection B + A , Therefore ¢—1(Y) n B 1is an uncountable Borel

set. Hence there is a non-empty perfect set § ¢ ¢_1(Y) n B (see [4];
here Y 1is the set from Lemma 3)
It remains to verify that § 1is the desired e-scrambled set for

f , where
1 ..
€ = Edlst (JO’ JJ) >0 .

let x, ye€ S, #y . Then ¢(x) =a, ¢(y) =B , where a # B8 ,
d, B e Y. Hence by Lemma 3 and (11), for infinitely many Xk either

s, wa M ey,

or

P eq,  awma My g,

since J; E-Ji for every %, § . Thus (4) is true.
Again by Lemma 3 and (11), for infinitely many Xk we have

alk) = B(k) , and thus "X (@), 1 gy ¢ S35  gBR) [ hence by (9)

"% ) - Ry ) < w2 ™) < 2k ™)

for every such k and this implies (2) .
Finally, let 2 € S and let p € I be a periodic point of f .

Let s be the period of p . For k > & we have

A ) _ plkimnls) nls) )y n(k)nls) ) _ o

since ¢ has period s and s divides n(k) - n(s) (see (12)). Let
r ¢ {0, 11 be such that dist (Jr’ {g}) > ¢ . Choose k > s so that for

o = ¢(x), afk) = r» . Then by (11) ,
7% (z) - 1% p)] 2 asse (7, {q}) > e .

Since k can be choosen arbitrarily large we obtain (5) and our theorem

is proved. ]

Before we state the next result, we recall some terminology (see
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{10]). Let fe CO(I, I) . We say that an interval J ¢ I is an f-

. z i

periodic interval of order k if fk(J) =J and f (J) n fJ(J) =g for
1#4§,1, =1, ..., k. Two points u, v € I are f-separable if there
are disjoint periodic intervals J, , g, cI with u € I v ed, .
Otherwise u, v are f-nonseparable. The set of all limit points of a
trajectory {fk(x)}z_l is called the attractor of f and &« , and is
denoted by Lfﬁx) .

The following theorem generalizes a result from [10].

THEOREM 2. A4 function f € CO(I, I) s chaotic in the sense of
Li and Yorke if and only if there is an infinite atiractor L f(x)
containing two f-nonseparable points u, v.

Proof. In [10] the theorem is proved for functions with zero

topological entropy. Thus in view of Theorem 1 it suffices to show that

any f ¢ CO(IJ I) with positive topological entropy has an infinite

attractor Lf(x) containing two f-nonseparable points u, V.

Hence assume f has a cycle of order divisible by an odd prime

(see [6]). By [11] or [12] there is an uncountable attractor Lfﬂx)

containing a cycle of f . Let the order of this cycle be m > 1 .,
Clearly Lfﬁx) contains two accumulation points u, v of Lf(x) .
Assume that there are disjoint periodic intervals Ju’ Jv’ U € Jﬁ, v € Jb,

with periods m(u), m(v) 2 1 (otherwise u and v would be f-non-

separable) .

Then there is a Kk such that fkﬁx) € Jﬁ , and hence Lf(x) <

Orb

_m(u)fi o
(Ju) = 21 (Ju) , and similarly Lf(x) < orb v

f i= f

are disjoint, we have m(u) > 1, m(v) > 1 . Consider the mapping

(Jv) . Since Ju’ J

fm(n) restricted to Ju ; denote it fl . By the periodicity of Jﬁ s
the set Lfﬂx) n Ju is uncountable (since f(Lf(x)) = Lfﬂz)) . Choose

two accumulation points U, v € Lf(x) n Ju of Lf(x) . Assume there
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are disjoint fﬁ—periodic intervals Ji, Ji € J, with periods m(ul),

€ Ji and v, € Jl (otherwise u.,, v, are f-

m(vl) 2 1 such that u P » 2 Vg

1

nonseparable). Similarly as in the preceding step we can see that

m(ul) > 1 and m(vl) > 1 , Hence Ji is an f-periodic interval of

period m(w).m(u,) > m(u) , and such that Lf(x) E_Orbf(Ji) .

By repeating this construction we obtain f-periodic intervals

2
J E_Ji 3_Jﬁ EREE 3_JZ , where n 2 1 is the first index such that

L.(x) c Orb (J') and mlu ) , the period of Jr , is greater than m ,
7 =""f"u n u
But this is a contradiction with the fact that Lf(x) contains a cycle
of order m . Hence un-l’ vn—J are f-nonseparable. 0
Now we can prove the following survey theorem summarizing conditions
equivalent to the chaoticity of mappings. Recall that for f ¢ CO(I, I)
we say that the trajectory {fk(x)}:_l of % is approximable by cycles

if for any € > 0 there is a periodic point p of f such that

lim sup |fn(x) - fn(p)| < e
n >
THEOREM 3. Let f € Co(I, I) . The following conditions are
equivalent:
(a) f 1s chaotic in the sense of Ii and Yorke;
(b) f has an infinite attractor containing two f-nonseparable
points;
(c¢) for some e > 0 , f has a nonempty perfect e-scrambled set;
(d) f has a trajectory which is not approximable by cycles;
(e) f is topologically conjugate to a function which has a
serambled set of positive Lebesgue measure;
(f) for same € > 0, f has a nonempty e-scrambled set.

Remark 1. wWe emphasize that, rather surprisingly, positive
topological entropy (or the existence of a cycle of order divisible by

an odd prime) is not equivalent to the chaoticity of a function f in
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the sense of Li and Yorke (an example is given in [10]). However, in
view of Theorem 1, positive topological entropy of f implies that
chaoticity of f .

On the other hand, existence of an infinite attractor does not

imply (but is clearly implied by) the chaoticity of f , see [101 .

Remark 2. The implication (a) + (e) in Theorem 3 generalizes
recent results [3], [7], [§1, in which particular functions with large
(from a measure-theoretical point of view) scrambled sets are constructed.
However, this implication does not generalize the result from [9], in
which map g with a perfect scrambled set of positive Lebesgue measure

is given. This is because g can easily be modified to be of class
CJ (this possibility is not mentioned in [91).

Proof of Theorem 3. (a)<—(b): This follows from Theorem 2.

(b) =+ (c): This was proved in [10] for functions having no cycles
of order divisible by an odd prime; for other functions use Theorem 1.

(c) + (d): This follows immediately from (5).

(d) » (a v b): For functions with zero topological entropy the
implication (d) + (b) is proved in [10], otherwise Theorem 1 gives the
validity of (a).

(c) > (e): Let S # f be a perfect scrambled set for f . Let
h: I > I be a homeomorphism such that u(h(S)) > 0 . Then h(S) is

clearly a scrambled set for g = h o f o h_l (first apply h—l) .
(e) > (a) is trivial and since (f) is an another formulation of

(d), also (d)<—(f) is true. ]

Problem. 1t is possible to show that for f € CO(I, I) the
following.condition also is equivalent to the chaoticity of f :

(g0 f has a scrambled set containing two points.
However, our proof is rather complicated. But this result should be
probably provable in a simpler way. (Clearly, in view of Theorem 1 it
suffices to consider only mappings with zero topological entropy

satisfying the condition (g).)
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