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Abstract
This work is concerned with the exponential turnpike property for optimal control problems of particle systems and
their mean-field limit. Under the assumption of the strict dissipativity of the cost function, exponential estimates
for both optimal states and optimal control are proven. Moreover, we show that all the results for particle systems
can be preserved under the limit in the case of infinitely many particles.

1. Introduction

For optimal control problems of time-dependent differential equations, the exponential turnpike prop-
erty states that the optimal solution remains (exponentially) close to a reference solution. Usually, this
reference solution is taken as the optimal solution to the corresponding static problem. The concept of
turnpike was first introduced for discrete-time optimal control problems [15, 31]. Since then, many turn-
pike results have been established, and there has been recent interest in the mathematical community
[14, 21–25, 29, 34, 35].

In the present work, we focus on the exponential turnpike phenomenon for optimal control problems
of a class of interacting particle systems and their mean-field limit equations. Important applications for
these systems occur in the fields of swarm robotics [13], crowd dynamics [3], traffic management [32]
or opinion dynamics [5], to name but a few.

The original formulation of the interacting particle system is usually at the so-called microscopic
level and given by a coupled system of Ordinary differential equations (ODEs). Alternatively, one can
also focus on the collective behaviour by considering the probability density distribution of the par-
ticles and investigating the corresponding McKean–Vlasov or mean-field equation (see, e.g. [1, 8, 9]
for results involving control actions). The control of large-scale interacting particle systems has gained
recent interest (see, e.g. [5, 10, 12]). The control of high-dimensional system is challenging, and cur-
rent approaches resort to, for example, using Riccati-based [2, 28], moment-driven control [4] or model
predictive control approaches [5, 6, 33]. Motivated by this, we aim to utilise the turnpike property to
control those high-dimensional systems [7, 30, 37]. More precisely, we prove the exponential turnpike
estimate for ODE systems with an arbitrary particle number and show that the property also holds in
the mean-field limit. Here, we utilise the particular structure of interacting particle systems to derive the
turnpike property.

The topic of turnpike property for mean-field optimal control problems has been studied recently in
[27]. At this point, we would compare [27] with the present paper and point out our main contributions.
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(1) In [27], the authors prove the turnpike property with interior decay [26], which is a time integral
property [18]. In the present paper, under similar assumptions (with a minor modification), we present a
point-wise exponential estimate, which is more quantitative. (2) In addition to the estimate of the optimal
solution, we also prove the exponential decay for the optimal control.

As in [27], our basic assumption is that the optimal control problems satisfy a strict dissipativity
inequality. By considering a feedback control, we obtain the cheap control inequality. Then, we use this
inequality iteratively to prove the exponential estimate for the optimal solution. This iteration technique
has also been used to prove the turnpike property for other optimal control problems (see, e.g. [16]). Note
that all the estimates for particle systems are independent of the particle number N. Thus, all results are
also expected in the mean-field level as N → ∞. By using convergence in the Wasserstein distance and
the lower semi-continuity of the cost function, we prove the corresponding exponential decay property
for the solution of the mean-field optimal control problem. In order to establish the exponential decay
for the optimal control, we design a specific feedback control (see also [17]). In this way, the optimal
control can be bounded by the optimal solution. Combining with the estimate for solutions, we also
prove the exponential decay property for the optimal control with respect to time t.

The paper is organised as follows. In Section 2, we state the problem and present some basic assump-
tions. In Section 3, we prove the cheap control property for the optimal control problem of the particle
system. By considering the limit N → ∞, we prove the same property in the mean-field level. Based on
these results, we prove the exponential turnpike property for both the particle system and the mean-field
problem in Section 4. At last, the auxiliary estimate in the Wasserstein distance is given in Appendix A.
The main results are Theorem 4.3 on the exponential turnpike property for the particle system and
Theorems 4.4–4.5 for the mean-field problem.

2. Preliminaries

Consider the optimal control problem Q(0, T ,μ0):

V(0, T ,μ0)= min
u∈F

∫ T

0

∫
L(x)dμ(t, x)dt +

∫ T

0

∫
�(u(x, t))dμ(t, x)dt

:= min
u∈F

∫ T

0

f (μ(t, x), u(t, x)) dt. (2.1)

Here, μ(t, ·) ∈ P2

(
R

d
)

is a probability measure on R
d defined for t ∈ [0, T], and it satisfies the following

equation in a distributional sense:

∂tμ+ ∇x ·
(

(P ∗μ+ u)μ
)

= 0, 0< t< T , x ∈R
d,

μ(0, x) =μ0(x). (2.2)
Here, P(x) ∈R

d is a vector-valued function and

(P ∗μ)(x, t) =
∫
Rd

P(x − y)dμ(t, y).

As that in [20], we take the control u(t, x) ∈F satisfying

Definition 2.1. Fix a control bound 0<CB <∞. Then u(t, x) ∈F if and only if

(i) u : [0, T] ×R
d →R

d is a Carathéodory function.
(ii) u(t, ·) ∈ W1,∞

loc (Rd) for almost every t ∈ [0, T].
(iii) |u(t, 0)| + Lip(u(t, ·), Rd) ≤ CB for almost every t ∈ [0, T]. Here, Lip(u(t, ·), Rd) is the Lipschitz

constant for u(t, ·) such that |u(t, x) − u(t, y)| ≤ Lip(u(t, ·), Rd)|x − y| for all x, y ∈R
d.
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Remark 2.1. In [20], the control bound can be chosen as an integrable function l(t) ∈ Lq(0, T) for 1 ≤
q<∞. For simplicity, we take the bound to be constant.

Next, we show assumptions for the optimal control problem (2.2).

Assumption 2.1. The cost function f satisfies the following assumptions:

(i) Strict dissipativity: there exists a constant CD such that for any b ≥ a ≥ 0 and any pairs
(μ(t, x), u(t, x)) ∈ P2(Rd) ×F , the following inequality holds∫ b

a

f (μ(t, x), u(t, x))dt ≥ CD

∫ b

a

∫
Rd

(
|x − x̄|2 + |u(t, x)|2

)
dμ(t, x)dt.

(ii) There exists a constant CL such that L(x) ≤ CL|x − x̄|2 for all x ∈ B(x̄, R) := {x ∈R
d : |x − x̄|< R}.

Moreover, there exists a constant C� such that�(u) ≤ C� |u|2 for all u ∈ B(0, R) = {u ∈R
d : |u|< R}.

(iii) The interaction function P(x) satisfies P(0) = 0 and the following Lipschitz property:

|P(x) − P(y)| ≤ Cp|x − y|, ∀ x ∈R
d (2.3)

with CP > 0 a constant.

Remark 2.2. These assumptions are also used in [27] except for condition (ii). Here, we need to assume
that both � and L can be bounded by quadratic functions. Note that this assumption is also satisfied for
the example of [27].

For further discussion of the optimal control problem, we consider the empirical measure on [0, T] ×
R

d:

μN(t, x) = 1

N

N∑
i=1

δ (x − xi(t)) . (2.4)

Here, xi(t) (i = 1, 2, . . . , N) is the solution to the optimal control problem QN(0, T , x0):

VN(0, T , x0) = min
uN∈F

1

N

N∑
i=1

∫ T

0

L(xi(t)) +�(uN(t, xi(t)))dt,

dxi(t)

dt
= 1

N

N∑
j=1

P(xi(t) − xj(t)) + uN(t, xi(t)),

xi(0) = xi0. (2.5)

Here, x(t) = (x1(t), x2(t), . . . , xN(t)) represents N particles, x0 = (x10, x20, . . . , xN0) is the initial data and
uN(t, xi(t)) is the control. We use the subscript N to emphasise the dependence of the optimal control uN

of (2.5) on the number of particles N.

Remark 2.3. Problem QN(0, T , x0) can be formally derived from the original optimal control problem.
For any N, we have

f (μN , uN) =
∫

L(x)dμN(t, x) +
∫
�(uN(t, x))dμN(t, x)

= 1

N

N∑
i=1

[
L(xi(t)) +�(uN(t, xi(t)))

]
.

which implies that the cost function in (2.5) is given by

VN(0, T , x0) = min
uN∈F

∫ T

0

f (μN , uN)dt.

As outlined in the remark, the optimal control problem (2.5) and the original problem are intertwined.
Under Assumption 2.1, the existence and uniqueness of the problems (2.1)–(2.2) has been established
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in [20]. To recall the theorem, the definition of the p−Wasserstein distance between two probability
measures μ and ν is given:

Wp(μ, ν) = inf
γ∈�(μ,ν)

(∫
R2d

|x − y|pdγ (x, y)

)1/p

.

Here, �(μ, ν) denotes the set of transport plans, that is, collection of all probability measures with
marginals μ and ν (see also [36]). Having these preparations, we state the existence theorem in [20],
which gives the unique solution to the optimal control problems (2.1)–(2.2) as a mean-field limit of the
N-particles problem (2.5).

Theorem 2.1. Assume that the initial data μ0 in (2.2) is compactly supported; that is, there exists
R> 0 such that suppμ0 ⊂ B(0, R). Moreover, we assume that the empirical measure μN(0, x) =
1
N

∑N
i=1 δ (x − xi0) converges to μ0 in W1 distance. Let

μN(t, x) = 1

N

N∑
i=1

δ(x − xi(t))

be supported on the phase space trajectories xi(t) ∈R
d, for i = 1, . . . , N, defining the solution of (2.5)

with the optimal control uN . Then, there exists a subsequence (μNk , uNk ) such that uNk converges to u in
F as k → ∞ and

lim
k→∞

W1(μNk (t, ·),μ(t)) = 0

uniformly with respect to t ∈ [0, T]. Here, μ(t, x) is the weak equi-compactly supported solution to
the mean-field problems (2.1)–(2.2) with the optimal control u(t, x). Namely, for all t ∈ [0, T], the
distribution μ(t, x) ∈ C([0, T]; P1(Rd)) satisfies suppμ(t, ·) ⊂ B(0, R) and∫

φ(t, x)dμ(t, x) −
∫
φ(0, x)dμ0(x)

=
∫ t

0

∫ [
∂tφ(s, x) + ∇xφ(s, x) · ((P ∗μ)(s, x) + u(s, x))

]
dμ(s, x)ds, ∀ φ ∈ C∞

0 ([0, T] ×R
d). (2.6)

Furthermore, we have the following lower semi-continuous property:∫ T

0

f (μ(t, ·), u(t, ·))dt ≤ lim inf
k→∞

∫ T

0

f (μNk (t, ·), uNk (t, ·))dt. (2.7)

Here, f (μ(t, ·), u(t, ·)) = ∫
L(x)dμ(t, x) + ∫

�(u(x, t))dμ(t, x) is the time-dependent functional defined
in (2.1).

For the exponential stability later, we discuss solutions μ(t, x) in C([0, T]; P2(Rd)) with metric W2.
By adapting the method in [11, 20], we have

Lemma 2.2. For fixed control u(t, x), if μ(t, x) and ν(t, x) are solutions to (2.2) with initial data μ0 and
ν0 satisfying the assumption in Theorem 2.1, then there is a constant C> 0 such that

W2(μ(t, ·), ν(t, ·)) ≤ eCt W2(μ0, ν0) for t ∈ [0, T].

Some remarks are in order. The proof is similar to [11, 20] for the stability in W1 and deferred to
Appendix A. Hence, the optimal solution is unique in C([0, T]; P2(Rd)) if the initial data μ0 ∈ P2

(
R

d
)
.

Due to this argument, we assume that the optimal solution μ(t, x) also satisfies

lim
k→∞

W2(μNk (t, ·),μ(t, ·)) = 0 (2.8)

uniformly with respect to t ∈ [0, T]. The assumption is justified since we have the convergence inW1 and
the uniform boundness of the second-order moment forμN(t, ·) with respect to N (see, e.g. Theorem 4.3).
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3. Cheap control property

The cheap control property of the optimal control problem shows that the optimal values are bounded by
the distance between the initial state and the desired static state. Combining the cheap control property
with the strict dissipativity, we provide a bound on the second-order moments of the probability density.
More specifically, for the N-particles system (2.5), we prove:

Lemma 3.1. Suppose uN is an optimal control to the problem QN(0, T , x0) and x(t) is the corresponding
solution, then uN |t∈[a,T] is also an optimal control to the sub-problem QN(a, T , x(a)) for any 0 ≤ a< T .
Moreover, the following inequality holds under Assumption 2.1:

1

N

N∑
i=1

∫ T

a

|xi(t) − x̄|2 + |uN(t, xi(t))|2dt ≤ C0

1

N

N∑
i=1

|xi(a) − x̄|2. (3.1)

Here, C0 is a positive constant independent of N and T .

Proof. Suppose there exists a control ũN , defined on t ∈ [a, T], such that the corresponding solution x̃(t)
satisfies x̃(a) = x(a) and ∫ T

a

f (μ̃N , ũN)dt<
∫ T

a

fN(μN , uN)dt.

Here, μ̃N is the empirical measure given by

μ̃N = 1

N

N∑
i=1

δ (x − x̃i(t)) .

Then, we construct a control

ûN(t, x) =
{

uN(t, x), t ∈ [0, a)

ũN(t, x), t ∈ [a, T].

In this case, the cost satisfies∫ T

0

f (μ̂N , ûN)dt =
∫ a

0

f (μN , uN)dt +
∫ T

a

f (μ̃N , ũN)dt<
∫ T

0

f (μN , uN)dt.

This contradicts to the fact that (x(t), uN(t)) is an optimal solution on [0, T]. Therefore, uN |t∈[a,T] is an
optimal control for the sub-problem QN(a, T , x(a)).

Thanks to the strict dissipativity, we have∫ T

a

f (μN , uN)dt ≥ CD

∫ T

a

∫
Rd

(
|x − x̄|2 + |uN(t, x)|2

)
dμN(t, x)dt

= CD

1

N

N∑
i=1

∫ T

a

|xi(t) − x̄|2 + |uN(t, xi(t))|2dt.

By Remark 2.3, we obtain the estimate (3.1) once we prove the following cheap control inequality:∫ T

a

f (μN , uN)dt = 1

N

N∑
i=1

∫ T

a

L(xi(t)) +�(uN(t, xi(t)))dt ≤ CDC0

1

N

N∑
i=1

|xi(a) − x̄|2 (3.2)

for a constant C0 > 0 independent of N and T .
Next, we focus on the proof of (3.2). To this end, we consider the feedback control for the problem

(2.5):

ũN(t, x̃i(t)) = −β(x̃i(t) − x̄) − 1

N

N∑
j=1

P(x̃i(t) − x̃j(t)), i = 1, 2, , . . . , N, t ∈ [a, T].
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Note that ũN ∈F holds. Indeed, due to assumption (2.3), we have that

|ũN(t, x) − ũN(t, y)| =
∣∣∣β(x − y) + 1

N

N∑
j=1

[
P(x − x̃j(t)) − P(y − x̃j(t))

]∣∣∣
≤ β|x − y| + CP

1

N

N∑
j=1

|x − y| = (β + CP)|x − y|,

which gives a Lipschitz constant for ũN(t, ·). Based on this feedback control, x̃i(t) satisfies the equation

dx̃i(t)

dt
= −β(x̃i(t) − x̄), x̃i(a) = xi(a).

It follows that

|x̃i(t) − x̄|2 = e−2β(t−a)|x̃i(a) − x̄|2 = e−2β(t−a)|xi(a) − x̄|2. (3.3)

In the next paragraph, we estimate |ũN(t, x̃i(t))|2. By definition, we have

|ũN(t, x̃i(t))|2 ≤ 2β2|x̃i(t) − x̄|2 + 2
∣∣∣ 1

N

N∑
j=1

P(x̃i(t) − x̃j(t))
∣∣∣2

.

Using Jensen’s inequality, we have

∣∣∣ 1

N

N∑
j=1

P(x̃i(t) − x̃j(t))
∣∣∣2 ≤ 1

N

N∑
j=1

∣∣∣P(x̃i(t) − x̃j(t))
∣∣∣2

. (3.4)

Due to the assumption of P(x), we have

1

N

N∑
j=1

∣∣∣P(x̃i(t) − x̃j(t))
∣∣∣2 ≤ C2

P

N

N∑
j=1

|x̃i(t) − x̃j(t)|2

≤ 2C2
P|x̃i(t) − x̄|2 + 2C2

P

N

N∑
j=1

|x̃j(t) − x̄|2.

Then, it follows that

|ũN(t, x̃i(t))|2 ≤ (2β2 + 4C2
P)|x̃k(t) − x̄|2 + 4C2

P

N

N∑
j=1

|x̃j(t) − x̄|2.

We sum i from 1 to N and get

1

N

N∑
i=1

|ũN(t, x̃i(t))|2 ≤ C(β, CP)
1

N

N∑
i=1

|x̃i(t) − x̄|2

with C(β, CP) = 2β2 + 8C2
P. Since uN is optimal in (2.5), we have

1

N

N∑
i=1

∫ T

a

L(xi(t)) +�(uN(t, xi(t)))dt ≤ 1

N

N∑
i=1

∫ T

a

L(x̃i(t)) +�(ũN(t, x̃i(t)))dt

≤ (C(β, CP)C� + CL)
1

N

N∑
i=1

∫ T

a

|x̃i(t) − x̄|2dt.
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Note that the last inequality is due to Assumption 2.1 (ii). Substituting (3.3) into the last inequality, we
have

1

N

N∑
i=1

∫ T

a

L(xi(t)) +�(uN(t, xi(t)))dt

≤ (C(β, CP)C� + CL)

(∫ T

a

e−2β(t−a)dt

)
1

N

N∑
i=1

|xi(a) − x̄|2.

It is easy to show that ∫ T

a

e−2β(t−a)dt = 1

2β
e−2β(t−a)

∣∣∣a

T
≤ 1

2β
.

Then, we conclude

1

N

N∑
i=1

∫ T

a

L(xi(t)) +�(uN(t, xi(t)))dt ≤ C(β, CP)C� + CL

2β

1

N

N∑
i=1

|xi(a) − x̄|2. (3.5)

Note that the inequality (3.2) holds if we take the constant

C0 = C(β, CP)C� + CL

2βCD

,

which is independent of N and T .

The estimate (3.1) is independent of N. We consider N → ∞ to get the corresponding result for the
mean-field problem. To this end, we also need to use the lower semi-continuity of the cost function (2.1).
Namely, we prove the following property for the mean-field problem.

Lemma 3.2. Suppose (μ(t, x), u(t, x)) is the solution to the optimal control problems (2.1)–(2.2), then
the following inequality holds under Assumption 2.1:∫ T

a

∫
Rd

(
|x − x̄|2 + |u(t, x)|2

)
dμ(t, x)dt ≤ C0

∫
|x − x̄|2dμ(a, x). (3.6)

Proof. Due to lower semi-continuity, we have∫ T

a

f (μ(t, x), u(t, x))dt ≤ lim inf
k→∞

∫ T

a

f (μNk (t, x), uNk (t, x))dt

= lim inf
k→∞

1

Nk

Nk∑
i=1

∫ T

a

L(xi(t)) +�(uNk (t, xi(t)))dt.

On the other hand, since uNk is the optimal solution to (2.5), it follows from (3.2) that∫ T

a

f (μ(t, x), u(t, x))dt ≤ lim inf
k→∞

1

Nk

Nk∑
i=1

∫ T

a

L(xi(t)) +�(uNk (t, xi(t)))dt

≤ lim inf
k→∞

CDC0

1

Nk

Nk∑
i=1

|xi(a) − x̄|2

= CDC0

∫
|x − x̄|2dμ(a, x).

Here, C0 is the constant introduced in Lemma 3.1. Using the strict dissipativity shows that

CD

∫ T

a

∫
Rd

(
|x − x̄|2 + |u(t, x)|2

)
dμ(t, x)dt ≤

∫ T

a

f (μ(t, x), u(t, x))dt ≤ CDC0

∫
|x − x̄|2dμ(a, x).

This is the relation (3.6), and we conclude the result.
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We conclude this section with the following remarks:

• The inequality (3.6) is the mean-field limit of relation (3.1).
• The right-hand side of (3.6) is independent of T . As in other turnpike results, this shows an inte-

gral turnpike property. Namely, the second-order moments
∫
Rd

(
|x − x̄|2 + |u(t, x)|2

)
dμ(t, x) must

be small along the largest part of the time-horizon provided that T is sufficiently large.
• The cheap control idea was also used in [27] to prove the integral turnpike property with interior

decay. Different from the results in [27], the present work uses the second-order moment
∫
Rd |x −

x̄|2dμ(a, x) as the bound in (3.6) instead of the first-order moment. This is important for the proofs
in the next section.

4. Exponential turnpike property

In this section, we will prove that the optimal solution to (2.1)–(2.2) converges to the optimal static state
exponentially fast. In general, the optimal static state (μ̄(x), ū(x)) is a solution to the problem:

min
ū∈F

f (μ̄(x), ū(x)) := min
ū∈F

∫
L(x)dμ̄(x) +

∫
�(ū(x))dμ̄(x),

s.t. ∇x ·
(

(P ∗ μ̄+ ū)μ̄
)

= 0, x ∈R
d.

In the present work, we focus on the case where μ̄(x) = δ(x − x̄) and ū(x) ≡ 0. We check that μ̄(x) satisfies
the equation in the weak sense: for all φ̄ ∈ C∞

0 (Rd),∫
∇xφ̄ · (P ∗ μ̄+ ū)dμ̄(x) =

∫
∇xφ̄ · P(x − x̄)dμ̄(x) = 0.

Thus, it is not difficult to see that (μ̄(x), ū(x)) = (δ(x − x̄), 0) is an optimal static state.
The estimates on the inequalities for the optimal solution μ(t, x) and the optimal control u(t, x) are

given separately (see Theorems 4.4 and 4.5 below). To this end, we derive the estimate for the optimal
solution xi(t) of the N-particles system. Then, we consider the mean-field limit N → ∞ to obtain an
estimate for μ(t, x). At last, we prove that the optimal control u(t, x) can be bounded in terms of the
solution μ(t, x).

4.1 Estimate for the solution

For the solution xi(t) of (2.5), we use Gronwall’s inequality to derive

Lemma 4.1. Suppose (3.1) holds, there exists a constant C1 ≥ 1, independent of N and T , such that

1

N

N∑
i=1

|xi(t2) − x̄|2 ≤ C1

1

N

N∑
i=1

|xi(t1) − x̄|2, ∀ 0 ≤ t1 ≤ t2 ≤ T . (4.1)

Proof. We estimate yi(t) = xi(t) − x̄ by computing:

1

2

∫ t2

t1

d

dt
〈yi(t), yi(t)〉dt =

∫ t2

t1

〈yi(t), yi
′(t)〉dt

= 1

N

N∑
j=1

∫ t2

t1

〈yi(t), P(yi(t) − yj(t))〉dt +
∫ t2

t1

〈yi(t), ui(t)〉dt. (4.2)
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For the second term, we have∫ t2

t1

〈yi(t), ui(t)〉dt ≤ 1

2

∫ t2

t1

|ui(t)|2dt + 1

2

∫ t2

t1

|yi(t)|2dt, (4.3)

and for the first term, we have

1

N

N∑
j=1

∫ t2

t1

〈yi(t), P(yi(t) − yj(t))〉dt ≤ 1

N

N∑
j=1

CP

∫ t2

t1

|yi(t)||yi(t) − yj(t)|dt

≤ 1

N

N∑
j=1

CP

∫ t2

t1

|yi(t)|2 + |yi(t)||yj(t)|dt ≤ 3CP

2

∫ t2

t1

|yi(t)|2dt + CP

2N

N∑
j=1

∫ t2

t1

|yj(t)|2dt. (4.4)

Combining (4.2)–(4.4) yields

1

2

∫ t2

t1

d

dt
〈yi(t), yi(t)〉dt ≤

(1

2
+ 3CP

2

) ∫ t2

t1

|yi(t)|2dt + CP

2N

N∑
j=1

∫ t2

t1

|yj(t)|2dt + 1

2

∫ t2

t1

|ui(t)|2dt.

We sum i from 1 to N and multiply 1/N to obtain

1

N

N∑
i=1

|yi(t2)|2 ≤ 1

N

N∑
i=1

|yi(t1)|2 + (1 + 4CP)
1

N

N∑
i=1

∫ t2

t1

|yi(t)|2dt + 1

N

N∑
i=1

∫ t2

t1

|ui(t)|2dt.

Combining this with (3.1), we obtain

1

N

N∑
i=1

|xi(t2) − x̄|2 ≤ C1

1

N

N∑
i=1

|xi(t1) − x̄|2, ∀ 0 ≤ t1 ≤ t2 ≤ T .

with C1 = (2 + 4CP)C0 + 1. Note that C1 is independent of N and T .

Combining this lemma with the inequality (3.1), we prove:

Lemma 4.2. Under Assumption 2.1, the following inequality holds for any t ∈ [nτ , T] with a given
constant τ > 0 and an integer 1 ≤ n ≤ T

τ
:

1

N

N∑
i=1

|xi(t) − x̄|2 ≤
(

C0C1

τ

)n 1

N

N∑
i=1

|xi(0) − x̄|2.

Proof. We first prove the case n = 1. There exists a point t1 ∈ [0, τ ] such that

1

N

N∑
i=1

|xi(t1) − x̄|2 ≤ 1

τ

∫ τ

0

1

N

N∑
i=1

|xi(t) − x̄|2dt ≤ C0

τ

1

N

N∑
i=1

|xi(0) − x̄|2.

Note that the last inequality follows by (3.1). For any t ≥ τ ≥ t1, we obtain by Lemma 4.1

1

N

N∑
i=1

|xi(t) − x̄|2 ≤ C1

1

N

N∑
i=1

|xi(t1) − x̄|2 ≤ C0C1

τ

1

N

N∑
i=1

|xi(0) − x̄|2.

Then we suppose the inequality holds for n ≥ 1 and prove the result for n + 1. There exists tn ∈
[nτ , (n + 1)τ ] such that

1

N

N∑
i=1

|xi(tn) − x̄|2 ≤ 1

τ

∫ (n+1)τ

nτ

1

N

N∑
i=1

|xi(t) − x̄|2dt

≤ C0

τ

1

N

N∑
i=1

|xi(nτ ) − x̄|2 ≤ C0

τ

(
C0C1

τ

)n 1

N

N∑
i=1

|xi(0) − x̄|2.

https://doi.org/10.1017/S0956792524000871 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000871


10 M. Herty and Y. Zhou

Thus, for any t ∈ [(n + 1)τ , T], we obtain by Lemma 4.1

1

N

N∑
i=1

|xi(t) − x̄|2 ≤ C1

1

N

N∑
i=1

|xi(tn) − x̄|2 ≤
(

C0C1

τ

)n+1 1

N

N∑
i=1

|xi(0) − x̄|2

and this completes the proof.

Thanks to the above lemmas, we are in the position to state the main result for the optimal solution
xi(t) of the particle system (2.5):

Theorem 4.3. Suppose Assumption 2.1 holds. Then there exist constants C2 > 0 and α > 0, which are
independent of N and T , such that for all T >C0C1, the optimal solution of QN(0, T , x0) satisfies the
exponential turnpike property:

1

N

N∑
i=1

|xi(t) − x̄|2 ≤ C2e
−αt 1

N

N∑
i=1

|xi(0) − x̄|2

for any t ∈ (0, T). Here, C0 and C1 are two constants given in Lemma 3.1 and Lemma 4.1, which are
independent of N and T .

Proof. In this proof, we need to fix the constant τ in Lemma 4.2 such that τ >C0C1. Since T >C0C1, we
choose the constant τ satisfying 0< τ < T . Next, we discuss the cases t ∈ (0, τ ) and t ∈ [τ , T) separately.

For any t ∈ [τ , T), we take the integer n = �t/τ�. Then, 1 ≤ n ≤ T
τ

and t ∈ [nτ , T), and we obtain by
Lemma 4.2:

1

N

N∑
i=1

|xi(t) − x̄|2 ≤
(

C0C1

τ

)n 1

N

N∑
i=1

|xi(0) − x̄|2.

Due to the definition of n, we have n> t/τ − 1. Also, the constant τ is chosen such that τ >C0C1. Thus,
we have (

C0C1

τ

)n

=
(

τ

C0C1

)−n

≤
(

τ

C0C1

)1−t/τ

.

The exponential estimate is then given by

1

N

N∑
i=1

|xi(t) − x̄|2 ≤ Ĉ2e
−αt 1

N

N∑
i=1

|xi(0) − x̄|2, ∀ t ∈ [τ , T)

with

Ĉ2 = τ

C0C1

, α = 1

τ
log

(
τ

C0C1

)
> 0.

On the other hand, for t ∈ (0, τ ), we have

Ĉ2e−αt ≥ Ĉ2e
−ατ = 1.

By Lemma 4.1, we have

1

N

N∑
i=1

|xi(t) − x̄|2 ≤ C1

1

N

N∑
i=1

|xi(0) − x̄|2 ≤ C1Ĉ2e−αt 1

N

N∑
i=1

|xi(0) − x̄|2.

Recall that due to the proof of Lemma 4.1, C1 ≥ 1 holds. To combine the results of t ∈ (0, τ ) and t ∈
[τ , T), we take C2 = C1Ĉ2 and obtain

1

N

N∑
i=1

|xi(t) − x̄|2 ≤ C2e
−αt 1

N

N∑
i=1

|xi(0) − x̄|2, ∀ t ∈ (0, T). (4.5)

This theorem implies that the empirical measure has equi-compact support and bounded second-
order moments for any number of particles N. Moreover, we know that the empirical measure μN(t, x)
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defined in (2.4) satisfies

W2(μN(t, ·), δ(x − x̄)) ≤ √
C2e−αt/2W2(μN(0, ·), δ(x − x̄)).

We established the exponential decay property for the second-order moment of the empirical
measures μN(t, ·) with respect to t:∫

|x − x̄|2dμN(t, x) ≤ C2e−αt

∫
|x − x̄|2dμN(0, x).

The constant C2 is independent of N. Thus, we can use the uniform W2 convergence to obtain the
exponential turnpike property in the mean-field limit. Namely, we have

Theorem 4.4. Suppose Assumption 2.1 holds. For problem Q(0, T ,μ0) with T >C0C1, the optimal
solution μ(t, x) ∈ C([0, T];P2(Rd)) satisfies the exponential turnpike property in the sense that∫

|x − x̄|2dμ(t, x) ≤ C2e−αt

∫
|x − x̄|2dμ0(x)

for any t ∈ (0, T). Here, the constants C2 and α are the same as those in Theorem 4.3.

Remark 4.1. Alternatively, the result of the mean-field problem can be also proven by a direct esti-
mate of (2.2). Namely, we may take a test function φ(t, x) = |x − x̄|2χR(x) with χR(x) being a mollified
characteristic function χR(x) =ψδ ∗ χ[−R−δ,R+δ], such that χR(x) = 1 for |x| ≤ R.

Then by the same argument as in Lemma 4.1, we have∫
|x − x̄|2dμ(t2, x) ≤ C1

∫
|x − x̄|2dμ(t1, x), ∀ 0 ≤ t1 ≤ t2 ≤ T .

Similarly, the inequalities analogue to those in Lemma 4.2 and Theorem 4.3 can be also obtained.

4.2 Estimate on the control

In this subsection, we estimate the optimal control u(t, x) in the mean- field problem. The idea is to
construct a novel feedback control and take advantage of the strict dissipativity.

We divide the time interval [0, T] into three parts:

[0, T] = [0, s) ∪ [s, s + mh] ∪ (s + mh, T].

Here, s ∈ (0, T) is a fixed time point, m> 0 is a scale parameter, which will be given later (see (4.22)),
and h is a sufficiently small constant such that s + mh ≤ T . We construct a feedback control û(t, x) by

û(t, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(t, x), t ∈ [0, s)

1

m
u

(
s + t − s

m
, x

)
− m − 1

m
(P ∗ μ̂)(t, x) t ∈ [s, s + mh]

u
(

t − (m − 1)h, x
)

, t ∈ (s + mh, T],

(4.6)

where u(t, x) is the optimal control to the problems (2.1)–(2.2) on the time interval [0, T] and μ̂(t, x) is
the solution of (2.2) associated with the new control û(t, x),

Next, we discuss the solution μ̂(t, x) on the different time intervals.
For t ∈ [0, s), we know that û(t, x) = u(t, x) and the initial data satisfies

μ̂(0, ·) =μ0( · ) in P2(Rd).

According to the uniqueness of the solution to the mean-field equation (2.2), it is easy to see that

μ̂(t, ·) =μ(t, ·) in P2(Rd), ∀ t ∈ [0, s].

Here, μ(t, x) is the solution associated with the optimal control u(t, x).
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On the other hand, for t ∈ [s, s + mh], we use the expression of û(t, x) to compute the equation of μ̂
(for simplicity in the strong form). A similar computation holds in the weak form.

0 = ∂tμ̂(t, x) + ∇x ·
([

(P ∗ μ̂)(t, x) + û(t, x)
]
μ̂(t, x)

)

= ∂tμ̂(t, x) + ∇x ·
([

(P ∗ μ̂)(t, x) + 1

m
u

(
s + t − s

m
, x

)
− m − 1

m
(P ∗ μ̂)(t, x)

]
μ̂(t, x)

)

= ∂tμ̂(t, x) + 1

m
∇x ·

([
(P ∗ μ̂)(t, x) + u

(
s + t − s

m
, x

) ]
μ̂(t, x)

)
.

Moreover, by the first step, we have

μ̂(s, ·) =μ(s, ·) in P2(Rd).

Thus, the equation for μ̂ reads (in weak form)∫
φ(t, x)dμ̂(t, x) −

∫
φ(s, x)dμ(s, x)

=
∫ t

0

∫ [
∂tφ(r, x) + 1

m
∇xφ(r, x) ·

(
(P ∗ μ̂)(r, x) + u

(
s + r − s

m
, x

) )]
dμ̂(r, x)dr

∀ φ(t, x) ∈ C∞
0

(
[s, s + mh] ×R

d
)

. (4.7)

Since the map that maps t ∈ [s, s + mh] to t1 ∈ [s, s + h] by

t �→ t1 = s + t − s

m

is bijective, we consider the test function

φ(t, x) = φ̂(t1, x) = φ̂

(
s + t − s

m
, x

)
with φ̂ ∈ C∞

0

(
[s, s + h] ×R

d
)

and the formula (4.7) is equivalent to∫
φ̂(t1, x)dμ̂(t, x) −

∫
φ̂(s, x)dμ(s, x)

=
∫ t

0

∫ [
∂tφ̂(r1, x) + ∇xφ̂(r1, x) · ((P ∗ μ̂)(r, x) + u(r1, x)

)]
dμ̂(r, x)dr1,

∀ φ̂ ∈ C∞
0

(
[s, s + h] ×R

d
)

. (4.8)

Here, we use the relation

r1 = s + r − s

m
, dr1 = 1

m
dr,

and obtain that

μ(t1, x) =μ

(
s + t − s

m
, x

)

is a solution to (4.8). Again, μ(t, x) is the solution associated with the optimal control u(t, x). Since the
solution for (2.2) is unique in P2(Rd), we have

μ̂(t, ·) =μ(t1, ·) =μ

(
s + t − s

m
, ·

)
in P2(R

d), ∀ t ∈ [s, s + mh]. (4.9)
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In the last interval, for t ∈ (s + mh, T], the control is û(t, x) = u
(
t − (m − 1)h, x

)
, and the equation for μ̂

reads (in strong form):

0 = ∂tμ̂(t, x) + ∇x ·
([

(P ∗ μ̂)(t, x) + û(t, x)
]
μ̂(t, x)

)
= ∂tμ̂(t, x) + ∇x ·

([
(P ∗ μ̂)(t, x) + u

(
t − (m − 1)h, x

)]
μ̂(t, x)

)
.

Considering t = s + mh, we have

μ̂(s + mh, ·) =μ(s + h, ·) in P2(Rd).

Thus, the weak form in the time interval (s + mh, T] reads as∫
φ(t, x)dμ̂(t, x) −

∫
φ(s + mh, x)dμ(s + h, x)

=
∫ t

0

∫ [
∂tφ(r, x) + ∇xφ(r, x) ·

(
(P ∗ μ̂)(r, x) + u

(
t − (m − 1)h, x

)]
dμ̂(r, x)dr

∀ φ(t, x) ∈ C∞
0

(
(s + mh, T] ×R

d
)

. (4.10)

In the new variable t2 = t − (m − 1)h and for the test function

φ(t, x) = φ̂(t2, x) = φ̂ (t − (m − 1)h, x) with φ̂ ∈ C∞
0

(
(s + h, T − (m − 1)h] ×R

d
)

,

equation (4.10) reads∫
φ̂(t2, x)dμ̂(t, x) −

∫
φ̂(s + mh, x)dμ(s + h, x)

=
∫ t

0

∫ [
∂tφ̂(r2, x) + ∇xφ̂(r2, x) · ((P ∗ μ̂)(r, x) + u(r2, x)

)]
dμ̂(r, x)dr2,

∀ φ̂ ∈ C∞
0

(
(s + h, T − (m − 1)h] ×R

d
)

(4.11)

for r2 = r − (m − 1)h and dr2 = dr. It is easy to see that μ(t2, x) =μ (t − (m − 1)h, x) satisfies (4.11). At
last, we use the uniqueness of (2.2) in P2(Rd) to conclude that

μ̂(t, ·) =μ(t2, ·) =μ (t − (m − 1)h, ·) in P2(R
d), ∀ t ∈ (s + mh, T]. (4.12)

Summarising, we have

μ̂(t, ·) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ(t, ·), t ∈ [0, s),

μ

(
s + t − s

m
, ·

)
, t ∈ [s, s + mh],

μ (t − (m − 1)h, ·) , t ∈ (s + mh, T].

(4.13)

4.3 The turnpike estimate

Having the feedback control û(t, x) and its associated solution μ̂(t, x), we proceed to estimate the optimal
control u(t, x):

Theorem 4.5. Suppose Assumption 2.1 holds. Then there exists a constant C3 > 0 such that the optimal
control u(t, x) ∈F for Q(0, T ,μ0) with T >C0C1 satisfies the exponential turnpike property:∫

|u(t, x)|2dμ(t, x) ≤ C3e−αt

∫
|x − x̄|2dμ0(x) for a.e. t ∈ (0, T).
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Proof. Since u(t, x) is optimal, we have∫ T

0

f (μ(t, x), u(t, x))dt ≤
∫ T

0

f (μ̂(t, x), û(t, x))dt

=
∫ s

0

f (μ̂(t, x), û(t, x))dt +
∫ s+mh

s

f (μ̂(t, x), û(t, x))dt +
∫ T

s+mh

f (μ̂(t, x), û(t, x))dt. (4.14)

According to (4.6) and (4.13), we have∫ s

0

f (μ̂(t, x), û(t, x))dt =
∫ s

0

f (μ(t, x), u(t, x))dt (4.15)

and ∫ T

s+mh

f (μ̂(t, x), û(t, x))dt =
∫ T

s+mh

f (μ (t − (m − 1)h, x) , u (t − (m − 1)h, x) )dt

=
∫ T−(m−1)h

s+h

f (μ(t, x), u(t, x))dt ≤
∫ T

s+h

f (μ(t, x), u(t, x))dt. (4.16)

Therefore, it follows by (4.14)–(4.16)∫ s+h

s

f (μ(t, x), u(t, x))dt ≤
∫ s+mh

s

f (μ̂(t, x), û(t, x))dt

≤ C4

∫ s+mh

s

∫
|x − x̄|2 + |û(t, x)|2dμ̂(t, x)dt (4.17)

with C4 = max{C� , CL}. Notice that the last inequality is due to Assumption 2.1. Moreover, we use (4.6)
and (4.13) to obtain

C4

∫ s+mh

s

∫
|x − x̄|2 + |û(t, x)|2dμ̂(t, x)dt

= C4

∫ s+mh

s

∫
|x − x̄|2 + | 1

m
u(t1, x) − m − 1

m
(P ∗μ)(t1, x)|2dμ(t1, x)dt

with t1 = s + t − s

m
. By change of variables, the above inequality yields

C4

∫ s+mh

s

∫
|x − x̄|2 + |û(t, x)|2dμ̂(t, x)dt

≤ mC4

∫ s+h

s

∫
|x − x̄|2 + | 1

m
u(t, x) − m − 1

m
(P ∗μ)(t, x)|2dμ(t, x)dt

≤ mC4

∫ s+h

s

∫
|x − x̄|2 + 3

2

1

m2
|u(t, x)|2 + 3

∣∣∣m − 1

m
(P ∗μ)(t, x)

∣∣∣2

dμ(t, x)dt. (4.18)

Note that the last inequality follows from the basic inequality

|a + b|2 ≤ 3

2
|a|2 + 3|b|2.

Using Jensen’s inequality and Assumption 2.1, we have

|(P ∗μ)(t, x)|2 ≤
∫

|P(x − y)|2dμ(t, y) ≤ C2
P|x − x̄|2 + C2

P

∫
|y − x̄|2dμ(t, y). (4.19)

By (4.17)–(4.19), there exists a constant C5 > 0 depending on CP, C� , CL and m, such that∫ s+h

s

f (μ(t, x), u(t, x))dt ≤ 3

2

C4

m

∫ s+h

s

∫
|u(t, x)|2dμ(t, x)dt + C5

∫ s+h

s

∫
|x − x̄|2dμ(t, x)dt. (4.20)
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On the other hand, by the strict dissipativity, we obtain∫ s+h

s

f (μ(t, x), u(t, x))dt ≥ CD

∫ s+h

s

∫
|x − x̄|2 + |u(t, x)|2dμ(t, x)dt

≥ CD

∫ s+h

s

∫
|u(t, x)|2dμ(t, x)dt. (4.21)

By equation (4.20)–(4.21), we conclude that∫ s+h

s

∫
|u(t, x)|2dμ(t, x)dt ≤ 3

2

C4

mCD

∫ s+h

s

∫
|u(t, x)|2dμ(t, x)dt + C5

CD

∫ s+h

s

∫
|x − x̄|2dμ(t, x)dt.

Set

m = max

{
2,

2C4

CD

}
, (4.22)

and hence, 3
2

C4
mCD

≤ 3
4
. Therefore,∫ s+h

s

∫
|u(t, x)|2dμ(t, x)dt ≤ 3

4

∫ s+h

s

∫
|u(t, x)|2dμ(t, x)dt + C5

CD

∫ s+h

s

∫
|x − x̄|2dμ(t, x)dt.

Since m is given, we know that the constant C5 > 0 depends only on CP, C� , and CL, respectively.
This holds for any h satisfying s + mh ≤ T . By Lebesgue’s differentiation theorem [19], we obtain∫ |u(s, x)|2dμ(s, x) ≤ 4C5

CD

∫ |x − x̄|2dμ(s, x) for a.e. t ∈ (0, T). Combining this estimate with the results
of Theorem 4.4, the proof is completed for C3 = 4C2C5

CD
.

Remark 4.2. By Theorem 4.4 and Theorem 4.5, the function f in (2.1) decreases exponentially in the
sense that for any t ∈ (0, T),

f (μ(t, x), u(t, x)) ≤ CL

∫
|x − x̄|2dμ(t, x) + C�

∫
|u(t, x)|2dμ(t, x)

≤ (CLC2 + C�C3)e−αt

∫
|x − x̄|2dμ0(x).

Remark 4.3. In the proof, we adapt the technique in [17] by considering a new feedback control and
introducing an adaptive parameter m in 4.22. If the cost function in equation (2.1) is of quadratic form,

f (μ(t, x), u(t, x)) =
∫

|x − x̄|2dμ(t, x) +
∫

|u(t, x)|2dμ(t, x),

then we have C� = 1, CL = 1 and CD = 1. It follows that C4 = 1 and m = 2.

Remark 4.4. The exponential turnpike property for the optimal control problem of the N-particles
system (2.5) can also be proved by considering the feedback control

ũN(t, x̃i(t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uN(t, x̃i(t)), t ∈ [0, s)
1

m
uN(t1, x̃i(t)) − m − 1

m

1

N

∑N
j=1 P(x̃i(t) − x̃j(t)) t ∈ [s, s + mh]

uN(t2, x̃i(t)), t ∈ (s + mh, T],

where t1 and t2 are taken as those in the proof of Theorem 4.5.

5. Conclusion

In this work, we prove the exponential turnpike property for optimal control problems of both particle
systems and their mean-field limit. The main assumptions include the strict dissipativity of the cost
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function and the Lipschitz property of the interaction function. Compared to the previous work [27] in
this direction, our main contribution is a more quantitative exponential estimate for both the optimal
solution and the optimal control. More specifically, for the N-particles system, we prove the exponential
decay property of the optimal solution by employing a feedback control and basic estimates. Then, by
considering the limit N → ∞, we establish the same property at the mean-field level. At last, we design
a novel feedback control to prove the exponential decay property for the optimal control. Possible future
work includes the extension to the following cases: (1) second-order models in the microscopic level
and (2) other types of cost function (e.g. L1-regularisation for the control).
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A. Proof of Lemma 2.2

We follow the idea in [11, 20] to prove the estimate in the Wasserstein distance W2 of Lemma 2.2:
Let T μ

t be the flow map associated with the system

dx(t)

dt
= (P ∗μ)(x(t)) + u(t, x(t)) =

∫
P(x(t) − y)dμ(t, y) + u(t, x(t)).

We know that μ(t) = T μ
t �μ0 with T μ

t � denotes the push-forward of μ0. Then, we have

W2(μ(t), ν(t)) =W2

(
T μ

t �μ0, T ν

t �ν0

)
≤W2

(
T μ

t �μ0, T μ

t �ν0

) +W2

(
T μ

t �ν0, T ν

t �ν0

)
. (A.1)

For the first term, we have the following result.

Lemma A.1. Assume that P satisfies the Lipschitz condition (2.3) and u(t, x) ∈F . Then, it holds that

W2

(
T μ

t �μ0, T μ

t �ν0

) ≤ e(CP+CB)t W2(μ0, ν0) .

Proof. Set κ to be an optimal transportation between μ0 and ν0. One can check that the measure
γ = (

T μ
t × T μ

t

)
�κ has marginals T μ

t �μ0 and T μ
t �ν0. Then we have

W2

(
T μ

t �μ0, T μ

t �ν0

) ≤
(∫

Rd×Rd

|x0 − y0|2dγ (x0, y0)

)1/2

=
(∫

Rd×Rd

|T μ

t (x0) − T μ

t (y0)|2dκ(x0, y0)

)1/2

. (A.2)
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Denote x(t) = T μ
t (x0) and y(t) = T μ

t (y0). We have

|x(t) − y(t)| ≤ |x0 − y0| +
∫ t

0

|(P ∗μ)(x(s)) − (P ∗μ)(y(s))| + |u(s, x(s)) − u(s, y(s))|ds

≤ |x0 − y0| + CP

∫ t

0

|x(s) − y(s)|ds + CB

∫ t

0

|x(s) − y(s)|ds.

By Gronwall’s inequality, we have

|x(t) − y(t)| ≤ e(CP+CB)t|x0 − y0|.
Substituting this into (A.2), we have

W2

(
T μ

t �μ0, T μ

t �ν0

) ≤ e(CP+CB)t

(∫
Rd×Rd

|x0 − y0|2dκ(x0, y0)

)1/2

= e(CP+CB)t W2(μ0, ν0) .

For the second term in (A.1), we have the following lemma.

Lemma A.2. Let T μ
t and T ν

t be two flow maps associated with μ(t) and ν(t). Suppose the initial data
ν0 ∈ P2(Rd). Then,

W2

(
T μ

t �ν0, T ν

t �ν0

) ≤ ‖T μ

t − T ν

t ‖∞.

Proof. The proof is similar to that in Lemma 3.11 in [11]. Consider a transportation plan defined by
π := (T μ

t × T ν
t )�ν0. One can check that this measure has marginals T μ

t �ν0 and T ν
t �ν0. Then, due to the

definition of Wasserstein metric, we have

W2

(
T μ

t �ν0, T ν

t �ν0

) ≤
(∫

Rd×Rd

|x0 − y0|2π (x0, y0)dx0dy0

)1/2

=
(∫

Rd

|T μ

t (x0) − T ν

t (x0)|2dν0(x0)

)1/2

≤ ‖T μ

t − T ν

t ‖∞.

Thanks to this, it suffices to estimate ‖T μ
t − T ν

t ‖∞. To this end, we state

Lemma A.3. Under the assumptions in Lemma A.1, it holds that

‖T μ

t − T ν

t ‖∞ ≤ CP

∫ t

0

e(CP+CB)(t−s) W2(μ(s), ν(s)) ds.

Proof. Denote xμ(t) = T μ
t (x0) and xν(t) = T ν

t (x0). We compute

|xμ(t) − xν(t)| ≤
∫ t

0

|(P ∗μ)(xμ(s)) − (P ∗ ν)(xν(s))|ds +
∫ t

0

|u(s, xμ(s)) − u(s, xν(s))|ds. (A.3)

For the first term on the right hand side, we compute∫ t

0

|(P ∗μ)(xμ(s)) − (P ∗ ν)(xν(s))| ds

≤
∫ t

0

|(P ∗μ)(xμ(s)) − (P ∗μ)(xν(s))| + |(P ∗μ)(xν(s)) − (P ∗ ν)(xν(s))|ds

≤ CP

∫ t

0

|xμ(s) − xν(s)|ds +
∫ t

0

‖(P ∗μ)(s, ·) − (P ∗ ν)(s, ·)‖∞ds. (A.4)

Moreover, using the fact that u ∈F , it follows from (A.3)–(A.4) that

|xμ(t) − xν(t)| ≤
∫ t

0

(CP + CB)|xμ(s) − xν(s)|ds +
∫ t

0

‖(P ∗μ)(s, ·) − (P ∗ ν)(s, ·)‖∞ds.
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By Gronwall’s inequality, we have

|xμ(t) − xν(t)| ≤
∫ t

0

e(CP+CB)(t−s) ‖(P ∗μ)(s, ·) − (P ∗ ν)(s, ·)‖∞ds.

Denote θ (y, z; t) the optimal transportation between μ and ν. Clearly, θ (y, z; t) has marginals μ(t, y)
and ν(t, z). Thus, we compute

(P ∗μ− P ∗ ν)(t, x) =
∫
Rd

P(x − y)dμ(t, y) −
∫
Rd

P(x − z)dν(t, z)

=
∫
R2d

[P(x − y) − P(x − z)]dθ (y, z; t).

It follows from Jensen’s inequality that

|(P ∗μ− P ∗ ν)(t, x)| ≤
(∫

R2d

|P(x − y) − P(x − z)|2dθ (y, z; t)

)1/2

≤ CP

(∫
R2d

|y − z|2dθ (y, z; t)

)1/2

= CPW2(μ(t), ν(t)).

Note that it holds for arbitrary x ∈R
d. Thus, we know that

|xμ(t) − xν(t)| ≤ CP

∫ t

0

e(CP+CB)(t−s) W2(μ(s), ν(s))ds.

Combining Lemma A.1–A.3 with the inequality (A.1), we have

W2(μ(t), ν(t))≤W2

(
T μ

t �μ0, T μ

t �ν0

) +W2

(
T μ

t �ν0, T ν

t �ν0

)
≤ e(CP+CB)t W2(μ0, ν0)+ CP

∫ t

0

e(CP+CB)(t−s) W2(μ(s), ν(s)) ds.

Then we have

e−(CP+CB)t W2(μ(t), ν(t))≤W2(μ0, ν0)+ CP

∫ t

0

e−(CP+CB)s W2(μ(s), ν(s)) ds.

Again, by Gronwall’s inequality, we obtain

e−(CP+CB)t W2(μ(t), ν(t))≤ eCPt W2(μ0, ν0) , t ∈ [0, T].

This completes the proof of the stability with respect to the W2 distance.
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