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Abstract

Finely resolved geodetic data provide an opportunity to assess the extent and morphology of
crevasses and their change over time. Crevasses have the potential to bias geodetic measurements
of elevation and mass change unless they are properly accounted for. We developed a framework
that automatically maps and extracts crevasse geometry and masks them where they interfere
with surface mass-balance assessment. Our study examines airborne light detection and ranging
digital elevation models (LiDAR DEMs) from Haig Glacier, which is experiencing a transient
response in its crevassed upper regions as the glacier thins, using a self-organizing map algo-
rithm. This method successfully extracts and characterizes ∼1000 crevasses, with an overall accur-
acy of 94%. The resulting map provides insight into stress and flow conditions. The crevasse mask
also enables refined geodetic estimates of summer mass balance. From differencing of September
and April LiDAR DEMs, the raw LiDAR DEM gives a 9% overestimate in the magnitude of gla-
cier thinning over the summer: −5.48 m compared with a mean elevation change of −5.02 m
when crevasses are masked out. Without identification and removal of crevasses, the LiDAR-
derived summer mass balance therefore has a negative bias relative to the glaciological surface
mass balance.

Introduction

Glacier crevasses are fractures that form from the failure of ice under tension as it flows around
obstacles or is subject to a divergent velocity field (e.g. through higher downstream ice speeds).
Crevasses appear when local strain exceeds a critical tensional strength threshold (Vaughan,
1993), which effectively pulls a glacier apart (Hargitai and Kereszturi, 2015). Their orientation
is related to the regional stress regime and flow direction (Harper and others, 1998; Hambrey
and Lawson, 2000). Crevasses are ubiquitous on glaciers on Earth, as well as extraterrestrial
bodies such as ice-rich surfaces on Mars (Hubbard and others, 2014; Adeli and others,
2016), and are also suggested to be on Pluto (Howard and others, 2017). They occur at scales
from centimeters to tens of kilometers, individually or in groups that form diverse patterns
such as chessboards (Hargitai and Kereszturi, 2015).

The orientation, pattern and propagation of crevasses provide insights into glacier velocity
and stress fields (Vornberger and Whillans, 1986; Bhardwaj and others, 2016; Colgan and
others, 2016), and have also been used to infer hydro-fracture drainage mechanisms (Poinar
and others, 2017). This information can be obtained by monitoring crevasse changes through
multi-temporal data measurements (Whillans and Tseng, 1995; Colgan and others, 2011). On
the other hand, removal of crevasse topography from high-resolution digital elevation models
(DEMs) and satellite images is necessary in climate change and glaciological studies, because
nonsystematic treatment of crevasses can introduce uncertainties into estimates of glacier
thickness change and evolution. Automated detection and mapping of existing and emerging
crevasses is thus required for glaciological research; automated crevasse mapping would also
improve the safety of travel on glaciers and ice sheets.

Airborne and ground-based radar can detect buried crevasses (e.g. Lever and others, 2013)
whereas optical remote sensing facilitates crevasse identification on glacier surfaces (Zhou and
others, 2007). Automated detection algorithms of crevasses from satellite images are rare,
because the resolution does not support crevasse detection or characterization. However,
due to recent increases in the acquisition of high-resolution data with accurate geo-positioning,
by airborne and unmanned aerial vehicles, there is growing interest and ability to detect cre-
vasses automatically from remote-sensing data. Most published studies visually identify cre-
vasses with different image-processing techniques, including image contrast enhancement
(e.g. Glasser and Scambos, 2008). These techniques are sensitive to crevasse orientation,
since reflections are affected by illumination conditions. Crevasses can also be difficult to sep-
arate from other linear glacier features and patterns such as ogives or meltwater runnels.
Precise mapping of the patterns and propagation of surface crevasses has also been conducted
using manual techniques (Colgan and others, 2011, 2016; Flink and others, 2015).
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Glacier light detection and ranging (LiDAR) surveys provide
elevation data of sufficient resolution to study crevasse density,
as explored by Jóhannesson and others (2011), who used max-
imum curvature as a detection factor in identifying crevasses.
As LiDAR surveys and other high-resolution mapping (e.g.
drones) become more common for glacier monitoring, automated
methods are required to effectively map glacier crevasses reliably
and over large spatial scales. In this study, we present an auto-
matic technique, based on an artificial neural network (ANN)
algorithm, for mapping and masking surface crevasses in glacier
studies. We report initial results and analyses for crevasse detec-
tion on Haig Glacier in the Canadian Rocky Mountains, based
on repeat LiDAR imagery from 20 April and 12 September 2015.

DEMs generated from these two LiDAR measurements can be
differenced to provide a measure of summer elevation change and
mass balance. Crevasses could introduce a bias in such differ-
ences, however, as LiDAR returns from the sidewall or base of cre-
vasses can be several meters below the reference surface of the
glacier (planimetric (uncrevassed) surface). This would appear
as surface ablation in a difference map, or an exaggerated degree
of glacier thinning relative to glaciological mass-balance measure-
ments or models. The ANN crevasse detection methodology pro-
vides a mask of glacier crevasse coverage, which can be used to
filter out crevasses from the DEMs. We compare the geodetic
elevation differences (i.e. summer mass balance) calculated from
the raw DEMs with that using the crevasses mask, to assess the
impact of crevasses on geodetic mass-balance estimates.

Study area and in situ observational data

Our study investigates crevasses on Haig Glacier, a small
(∼3 km2) icefield that straddles the Continental Divide in the
Canadian Rocky Mountains (Fig. 1). Haig Glacier flows to the
southeast into the province of Alberta, with a central flowline
length of 2.7 km, a mean glacier elevation of 2660 m, and eleva-
tions ranging from 2480 to 2925 m a.s.l. Haig Glacier has been
a focus for glacio-climatic studies since 2001 (Marshall, 2014).
Moist Pacific air masses deliver relatively high annual precipita-
tion totals to the study site (Sinclair and Marshall, 2009), aver-
aging ∼1300 mm w.e., or 3.2 m of snow, across the glacier over
the winter accumulation season. In situ data collected from May
through September 2015 are used to drive and constrain a glacio-
logical mass-balance model for comparison with the LiDAR data.

A snow survey was conducted on the glacier on 11–13 May
2015, before the onset of melt, including probing of snow depth
at 33 sites and three snow pits dug to the previous summer sur-
face, with snow-density measurements at 10-cm intervals.
Measured snow depths ranged from 2.33 to 3.65 m along the gla-
cier centerline, with a median value of 2.8 m. These observations
inform the interpretation of LiDAR data for mass-balance studies,
as measured snow depths and densities are needed to convert
LiDAR-derived elevation changes to summer mass balance
(water equivalent snow, firn and ice loss).

We do not maintain summer mass-balance measurements (an
ablation stake network) at the site, but we established an auto-
matic weather station (AWS) on the upper glacier in May 2015.
The AWS logged four components of radiation, air pressure, tem-
perature, humidity, wind speed and snow surface height at 30-min
intervals. AWS data are used to drive a distributed energy and
mass-balance model over the glacier, modified for local topo-
graphic shading, slope and aspect (Ebrahimi and Marshall,
2016). The model is seeded with initial snow depths and densities
based on the winter mass-balance survey. We visited the glacier
five times in summer 2015 to maintain the station, conduct spatial
albedo surveys and monitor summer melt at two locations on the
upper glacier (Samimi and Marshall, 2017; Fig. 1b). The melt

model is constrained by these albedo measurements, with free
parameters (e.g. surface roughness coefficients) calibrated at the
in situ observation sites.

Surface mass balance was strongly negative in 2015, driven by a
warm early summer. All of the seasonal snow on the glacier
melted by early August, and the upper accumulation area lost
an additional 0.6 m of firn, for a total May-to-September vertical
change of −4.3 ± 0.2 m recorded at our ablation stake on the
upper glacier. Near the median elevation of the glacier, 2660 m,
the total observed ice melt was 1.4 m. Combined with a May
snowpack of 3.2 m, this gives a surface height change of −4.6 ±
0.2 m between May and September. We lack direct measurements
of ice ablation at the toe of the glacier in summer 2015, so we rely
on the surface energy balance model for glacier-wide summer
melt estimates to compare with the LiDAR data.

Numerous crevasses opened up on the upper glacier in August
2015, between ∼2700 and 2925 m elevation. This area of the glacier
lost all of its seasonal snow several times from 2001 to 2017, but
many of the crevasses that appeared in August 2015 were not pre-
viously observed. Oblique imagery (Fig. 1) illustrates some of these
crevasses in the upper accumulation area in mid-September 2015,
with ∼20 cm of fresh snow on the glacier. Crevasses that appeared
in summer 2015 persist through to summer 2019. Figure 2 shows a
shaded relief image of the LiDAR DEM from September 2015.
Crevasses are evident in airborne LiDAR data in late-summer gla-
cier images, when they are not snow-bridged (Fig. 2a). The April
DEM in this study indicates a smooth, snow-covered surface over
the entire glacier, with no visible crevasses. This is consistent
with observations from spring field visits.

Methodology

The primary goals of this study are: (i) to introduce a framework
for mapping and extracting the morphometry of crevasses on gla-
cier surfaces, and (ii) to use the resulting crevasse mask as a filter
for glacier studies that might be compromised by crevasse topog-
raphy (i.e. due to the impact of crevasses on elevation change
inferences for geodetic mass-balance calculations). To address
this, we apply an ANN algorithm known as self-organizing
maps (SOM) (Kohonen, 2001). This algorithm is strong in outlin-
ing linear features such as crevasses. Application of SOM with
suitable settings in network and input layers facilitates our
image processing and crevasse analyses in glaciological studies.

LiDAR/DEM development

Airborne laser scanning LiDAR data have a sampling density of
1–2 returns per square meter and a relatively high vertical accur-
acy (±15 cm). LiDAR has gained widespread use as a tool to gen-
erate DEMs that are superior to DEMs from topographic maps or
satellite imagery (Nelson and others, 2009). Previous studies dem-
onstrate that LiDAR data can be successfully used to characterize
linear features such as streams and their order, magnitude, width,
sinuosity and channel morphology (James and others, 2007;
Cavalli and others, 2008; Vianello and others, 2009; Biron and
others, 2013). Investigations have confirmed that LiDAR data
can be used to identify and track glacial crevasses (Arnold and
others, 2006; Jóhannesson and others, 2011).

We performed airborne surveys of Haig Glacier on 20 April
and 12 September 2015 using a Reigl 580 laser scanner with a
dedicated Applanix PosAV 910 Inertial Measurement Unit
(IMU). Flight paths were 400–500 m above the glacier surface,
at a flight speed of ∼50 m s−1 and with a beam divergence of
0.2 mrad, yielding a beam diameter of ∼0.1 m. Laser shot dens-
ities for the April and September surveys averaged 2.89 and
0.93 m−2, respectively. We processed LiDAR and flight
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trajectories using Applanix’s PosPac Mobile Mapping Suite which
yielded vertical and horizontal positional uncertainties of ±0.15 m
(1σ). We generated DEMs used in this study from post-processing
point cloud using LAStools (https://rapidlasso.com/lastools/) and
the LAStools las2DEM algorithm on classified point clouds. This
algorithm triangulates ground classified airborne laser scanning
points into a triangulated irregular network from which we cre-
ated 1 m DEMs using nearest neighbor interpolation. The
DEMs were coregistered following the methods described in
Nuth and Kääb (2011). This co-registration produced vertical
errors of ±0.25 m (1σ) over areas of stable terrain. A full summary
of methods pertaining to our LiDAR processing steps and the
uncertainties is found in the Supplementary Material of
Menounos and others (2019).

Input layers for crevasse delineation in SOM

Surface crevasses on glaciers form due to brittle failure under ten-
sion as ice undergoes extension (velocity divergence) in associ-
ation with flow over bedrock obstacles, lateral drag from valley

walls, changing valley width or orientation, basal sliding, or draw-
down of the terminus (Hargitai and Kereszturi, 2015). Depending
on their genesis, crevasses have different depths, widths and
shapes. Most crevasses have nearly vertical walls, and usually
propagate downward from the surface. They can widen and
deepen under continued extensional stress as well as thermal
and mechanical erosion from supraglacial waters that drain into
crevasses (Morawski, 2010; Benn and Evans, 2014). The under-
lying topography and its deformability due to the load of the
advancing glacier are both important in their formation zone
and evolution (Morawski, 2010), and may cause different internal
and external forms of crevasses.

Examination of strain patterns and stress regimes on glaciers
through multi-temporal analysis requires a comprehensive
description of crevasse morphometry. Mapping crevasses as
simple linear features misses some important information that
is possible to extract. High-resolution LiDAR DEMs enable the
calculation of first, second and third derivatives of local land sur-
face features, which can be used to extract a more complete 3D set
of geomorphometric crevasse parameters.

Fig. 1. (Left) Field photo of Haig Glacier crevasses, September 2015 (photo credit: S. Samimi). (Right) Haig Glacier in the Canadian Rocky Mountains (Google Earth
image) including locations of in situ mass-balance observation (dark circles) and approximate field of view for the left image. The red dotted line indicates the
continental divide: the upper limits of the Haig Glacier catchment. Glacier ice to the west of this drains southward via an unnamed outlet glacier.

Fig. 2. Shaded relief image of Haig Glacier extracted from 1-m LiDAR DEM. Arrows indicate locations with high density of crevasses. (a) Region of the glacier with
intense crevassing. Red line is the transect line of Figure 5.
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Geomorphometric parameters are topographic variables
extracted from elevation models; each can be useful in defining
a specific aspect of a landform or shape characteristic. More
than 20 geomorphometric parameters have been introduced by
different studies (e.g. Florinsky, 2009; Hengel and Reuter, 2008).
We examine these parameters based on crevasse shapes in our
study area, to select the best factors that delineate crevasses. We
consider both cross-sectional (transverse) and longitudinal curva-
ture (Fig. 3), corresponding to the planform and profile curvature
of Zevenbergen and Thorne (1987), respectively. Cross-sectional
curvature, in the direction perpendicular to the surface slope,
defines geomorphological form when surface concavities such
as channels and longitudinal crevasses are detected (Wood,
1996). Longitudinal curvature is the curvature in the down-slope
direction, and helps to identify transverse crevasses. Curvature is
important in the morphology of crevasses because of their iconic,
relatively sharp cross-sectional profile compared with the rest of
the glacier surface (Hengel and Reuter, 2008; Hargitai and
Kereszturi, 2015).

We also identify unsphericity as a factor for further analysis of
these features with repeated DEMs. It is a nonnegative curvature,
equal to zero on a sphere and positive outside a sphere (Hengel
and Reuter, 2008); it characterizes how far a surface is from a
sphere, which can help in evaluating changes in crevasse rims
over time (Fig. 4).

Geomorphometric parameters were examined visually to
identify the ones which best exemplify crevasse morphology
at our site. They have been displayed and analyzed for crevasse
locations to identify parameters that define all parts of a cre-
vasse including its sinuosity, concavity and rim sharpness and
consequently its outline and anomalies on the glacier. For
extracting these parameters, a local window is passed over the
LiDAR DEM and the change at each point relative to surround-
ing points is derived by a bivariate quadratic function of the
surface:

Z = r
2
x2 + t

2
y2 + sxy + px + qy + f (1)

where f is the height at the central point of the window and p,
q, r, s and t coefficients are partial derivatives
p = ∂z

∂x, q = ∂z
∂y, r = ∂2z

∂x2, s = ∂2z
∂x∂y, t = ∂2z

∂y2

( )
. Parameters

greater than the second order do not improve crevasse classifi-
cation. The optimal kernel size for testing in the methodology
has been initially identified visually, selected to give an output
layer, which captures the size, orientation and location of indi-
vidual crevasses.

Crevasses have linear shapes and their footprint compared
with the whole study area is relatively low, so we need to use
small kernel sizes for better delineation of the elements.
However, to reduce high resolution DEM errors that could have
significantly affect the curvature parameters of small features
(Sofia and others, 2013), through our methodology we have iden-
tified 5 × 5 as the best kernel size for all parameters that have been
used for crevasses ( p, q, r, s and t: quadratic coefficients) as for-
mulated below:

Unsphericity (1/m) = [{r[(1+ q2)/(1+ p2)]
1/2

− t/[(1+ q2)/(1+ p2)]1/2 } 2/ (1+ p2 + q2)

+ { pqr[(1+ q2)/(1+ p2)]
1/2 − 2[(1+ q1)(1+ p2)]

1/2
s

+ pqt/[(1+ q2)/(1+ p2)]
1/2

}
2
] 1/2/[2(1+ p2 + q2)

3/2
]

(2)

Longitudinal Curvature (1/m)

= −2
r
2
p2 + t

2
q2 + spq

( )
/( p2 + q2 )

( )
(3)

Cross− sectional Curvature (1/m)

= −2
t
2
p2 + r

2
q2 − spq

( )
/( p2 + q2 )

( )
(4)

Equation (3) is from Shary (1995), Eqn (4) from Krcho (1973)
and Eqn (5) from Wood (1996). The length of each crevasse is
the centerline length, while the width factor is defined from the
middle of each feature, perpendicular to the centerline.
Orientation, however, is the alignment of the straight line distance
between two ends of the feature. We calculate minimum crevasse
depth by removing identified crevasses from the DEM and esti-
mating the planar surface through inverse distance weighted
(IDW) interpolation using the crevasse edge points. This is a
common method in geoscience and is an accurate interpolator
for DEM generation with LiDAR data (Su and Bork, 2006;
Ashraf and others, 2017). The lowest point in each crevasse is
then found by subtracting the crevasse elevation model and the
planar surface that replaces it, giving the deepest detected part
of each crevasse in our data (Fig. 5a). These are minimum depths
because the LiDAR may not have detected the deepest part of each
crevasse, but could be returning an internal reflection from the
sides. For accuracy assessment of the results, 50 randomly selected
crevasses from different locations of the glacier have been digitized
and their extent properties have been extracted manually.

Self-organizing map (SOM) application

ANN algorithms have been widely applied in a variety of different
scientific disciplines. Sample applications in geoscience and remote-
sensing studies include image classification (Foroutan and others,
2013; Maggiori and others, 2017), crestline mapping (Foroutan
and Zimbelman, 2017), river flow prediction (Karunanithi and
others, 1994; Akhtar and others, 2009), hydrological modeling
(Dawson and others, 2001) and estimation of glacier ice thickness
from terrain morphometry (Clarke and others, 2009; Quiroga and
others, 2013). These networks consist of layers of neurons, which
are inter-connected and act as processing units. Each output layer
neuron is connected to all neurons in the input layer by synaptic
weights (weight vectors). By adjusting the weights of neurons,
preferred classification from the network can be obtained.

In general, ANNs consist of layers of neurons which are inter-
connected and act as processing units. The SOM or Kohonen
network, after its inventor (1982), is one of the most extensively
used unsupervised ANN algorithms (Kohonen, 2001). It executes
a characteristic nonlinear projection from high-dimensional space
onto a low-dimensional array of neurons, which is useful for iden-
tifying and visualizing complex and underlying patterns from
small to large datasets. The SOM is a competitive learning algo-
rithm, and competes to give the best representation of the input
data during the learning process. SOM has a topology-preserving
characteristic (Kohonen, 2001), meaning that vectors that are close
in the input space will be mapped to units that are close in the
output map (Vesanto and others, 2000; Bação and others, 2005),
which is a unique feature. Unlike other ANN algorithms, SOM
uses a neighborhood function for identifying the topological prop-
erties (geomorphometry here) in the inputs. In addition, unlike
with other multivariate methods, with SOM, there is no need for
a priori interpolation when data are missing (Richardson and
others, 2003).

The SOM architecture classically contains two layers. Apart
from the Input layer, SOM has an output layer (map) of nodes
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(known as neurons) with initial random weights (random images
on each of the nodes here). During what is termed the ‘training
step’ of SOM, which is an iterative process, input data (geomor-
phometric layers here) are consecutively presented to the output
map. Through this learning procedure, input vectors that have
been introduced to the map and the distance from each weight
to the sample vector are calculated by running through all the
weight vectors. The node in the output map (with its initial ran-
dom weight) with the minimum Euclidean distance between itself
and the input vector is then identified and updated. This node is
called the ‘winner’ node or best-matching unit (BMU), and
becomes the center. Its neighbors will be updated based on

their relative distances to BMU (Fig. 6).The training procedure
is formulated in Eqn (5). An input vector is characterized by
the vector x = {x1, x2,…, xn}, where n is the number of input vari-
ables (three geomorphometric parameters here: unsphericity, lon-
gitudinal curvature and cross-sectional curvature). The initialized
weight vectors connect m × n neurons, so the winner is:

Winner = arg (min1≤i≤mn { ‖ wi(t) − x(t)‖}) (5)

where || || is the Euclidean distance measure, x(t) is the input vec-
tor and wi(t) is the synaptic weight of neuron connecting output
neuron to the input neuron i at iteration t. Selecting the best-input

Fig. 3. Schematic illustration of two second-order deri-
vatives of elevation: cross-sectional and longitudinal
curvatures. Cross-sectional curvature measures curva-
ture perpendicular to the downslope direction, while
longitudinal curvature measures curvature in the down-
slope direction.

Fig. 4. Changes in the form of rims and troughs of
crevasses from aging in the crevasses with no exten-
sion or compression dynamics. This evolution can
be recognized on DEMs by using the unsphericity
parameter. The schematic image indicates the
decrease in unsphericity (crisp and sharp edges
becoming rounded) over time.

Fig. 5. (a) Cross-sectional profile of three crevasses in the LiDAR data (interpolation line in Figure 2). The red line indicates the interpolated surface from an IDW
interpolation technique. Subtraction of the measured elevation from the IDW surface for each crevasse gives us the estimated minimum depth of each feature. We
use the interpolation surface to filter out the effect of crevasses in calculation of elevation differences on the glacier (i.e. from repeat imagery). (b) Cross-sectional
profile of a crevasse in Haig Glacier identified by cross-sectional and longitudinal curvature parameters through ANN methods. (a) Identified as the deepest part of
the crevasse, with negative values in both parameters; (b) crevasse walls with opposite signs in both parameters and (c) the rim of the crevasse, with positive signs
for both parameters.
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parameters is considered a pre-processing step in this study, as
discussed earlier.

Neighborhood is an important concept in SOM, because the
weight vector of the winner and output neurons within a neigh-
borhood radius γ of the winner are adjusted in the direction of
the input vector as:

vi(t + 1) = vi(t) + a(t)[xi(t) − vi(t)] (6)

where ωi(t + 1) is the adjusted weight and α(t) is the learning rate
at iteration t. The weights of those neurons outside the neighbor-
hood remain unadjusted. Within the neighborhood nearer neigh-
bors, receive more training, weight adjustment, than farther
neurons (Fig. 6). This competitive learning and lateral interaction
stage is known as coarse-tuning. During the coarse-tuning stage
the learning rate declines gradually from an initial learning rate
(αmax) to a final learning rate (αmin), after a total number of itera-
tions (epochs) (tmax):

a(t) = amin

amax

( )1/tmax

(7)

Repeating this process, thus decreases the radius of the neigh-
borhood (γ) gradually during the coarse-tuning stage:

g(t) = gmin

gmax

( )1/tmax

(8)

It is usually preferred to start with a large initial neighborhood
radius, which decreases until the weight of just the winning neu-
ron is attuned in the output layer. This is called the ‘mapping
step’. Finally, the output map will become self-structurally shaped
by learning, which leads to a topology (regional organizations of
neurons) in the output map, and is the fundamental organization
of neuron weights that represent separate classes in the input
layer. For detecting the existing patterns, a map of the average dis-
tance of a neuron to its neighbors can be visualized in the U
matrix. This map itself can be organized into different clusters,
with a K-means algorithm used in this study. Ultimately, after
the SOM is performed, a classified 2-D image is reconstructed
from node weights. The value of each pixel in the original map
is substituted by the value of its corresponding neuron weights
(which is now in a class) and the desired class (crevasses here)
on the initial image extent will be detected. SOM structure can
be coded in any programing software or conducted in ANN mod-
ules of professional software with precise setting options, particu-
larly image processing packages. However, finding the best setting
for extracting the target features is challenging, and several set-
tings must be tested and be programed. The SOM in this study
was performed in the MATLAB environment.

Considering the linear shape of the crevasses and their small
area compared with that of the much larger host glacier, we are
technically taking advantage of one of the shortcomings of the
SOM algorithm, known as the magnification factor (Cottrell
and others, 1998), to identify linear features such as crevasses.
The factor can be defined as the tendency of SOM to overestimate
low probability areas, a factor that may not be found in other
ANN methods. In this study, the procedure starts on one side,
geomorphometry, with selecting the best parameters as inputs.
Statistical parameters such as optimum index factor (Chavez
and others, 1982) can be used for this selection. However, in
this study, as discussed previously, we carefully chose the best
parameters based on our understanding about crevasse geometry.
The kernel size for producing the selected parameters from a
DEM is considered a part of the SOM configuration in this

study. After the parameters are built and selected, each is normal-
ized with a logistic transformation between zero and one.

Assignment of appropriate settings and learning parameters is
the most-important step in efficiently extracting a specific feature
using SOM in the detail that is needed. The most important con-
trol parameters are: (1) the output layer neuron size, which has a
direct correlation with the level of details that would be expected
for the classification. For the fully delineation of the target feature
outline, the optimum size needs to be identified. Initial neighbor-
hood radius also depends on the output layer neuron size. (2) The
number of iterations, which is the number of times that the input
data will be presented to the map. All these criteria have been
selected by trial and error, and the results compared by evaluating
the quality of SOM performance using the quantization error
(QE) as the criterion:

QE = 1
n

∑
‖ xi −mxi ‖ (9)

where n is the number of inputs, xi is the input and mxi is the
BMU. The error describes the neural map fitting to input data,
which means Euclidian distance between data vectors and
BMU, and the smallest average QE denotes the optimal solution.
For example, the necessary number of iterations can be deter-
mined by monitoring QE; once it stops decreasing and remains
constant, no more are needed. On the other hand, small output
layer neuron size may not properly identify the target features
and large output size might miss-classify the targets, so for all
control parameters, it is critical to identify the optimal and
efficient values.

For this study, the random initialization of weights has been
used and the initial neighborhood radius adjusted to be equal
to the output layer’s diagonal size, which is the maximum pos-
sible. To identify the optimal map with the best setting and con-
figuration, several sets of configurations have been applied using
different configuration parameters. This approach resulted in
∼800 classification results, from which repeated and redundant
final maps have been removed using principal component ana-
lysis as the identification procedure using the methodology intro-
duced by Jolliffe (1972). The final resulting maps have been
narrowed down to 20 classified images with the least QE value.
Ultimately, the selected maps were vectorized (nonsimplified)
and smoothed by Polynomial Approximation with Exponential
Kernel in Arcmap before accuracy assessment with a precise
manually digitized map. The extent of the manually extracted cre-
vasses, as the reference map, have been examined and compared
with the SOM results, in terms of average areas of overlap and
outlier. Finally, the most accurate crevasse map has been selected
(Fig. 7). In simple terms, the impacts and quality of different set-
ting parameters have been analyzed to gain the best result.
Because of the shape of crevasses in this study and precise param-
eter selection procedure, identifying the target class is straightfor-
ward by manual reclassification, but labeling can also be
conducted automatically by using unsupervised statistically
weight-based labeling procedure (van Heerden and Engelbrecht,
2013). The final crevasse binary raster map has been converted
to a vector file and smoothed. Their dimensions were then mea-
sured using the final vector image. These procedures can all be
coded in a single file, or one can use modules from different
software for each step.

Results and discussion

The input dataset and final maps indicate that crevasses can be
identified and mapped by this methodology based on different
parts of the features. As an example, Figure 7b illustrates the
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cross-profile of a typical crevasse that has been defined by its
cross-sectional and longitudinal curvatures. The ultimate SOM
setting for crevasse extraction from the LiDAR DEM of 1-m reso-
lution has been identified as ∼2.5 million iterations with an 80 ×
80 output layer neuron, with one unit interval in columns and
rows of the network, which gives us a QE of ∼0.0095.
One-meter resolution is a suitable pixel size for detailed study

of the larger crevasse features, which are tens of meters in length,
but some small cracks may not be detected in the LiDAR data or
captured in the DEM. The resulting crevasse distribution map
(Fig. 8a) demonstrates the ability of this methodology to extract
crevasses of different sizes and orientations. Accuracy assessment
and comparison of results with manual data indicate a 93.7% cor-
relation between manually- and automatically-classified data.

Fig. 6. Schematic illustration of the SOM architec-
ture, consisting of input and output layers and
weight vectors that connect these two layers.
Different gray tones in the SOM layer indicate the
degree of the tuning in neighbor neurons, based
on their distance to the winner or best matching
unit.

Fig. 7. The flowchart indicates the methodology
that has been applied in this study to find the
best SOM configuration.
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Errors are mostly close to rock walls, with high topographic dif-
ferences, and in the high-density crevasse locations with very
close and crossed crevasses, that could result in uncertainty in
detecting individual crevasses (Fig. 8b). This result cannot be
obtained using optical images with diversely-oriented crevasses,
because they are affected by illumination conditions based on
their angle. Crevasse orientations and densities differ across the
glacier, with the highest crevasse density on the glacier in
September 2015 being ∼20 counts per 10 000 m2.

Many transverse linear crevasses exist in the north-central area
of the glacier, a steeply sloped surface that promotes strong longi-
tudinal extension (Fig. 8a). Bergschrunds are identified at the
head of the glacier proximal to the ice/bedrock interface, trans-
verse to the main flow. Lateral or marginal crevasses along the
flanks of the glacier are oriented in the downslope direction.
Lateral crevasses are probably associated with extensional lateral
shear within the glacier, caused by friction between the flowing
ice and the side walls of the valley. Arcuate crevassing here reflects
local ice extension combined with lateral drag. The diversity of
crevasses indicates the importance of both longitudinal and lateral
stress gradients in different parts of the glacier.

Crevasse morphology

SOM results identified 1048 individual crevasses, with intersect-
ing crevasses identified and separated based on their primary
orientation. Crevasses on Haig Glacier have different sizes and
range from <1 m to ∼2 m in width, 3–289 m in length and
between 1 and 18 m in depth (Table 1). The population of cre-
vasses detected with our algorithm has a mean length and
width of 35.6 and 0.56 m, and a mean minimum depth of
1.85 m. Considering our measurement precision of ∼2 samples
per m2, crevasse length distribution will be reasonably accurate,
but we do not resolve crevasse widths reliably. Similarly, depth
inferences are minimum estimates, since most crevasse reflections
will come from the sidewall rather than the bottom of a crevasse.

Covariance of crevasse width, length, depth and local slope
indicate a moderate correlation between width and depth, but
no strong relation exists between length and the other dimensions.
The widest and deepest crevasses are located close to the rock
walls, particularly in the northwest part of the glacier. These loca-
tions also have the largest errors in extracted widths, due to
closely spaced and crossed crevasses which might be captured

as wider crevasses. Since crevasse presence more than doubles
the absorption of solar radiation and ice ablation (Pfeffer and
Bretherton, 1987), crevasse morphology and aspect could warrant
consideration in surface ablation calculations.

Geodetic surface differences

The final map can be used to explicitly consider crevasses when
calculating elevation differences on a glacier surface. Differences
for repeat altimetry are used to measure snow accumulation,
snow and ice melt, and glacier elevation changes due to ice
motion, but mean differences may be biased in association with
LiDAR signals that penetrate crevasses. Biases are greater if one
of the DEM surfaces corresponds to snow-covered conditions,
where crevasses are not visible. In this case, late-summer
LiDAR returns that reflect from inside crevasses can appear as
exaggerated vertical change (values exceeding 15 m in our data),
presenting a systematic negative bias in geodetic mass-balance
measurements: an overestimate of summer surface lowering.

Figure 9 shows the April–September difference maps with and
without the crevasse filter. Visual differences between these plots
are difficult to discern, but the distribution of elevation changes is
modified when the crevasses are masked out. Figure 10a plots the
histogram of elevation difference values with and without the cre-
vasse mask. The mean difference on the glacier (±1σ) for all gla-
cier pixels on the raw, co-registered DEMs (April–September) is
ΔhL = −5.48 ± 0.93 m. After crevasse removal with the ANN filter,
this equals −5.02 ± 0.92 m: an adjustment of ∼9%.

Based on ground control sites, the estimated (1− σ) vertical
accuracy of individual LiDAR point measurements is σz = 0.1 m.
The spatial autocorrelation length scale in the LiDAR data are esti-
mated to be ρ = 300 m (Menounos and others, 2019), or it has been
estimated at ρ = 500 m in prior work (Nuth and Kaab, 2011; Brun
and others, 2017). Spatial autocorrelation reduces the effective sam-
ple size for calculating the difference of means (i.e. the elevation
change). Following Rolstad and others (2009, eqn 14), the effects
of spatial autocorrelation on the elevation change error are calcu-
lated from σe = σz(πρ

2/5A)1/2, for glacier area A. Using the more
conservative estimate ρ = 500 m along with A = 2.8 km2, σe =
0.024 m and the 0.46-m difference between the two estimates of
mean surface elevation change is statistically significant.

Surface elevation change is plotted as a function of elevation in
Figures 10b and 10c. The relation between elevation and elevation

Fig. 8. (a) Rose diagram (left bottom) and map of 1048 crevasses detected by the SOM method on Haig Glacier, with diverse orientation. (b) Crevasse density map
(unit: number in square kilometer). Circles indicate locations with high error, which are mostly close to rock falls. Errors are particularly in the width of the cre-
vasses, which is due to very close or crossed crevasses.
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change is weak relative to the variance at a given elevation, at odds
with the expectation of greater thinning at lower elevations. In
part, this is because the LiDAR-inferred elevation difference, ΔhL,
includes changes due to both surface mass balance (summer abla-
tion) and vertical glacier motion. Subsidence on the upper glacier
and emergence on the lower glacier oppose the elevation dependence
of the surface mass-balance signal. The deeper snowpack and firn on
the upper glacier also result in a lower average density for the mass
that ablates at higher elevations. Hence, vertical differences are
greater for a given amount of water-equivalent melt (i.e. melt
energy), further weakening the elevation gradient in glacier thinning.

Below 2850 m, the expected trend of decreased elevation
change with higher elevation is evident in Figure 10c, which
plots the mean elevation change vs elevation. This can be thought
of as a centerline elevation profile, with LiDAR points averaged in
12-m elevation bins. Horizontal lines in Figure 10c indicate the
median elevation change ± 1 std dev. in each elevation bin, and
is only plotted for the ANN results. This encompasses ∼67% of
points (elevation changes roughly approximate a normal distribu-
tion). The ANN crevasse-filling procedure decreases the estimated
elevation change by a relatively constant amount (∼0.5 m)
through the middle of the glacier, with lower differences at the
lowest and highest elevations.

Surface drawdown in excess of 10 m is inferred at the highest
elevations in Figures 10b, c (above ∼2850 m a.s.l.). This is likely
associated with LiDAR reflections from bergschrunds and ice
rifts at the glacier headwall, which open up over the summer

melt season. This is visible in Figure 9, which indicates large ele-
vation changes at the glacier margins. Large changes along the
terminus margins represent a genuine signal: high ablation com-
bined with terminal retreat of several meters over the summer.
For the lateral margins and the steep glacier headwall, the
LiDAR is picking up bergschrunds adjacent to the valley walls
and rifts that propagate downslope from this. The crevasse map-
ping technique does not appear to completely capture the morph-
ology of these features. These regions are also subject to heavy
winter snow-loading from sloughing/avalanches from the steep
rockwalls. Avalanche deposits are not accounted for in our
snow survey, but may contribute to the large elevation changes
inferred from the LiDAR difference maps at the glacier headwall.

Another notable contrast is that the range of modeled Δhm is
narrower than that of ΔhL, with a std dev. about half of the
observed (LiDAR) signal. The variability in geodetic and surface
mass-balance signals should be comparable, as spatial variations
associated with vertical ice motion (ice dynamics) will be
smoothed relative to local surface mass-balance effects. Some of
the difference in the variance may be due to the LiDAR-inferred
glacier surface change picking up residual crevasses and bergs-
chrunds that our algorithm failed to detect and remove. The mass-
balance model also lacks some of the spatial complexity and
inhomogeneity that is present in the real world, e.g. small-scale
variations in surface albedo, snow depth, and microclimate. In
this respect, the LiDAR data will give a better representation of
the spatial variability.

Table 1. Crevasse depth, width and length range (m) extracted from the SOM methodology, which shows the general overview of the crevasse dimensions detected
by the LiDAR survey on Haig Glacier

Minimum 25% Mean 75% Maximum σ

Length 3.4 17.4 35.6 45.4 288.9 27.2
Width 0.26 0.62 0.56 1.60 2.40 0.32
Depth 0.11 0.82 1.85 2.55 18.0 1.6

Fig. 9. Left: Raw (uncorrected) elevation difference map of Haig Glacier from 20th April to 12th September 2015. Warmer colors indicate crevassed regions in the
map which can emphasize the importance of their existence in calculations (boxes). Right: Corrected data by using the SOM method. Zoom-in bottom images
highlight these differences (scale bar = 100 m). Arrows indicate large crevasses that are present in uncorrected elevation differences (right) and have been removed
in corrected data (left).
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The distribution of LiDAR-inferred ice surface elevation
changes (ΔhL) can be compared with the predictions of a distrib-
uted surface energy and mass-balance model. The model is seeded
with initial snow depths and densities based on the winter mass-
balance survey. Summer ablation is calculated from the surface
energy balance, using in situ AWS data distributed over the gla-
cier, modified for local topographic shading, slope and aspect
(Ebrahimi and Marshall, 2016). The model has a horizontal reso-
lution of 23 m × 36 m, giving 3621 gridcells over the glacier.
While coarse compared with the LiDAR data, this provides an
estimate of the spatial pattern of surface elevation changes asso-
ciated with the surface mass balance, Δhm. Results are plotted
in Figures 10d–f, while Figure 11 provides a direct comparison
of the LiDAR data and the glaciological model. Elevations are
restricted to 2510–2866 m for this comparison, the elevation
range of Haig Glacier; the LiDAR data (Figs 10a–10c) include
numerous additional datapoints from adjacent glacial systems,
which are not part of the Haig Glacier catchment or model (see
Fig. 1).

The winter 2015 snowpack ranged from 2.4 to 3.6 m deep
along the glacier centerline (960–1450 mm w.e.), with a mean
specific winter mass balance of Bw = 1220 mm w.e. The modeled

summer mass balance is Bs =−3030 mm w.e., giving a net balance
of Bn =−1810 mm w.e. This includes an estimated 40 mm w.e. of
summer snowfall. Expressed as surface height, adjusting for the
densities of snow, firn and ice, the average modeled height change
(± 1σ) is Δhm =−4.92 ± 0.72 m, with a range from −6.44 to
−1.07 m. There is a large degree of consistency between the
model with the LiDAR-inferred elevation changes, but there are
also some interesting differences. In both cases, more than 80%
of the points fall in the range Δh = −6 to −4 m (Figs 10a, d).
The mean elevation change in the model is within 0.1 m (2%)
of the crevasse-filtered LiDAR results, and none of our simula-
tions provided a good fit with the raw LIDAR data.

The model appears to underestimate ablation near the glacier
terminus, but in general the ANN results and the glaciological
model are in good accord below ∼2760 m (Fig. 11). The model
exhibits less variability than the LiDAR data, which is to be
expected given the lower resolution and simplifications inherent
in the model (e.g. a single albedo for glacier ice). There is strong
divergence between the model and the LiDAR data above
∼2760 m though, with modeled thinning of ∼4 m on the upper
glacier compared with surface drawdowns of ∼5 m in the
ANN-filtered LiDAR data. The LiDAR data includes vertical

Fig. 10. Comparison of surface elevation change in summer 2015 as measured by the LiDAR surveys (top panels) vs glaciological observations and modeling (bot-
tom panels). The top panels show the raw LiDAR data (light blue) and ANN-filtered data with crevasse-filling (brown). (a, d) Distribution of elevation changes. (b, e)
Elevation change as a function of elevation for all points. (c, f) Mean elevation change in 12-m elevation bands (circles, triangles). The ranges in these plots indicate
the median elevation change ±1σ for each elevation band; ∼67% of points fall within this range of elevation change.
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changes associated with both summer melt and ice motion; these
data therefore suggest that there may be a submergence signal on
the order of 1 m over the summer, corresponding to a submer-
gence velocity of ∼2.5 m a−1. However, we do not see an analo-
gous emergence velocity signal on the lower glacier. The surface
energy balance model may underestimate the ice melt on the
lower glacier. This could be caused by energy balance processes
that are not included in the model such as heat advection from
exposed rock near the glacier terminus or low ice albedo (values
below 0.2) on the lower glacier, where impurities have a higher
concentration.

Conclusions

An automatic methodology for mapping and geometric analysis
of crevasses based on SOM is described in the current study.
The methodology successfully extracts the topography of more
than 1000 crevasses on a small mountain glacier in the
Canadian Rocky Mountains. Comparing the resulting map with
50 manually-extracted crevasses from the same data indicates
an accuracy of 94% for those crevasses that are detected by the
LiDAR. Additional small crevasses may not be seen in the
imagery. This result indicates the power of using SOM with sim-
ple geomorphometric factors, cross-sectional and longitudinal
curvatures, in extracting small features such as crevasses. This
study also highlights the ability of LiDAR elevation data to
catch small surface irregularities and the potential to exploit
this in glacier studies. The extracted crevasse fields indicate
diverse stress configurations on Haig Glacier, which can be related
to ice flow fields. Movement of surface crevasses as well as their
geometric changes over time could also be observed through
repeat LiDAR DEMs. In addition, applying unsphericity curva-
tures can give us more information about crevasse rim changes,
which can add a new aspect to crevasse transformation studies
in remote sensing.

Moderate- to large-scale glacier crevasses are penetrated by air-
borne LiDAR when there is no snow cover on the glacier, giving
reflections from several meters below the surface of the glacier.
This reflection can cause elevations of the LiDAR-derived DEM
to be too low and may causes errors in differences that are used
for geodetic mass-balance monitoring. Automatic detection,
masking and removal of crevasses can be carried out to give a
more accurate surface elevation of the glacier as well as provide
maps of crevasse distribution that can be used for analysis of gla-
cier stress and flow regimes.

The crevasse-removal filter reduces the LiDAR-inferred aver-
age glacier thinning from 5.48 to 5.02 m at Haig Glacier in sum-
mer 2015. In essence, false returns from crevasses produce a
0.46 m (9%) difference of glacier elevation change compared
with the ANN crevasse-filtered results. The mapping technique
and crevasse-removal algorithms should be considered in cal-
culation of glacier-wide elevation differences for glacier change
analysis. Our methodology, or alternative crevasse-filtering
techniques, may improve the accuracy of geodetic mass-balance
studies in glaciology, but our approach would also require add-
itional testing with a richer dataset that spans multiple glaciers
and multiple years. Geodetic balance calculation for two
end-of-summer DEMs without crevasse removal would introduce
less bias than differencing an end-of-winter and end-of-summer
DEMs.

In some situations, DEMs that include crevasses may be desir-
able, as a truer representation of surface topography; in essence,
crevasses are void spaces in the glacier, and estimates of glacier
volume (hence volume change) could treat them as such. In
this case, the crevasse detection algorithm could be combined
with assumptions about crevasse shape and depth to estimate
the void volume that is associated with crevasses. This is only pos-
sible in late summer, however, when crevasses are not snow-
bridged and can be detected. In our study the magnitude of
this bias is probably also a maximum value since the 2015 melt
season was exceptional and so would tend to maximize the expos-
ure and widening of crevasses due to melt along their walls. We
plan to study repeat data from Haig Glacier in future years
through the introduced ANN methodology and to produce
detailed change detection maps, which will give us additional
information about the evolution of the spatial snow accumulation,
melt and elevation change patterns on the glacier. LiDAR-derived
crevasse maps also have the potential to convey more information
about the glacier history and flow conditions.
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