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Abstract

Problems of wave interaction with a body with arbitrary shape floating or submerged
in water are of immense importance in the literature on the linearized theory of water
waves. Wave-free potentials are used to construct solutions to these problems involving
bodies with circular geometry, such as a submerged or half-immersed long horizontal
circular cylinder (in two dimensions) or sphere (in three dimensions). These are singular
solutions of Laplace’s equation satisfying the free surface condition and decaying
rapidly away from the point of singularity. Wave-free potentials in two and three
dimensions for infinitely deep water as well as water of uniform finite depth with a free
surface are known in the literature. The method of constructing wave-free potentials
in three dimensions is presented here in a systematic manner, neglecting or taking into
account the effect of surface tension at the free surface or for water with an ice cover
modelled as a thin elastic plate floating on the water. The forms of the wave motion at the
upper surface (free surface or ice-covered surface) related to these wave-free potentials
are depicted graphically in a number of figures for all the cases considered.
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1. Introduction

Various water wave problems involving an infinitely long horizontal cylinder sub-
merged or floating on the surface of water have been investigated in the literature using
linear theory by employing a general expansion for the wave potential. This expansion
involves a general combination of a regular wave, a wave source, a wave dipole and a
regular wave-free part. The wave-free part can be further expanded in terms of wave-
free multipoles which are termed wave-free potentials. These are singular solutions
of Laplace’s equation satisfying the free surface condition and decaying rapidly away
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from the point of singularity. Ursell [37] considered the problem of heaving motion of
a circular cylinder on the surface of a fluid using the method of multipole expansion
of the time-harmonic stream function. The corresponding velocity potential also has
a similar expansion. Ursell [38, 39] considered the problem of surface waves in deep
water in the presence of a submerged circular cylinder and constructed a different set
of multipoles. These multipole potentials are represented in integral forms where the
wave terms and local disturbance terms are not separated. Ursell [43] showed that for
an infinitely long horizontal cylinder of arbitrary cross section floating on the surface
of water, the potential function in general can be written as the sum of a wave source, a
wave dipole, regular standing waves and wave-free potentials regular at infinity as also
mentioned earlier. Ursell [40, 41] considered problems where the potential function is
expanded in terms of wave source and wave-free potentials. Bolton and Ursell [2] con-
sidered the effect of a heaving cylinder in oblique sea employing the multipole method.
Mandal and Goswami [27] considered the problem of scattering of surface waves
obliquely incident on a fixed half-immersed circular cylinder in deep water and solved
it by reducing it to the solution of an integral equation involving the unknown scattered
velocity potential on the cylinder by the use of Green’s integral theorem in the fluid
medium. The same problem was solved again by forming the scattered velocity po-
tential by the method of multipoles using the general expansion theorem of Ursell for
the scattered potential [2]. Both methods produced almost the same numerical results.

For three-dimensional problems, such as waves from a submerged sphere, the
potential function can be expanded in terms of wave source, wave dipole and wave-
free potentials. Expansions in terms of wave source and an infinite set of wave-free
potentials were introduced for the three-dimensional problem involving a floating
sphere half-immersed and making periodic heaving oscillations by Havelock [23].
This work was later improved and extended to the case of sway by Hulme [24].
Velocity potentials due to the presence of different types of singularity were given
by Thorne [36] for two- and three-dimensional motion in infinitely deep water as well
as in water of uniform finite depth. Modifications of these results by including the
effect of surface tension at the free surface were given by Rhodes-Robinson [33].
Wehausen and Laitone [45] also gave expressions for wave source potentials in three
and two dimensions for infinitely deep water which behave as outgoing waves far away
from the source and mentioned for three dimensions a particular linear combination
of the multipole potentials which decay rapidly at infinity. These are actually wave-
free potentials, although this nomenclature was not used there. Barakat [1] studied
the vertical motion (heave) of a freely floating sphere half-immersed in infinitely
deep water under the action of an incident sine wave. Both radiation and diffraction
problems involving half-immersed spheres were studied by Barakat [1] who employed
three-dimensional wave-free potentials in the expansion of the velocity potential
describing the motion in the fluid. The analytical form of the velocity potential of
a half-immersed heaving sphere was studied by Ursell [42] where the potential was
expanded in terms of wave source and of wave-free potentials. Wang [44] used the
method of Havelock [23] to examine the radiation and diffraction problems for a
submerged sphere in deep water. Taylor and Hu [14] described multipole expansion
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of the velocity potential for two- and three-dimensional wave diffraction and radiation
problems. Chatjigeorgiou [4, 5] investigated water wave scattering by an oblate and
a prolate spheroid submerged in deep water by employing the method of multipole
expansions. The analytical process employed Thorne’s [36] multipole expansion terms
which were transformed into oblate as well as prolate spheroidal coordinates. Other
works on the submerged sphere include those of Gray [22], Srokosz [35], Wu and
Eatock Taylor [47], Linton [28], Wu [46], Rahman [32] and Liu et al. [31] who,
however, did not separate the wave-free part in the expansion of the velocity potential.

All the above works are related to an ocean with a free surface. For more than
two decades there has been considerable interest in the investigation of ice–wave
interaction problems due to an increase in scientific activities in polar regions. The
ice cover is modelled as a thin ice sheet of which a still smaller part is immersed
in water, and is composed of materials having elastic properties. Already quite a
number of researchers have considered various types of water wave problems in an
ocean with an ice cover modelled as a thin elastic plate [3, 6, 13, 15–20, 29, 34].
Das and Mandal [7] investigated wave radiation by a sphere in deep water as well as
water of uniform finite depth with an ice cover by using the method of multipoles.
They [10] also studied wave radiation by a sphere submerged in either layer of a two-
layer fluid by using the same method. Recently, Das and Thakur [12] investigated the
problem of water wave scattering by a submerged sphere in water of uniform finite
depth with an ice cover, the ice cover being modelled as a thin elastic plate. Das and
Mandal [8] earlier investigated wave scattering by a circular cylinder half-immersed in
water with an ice cover. They employed the method of multipoles by using the general
expansion theorem for the wave potential involving wave-free potentials for which
only expressions were given. Thus, many researchers use wave-free potentials in the
mathematical analysis of various classes of water wave problems. In most of these
works only the expressions of wave-free potentials are given, without their method
of derivation. However, Linton and McIver [30] indicated briefly how these could
be constructed in the case of water with a free surface. Also, Mandal and Das [9, 26]
presented the construction of wave-free potentials in two dimensions for infinitely deep
water and in water of uniform finite depth with a free surface, considering the effect
of surface tension at the free surface, and also in water with an ice cover modelled
as a thin elastic plate. In this paper, we extend the problems considered by Mandal
and Das [9, 26] to three dimensions. Construction of wave-free potentials for cases
of deep water and water of uniform finite depth with a free surface are presented in a
systematic manner. The effect of surface tension at the free surface and a floating ice
cover modelled as a thin elastic plate are also considered.

2. Statement of the problem

With the origin at the mean free surface, the x and z axes horizontal and the y axis
vertical, y increasing with depth, we define the angles θ, θ′ and α by the relations

tan θ =
R

y − f
, tan θ′ = −

R
y + f

, tanα =
z
x
,
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where R =
√

x2 + z2. Let r and r′ denote the radial distances of the point (x, y, z)
from the points (0, f , 0) and (0,− f , 0), respectively. If Re(φ(x, y, z)e−iωt) denotes the
velocity potential having singularity at (0, f , 0), f > 0, describing the motion in the
fluid, then φ(x, y, z) satisfies

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = 0 in the fluid region except at (0, f , 0). (2.1)

Solutions to Laplace’s equation in three dimensions which are singular at r = 0 are

Pm
n (cos θ)
rn+1

cos(mα)
sin(mα)

where n ≥ m ≥ 0.

We note the following integral representations [21]:

Pm
n (cos θ)
rn+1 =


(−1)m

(n − m)!

∫ ∞

0
e−k(y− f )knJm(kR) dk if y > f

(−1)n

(n − m)!

∫ ∞

0
e−k( f−y)knJm(kR) dk if y < f ,

(2.2)

Pm
n (cos θ′)
r′n+1 =

(−1)n

(n − m)!

∫ ∞

0
e−k(y+ f )knJm(kR) dk where y + f > 0. (2.3)

Singular solutions for φ (three-dimensional multipoles) are given by

φ(x, y, z) = φm
n

cos(mα)
sin(mα),

where φm
n , n ≥ m ≥ 0, are constructed below for different cases. The wave-free

potentials ψm
n are then constructed by appropriate linear combinations of φm

n such that
they tend to zero as R→∞.

3. Wave-free potentials for water of infinite depth

The bottom condition for water of infinite depth is given by

∇φ(x, y, z)→ 0 as y→∞. (3.1)

Also, φ(x, y, z) behaves as outgoing waves as R→∞.

3.1. Water with a free surface The potential function φ(x, y, z) satisfies (2.1), (3.1)
and also the linearized boundary condition at the free surface which is

Kφ + φy = 0 on y = 0, (3.2)

where K = ω2/g with g the acceleration due to gravity. In this case, to take care of the
condition at y = 0, we choose

φm
n =

Pm
n (cos θ)
rn+1 +

∫ ∞

0
A(k)e−kyJm(kR) dk, (3.3)

https://doi.org/10.1017/S1446181113000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000357


[5] Three-dimensional wave-free potentials in the theory of water waves 179

and A(k) is a function of k to be obtained such that the integral exists in some sense and
the boundary condition (3.2) is satisfied. The free surface condition (3.2) is satisfied if
we choose A(k) as

A(k) =
(−1)n

(n − m)!
k + K
k − K

kne−k f

after using the representations (2.2). Thus multipoles singular at (0, f , 0), f > 0, are of
the form φm

n cos(mα) and φm
n sin(mα), where

φm
n =

Pm
n (cos θ)
rn+1 +

(−1)n

(n − m)!

∫ ∞

0

k + K
k − K

kne−k(y+ f )Jm(kR) dk,

the contour in the integral being indented below the pole k = K on the real k axis to
take care of their outgoing behaviour as R→∞. The far-field form of the multipole is
given by

φm
n ∼ 2πi am

n e−k(y+ f )

√
2

πKR
ei(KR−π/4) as R→∞,

where

am
n =

(−1)n

(n − m)!
Kn+1e−imπ/2. (3.4)

Now from (3.4), since

am
n+1 +

K
n − m + 1

am
n = 0

the combination φm
n+1 + (K/n − m + 1)φm

n does not contribute anything as R→∞ so
that it is wave free. Now using the representation (2.3) it can be shown that

ψm
n ≡ φ

m
n+1 +

K
n − m + 1

φm
n

=
Pm

n+1(cos θ)
rn+2 +

Pm
n+1(cos θ′)

r′n+2 +
K

n − m + 1

(Pm
n (cos θ)
rn+1 −

Pm
n (cos θ′)
r′n+1

)
. (3.5)

For different n and m, n ≥ m, these are wave-free potentials with singularity at (0, f , 0).
When the singularity is on the free surface ( f → 0, θ′ → π − θ) these potentials reduce
to zero unless n + m is odd. In that case we obtain two distinct sets of wave-free
potentials as given by Linton and McIver [30]:

χ2m
2n−1 =

P2m
2n (cos θ)
r2n+1 +

K
2n − 2m

P2m
2n−1(cos θ)

r2n ,

χ2m+1
2n =

P2m+1
2n+1 (cos θ)

r2n+2 +
K

2n − 2m
P2m+1

2n (cos θ)
r2n+1 .

3.2. Effect of surface tension at the free surface Here the potential function
φ(x, y, z) satisfies (2.1), (3.1), and the linearized free surface condition

Kφ + Mφyyy + φy = 0 on y = 0, (3.6)
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where M = T/ρg with T the coefficient of surface tension at the free surface and ρ the
density of water. Setting φm

n (x, y, z) as in (3.3) and following a similar procedure, it can
be shown that the combination φm

n+1 + (κ/n − m + 1)φm
n does not contribute anything as

R→∞. Here κ is the only real positive root of the dispersion equation

k(1 + Mk2) − K = 0

relevant to this case. Thus wave-free potentials having singularity at (0, f , 0) are

ψm
n ≡ φ

m
n+1 +

κ

n − m + 1
φm

n

=
Pm

n+1(cos θ)
rn+2 +

κ

n − m + 1
Pm

n (cos θ)
rn+1

+
(−1)n+1

(n − m + 1)!

∫ ∞

0

k(1 + Mk2) + K
[M(k2 + kκ + κ2) + 1]

kne−k(y+ f )Jm(kR) dk. (3.7)

Taking f → 0 in (3.7), we find wave-free potentials having singularity on the free
surface given by

χm
n =

Pm
n+1(cos θ)

rn+2 +
κ

n − m + 1
Pm

n (cos θ)
rn+1

+
(−1)n+1

(n − m + 1)!

∫ ∞

0

k(1 + Mk2) + K
[M(k2 + kκ + κ2) + 1]

kne−kyJm(kR) dk.

These can be identified with the results of Rhodes-Robinson [33] for m = 0.

3.3. Water with an ice cover In this case the potential function φ(x, y, z) satisfies
(2.1), (3.1) and the linearized condition at the ice cover modelled as a thin elastic plate
given by

Kφ + [D∇4
x,z + 1 − εK]φy = 0 on y = 0. (3.8)

Here

D =
Eh3

0

12(1 − ν)ρ1g

is the flexural rigidity of the ice cover, where E and ν are respectively Young’s modulus
and Poisson’s ratio of the elastic material of the ice cover, h0 is the very small thickness
of the ice cover, ε = (ρ0/ρ1)h0 with ρ0 and ρ1 the densities of the ice and water,
respectively, and

∇4
x,z =

[
∇2

R +
1

R2

∂2

∂α2

]2
with ∇2

R =

[ 1
R
∂

∂R

(
R
∂

∂R

)]
.

Again following a similar method, it can be shown that the combination φm
n+1 +

(k1/n − m + 1)φm
n does not contribute anything as R→∞ so that it is wave free. Here

k1 is the only real root for the relevant dispersion equation

(Dk4 + 1 − εK)k − K = 0.
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Thus the wave-free potentials having singularity at (0, f , 0) are

ψm
n ≡ φ

m
n+1 +

k1

n − m + 1
φm

n

=
Pm

n+1(cos θ)
rn+2 +

k1

n − m + 1
Pm

n (cos θ)
rn+1

+
(−1)n+1

(n − m + 1)!

∫ ∞

0
g1(k)kne−k(y+ f )Jm(kR) dk, (3.9)

where

g1(k) =
[(Dk4 + 1 − εK)k + K]

[D(k4 + kk3
1 + k2k2

1 + k3k1 + k4
1) + 1 − εK]

.

Taking f → 0 in (3.9) we obtain the wave-free potentials having singularity on the ice
cover given by

χm
n =

Pm
n+1(cos θ)

rn+2 +
k1

n − m + 1
Pm

n (cos θ)
rn+1 +

(−1)n+1

(n − m + 1)!

∫ ∞

0
g1(k)kne−kyJm(kR) dk.

4. Wave-free potentials for water of uniform finite depth

The bottom condition for water of uniform finite depth is given by

∂

∂y
φ(x, y, z) = 0 on y = h, (4.1)

where h is the uniform finite depth of water.

4.1. Water with a free surface The potential function φ(x, y, z) satisfies (2.1), (4.1)
and also the linearized boundary condition at the free surface which is

Kφ + φy = 0 on y = 0. (4.2)

In this case, we choose

φm
n =

Pm
n (cos θ)
rn+1 +

∫ ∞

0
[A(k) sinh(ky) + B(k) cosh(h − y)]Jm(kR) dk,

where A(k) and B(k) are functions of k to be obtained such that the integral exists in
some sense and the boundary conditions (4.1) and (4.2) are satisfied. The boundary
conditions (4.1) and (4.2) are satisfied if we choose A(k) and B(k) as

A(k) =
(−1)m

(n − m)!
kn

cosh(kh)
e−k(h− f ),

B(k) =
kn

(n − m)!

[ (−1)n(K + k) cosh(kh)e−k f + (−1)mke−k(h− f )

cosh(kh)(k sinh(kh) − K cosh(kh))

]
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after using the representations (2.3). Thus, we find

φm
n =

Pm
n (cos θ)
rn+1 +

1
(n − m)!

∫ ∞

0

kn f m
n (k, y)Jm(kR)

k sinh(kh) − K cosh(kh)
dk,

where the contour is indented below the pole k = k0 on the real k axis to take care
of their outgoing behaviour as R→ ∞, k0 being the only real positive root of the
dispersion equation

k sinh(kh) − K cosh(kh) = 0

and

f m
n (k, y) = (−1)me−k(h− f )(k cosh(ky) − K sinh(ky)) + (−1)n(K + k)e−k f cosh(k(h − y)).

The far-field form of the multipole is given by

φm
n ∼ πiam

n
cosh(k0(h − y))

2hN2
0

√
2

πk0R
ei(k0R−π/4) as R→∞,

where

am
n =

kn
0[(−1)me−k0(h− f ) + (−1)nek0(h− f )]e−imπ/2

(n − m)!
, N2

0 =
2k0h + sinh(2k0h)

4k0h
.

Since

am
n+1 +

k0

n − m + 1
tanh(k0(h − f ))am

n = 0, n + m even,

am
n+1 +

k0

n − m + 1
coth(k0(h − f ))am

n = 0, n + m odd,

the combinations

φm
n+1 +

k0

n − m + 1
tanh(k0(h − f ))φm

n , n + m even,

φm
n+1 +

k0

n − m + 1
coth(k0(h − f ))φm

n , n + m odd,

do not contribute anything as R→∞ so that they are wave free. These are given by
Linton and McIver [30]. Therefore,

ψm
n ≡ φ

m
n+1 +

k0

n − m + 1
tanh(k0(h − f ))φm

n

=
Pm

n+1(cos θ)
rn+2 +

k0

n − m + 1
tanh(k0(h − f ))

Pm
n (cos θ)
rn+1

+
1

(n − m + 1)!

∫ ∞

0

knJm(kR)
k sinh(kh) − K cosh(kh)

× {(−1)me−k(h− f )(k cosh(ky) − K sinh(ky))(k + k0 tanh(k0(h − f )))

+ (−1)n+1(K + k)e−k f cosh(k(h − y))(k − k0 tanh(k0(h − f )))} dk (4.3)
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for n + m even, and

ψm
n ≡ φ

m
n+1 +

k0

n − m + 1
coth(k0(h − f ))φm

n

=
Pm

n+1(cos θ)
rn+2 +

k0

n − m + 1
coth(k0(h − f ))

Pm
n (cos θ)
rn+1

+
1

(n − m + 1)!

∫ ∞

0

knJm(kR)
k sinh(kh) − K cosh(kh)

× {(−1)me−k(h− f )(k cosh(ky) − K sinh(ky))(k + k0 coth(k0(h − f )))

+ (−1)n+1(K + k)e−k f cosh(k(h − y))(k − k0 coth(k0(h − f )))} dk (4.4)

for n + m odd. These are wave-free potentials with singularity at (0, f , 0). Taking
f → 0 in (4.3) and (4.4) we obtain wave-free potentials having singularity on the free
surface given by

χm
n =

Pm
n+1(cos θ)

rn+2 +
k0

n − m + 1
tanh(k0h)

Pm
n (cos θ)
rn+1

+
1

(n − m + 1)!

∫ ∞

0

knJm(kR)
k sinh(kh) − K cosh(kh)

× {(−1)me−kh(k cosh(ky) − K sinh(ky))(k + k0 tanh(k0h))

+ (−1)n+1(K + k) cosh(k(h − y))(k − k0 tanh(k0h))} dk

for n + m even, and

χm
n =

Pm
n+1(cos θ)

rn+2 +
k0

n − m + 1
coth(k0h)

Pm
n (cos θ)
rn+1

+
1

(n − m + 1)!

∫ ∞

0

knJm(kR)
k sinh(kh) − K cosh(kh)

× {(−1)me−kh(k cosh(ky) − K sinh(ky))(k + k0 coth(k0h))

+ (−1)n+1(K + k) cosh(k(h − y))(k − k0 coth(k0h))} dk

for n + m odd.

4.2. Effect of surface tension at the free surface In this case the potential function
φ(x, y, z) satisfies (2.1), (3.6) and (4.1). Following a similar procedure to that above, it
can be shown that the combinations

φm
n+1 +

κ0

n − m + 1
tanh(κ0(h − f ))φm

n , n + m even,

φm
n+1 +

κ0

n − m + 1
coth(κ0(h − f ))φm

n , n + m odd,

are wave free. Here κ0 is the unique positive real root of the dispersion equation

(1 + Mk2)k sinh(kh) − K cosh(kh) = 0.
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Therefore, the wave-free potentials having singularity at (0, f , 0) are

ψm
n ≡ φ

m
n+1 +

κ0

n − m + 1
tanh(κ0(h − f ))φm

n

=
Pm

n+1(cos θ)
rn+2 +

κ0

n − m + 1
tanh(κ0(h − f ))

Pm
n (cos θ)
rn+1

+
1

(n − m + 1)!

∫ ∞

0

knJm(kR)
(1 + Mk2)k sinh(kh) − K cosh(kh)

× {(−1)me−k(h− f )((1 + Mk2)k cosh(ky) − K sinh(ky))(k + κ0 tanh(κ0(h − f )))

+ (−1)n+1(K + k(1 + Mk2))e−k f cosh(k(h − y))(k − κ0 tanh(κ0(h − f )))} dk
(4.5)

for n + m even, and

ψm
n ≡ φ

m
n+1 +

κ0

n − m + 1
coth(κ0(h − f ))φm

n

=
Pm

n+1(cos θ)
rn+2 +

κ0

n − m + 1
coth(κ0(h − f ))

Pm
n (cos θ)
rn+1

+
1

(n − m + 1)!

∫ ∞

0

knJm(kR)
(1 + Mk2)k sinh(kh) − K cosh(kh)

× {(−1)me−k(h− f )((1 + Mk2)k cosh(ky) − K sinh(ky))(k + κ0 coth(κ0(h − f )))

+ (−1)n+1(K + k(1 + Mk2))e−k f cosh(k(h − y))(k − κ0 coth(κ0(h − f )))} dk
(4.6)

for n + m odd. Taking f → 0 in (4.5) and (4.6), we obtain wave-free potentials having
singularity on the free surface given by

χm
n =

Pm
n+1(cos θ)

rn+2 +
κ0

n − m + 1
tanh(κ0h)

Pm
n (cos θ)
rn+1

+
1

(n − m + 1)!

∫ ∞

0

knJm(kR)
(1 + Mk2)k sinh(kh) − K cosh(kh)

× {(−1)me−kh((1 + Mk2)k cosh(ky) − K sinh(ky))(k + κ0 tanh(κ0h))

+ (−1)n+1(K + k(1 + Mk2)) cosh(k(h − y))(k − κ0 tanh(κ0h))} dk

for n + m even, and

χm
n =

Pm
n+1(cos θ)

rn+2 +
κ0

n − m + 1
coth(κ0h)

Pm
n (cos θ)
rn+1

+
1

(n − m + 1)!

∫ ∞

0

knJm(kR)
(1 + Mk2)k sinh(kh) − K cosh(kh)

× {(−1)me−kh((1 + Mk2)k cosh(ky) − K sinh(ky))(k + κ0 coth(κ0h))

+ (−1)n+1(K + k(1 + Mk2)) cosh(k(h − y))(k − κ0 coth(κ0h))} dk

for n + m odd.
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4.3. Water with an ice cover Here the potential function φ(x, y, z) satisfies (2.1),
(3.8) and (4.1). Proceeding as before, it can be shown that the combinations

φm
n+1 +

κ1

n − m + 1
tanh(κ1(h − f ))φm

n , n + m even,

φm
n+1 +

κ1

n − m + 1
coth(κ1(h − f ))φm

n , n + m odd

are wave free, where κ1 is the unique positive root of the relevant dispersion equation

k(Dk4 + 1 − εK) sinh(kh) − K cosh(kh) = 0.

Thus, in this case, the wave-free potentials having singularity at (0, f , 0) are given by

ψm
n ≡ φ

m
n+1 +

κ1

n − m + 1
tanh(κ1(h − f ))φm

n

=
Pm

n+1(cos θ)
rn+2 +

κ1

n − m + 1
tanh(κ1(h − f ))

Pm
n (cos θ)
rn+1

+
1

(n − m + 1)!

∫ ∞

0

knJm(kR)
k(Dk4 + 1 − εK) sinh(kh) − K cosh(kh)

× {(−1)me−k(h− f )(k(Dk4 + 1 − εK) cosh(ky)

− K sinh(ky))(k + κ1 tanh(κ1(h − f ))) + (−1)n+1(K + k(Dk4 + 1 − εK))e−k f

× cosh(k(h − y))(k − κ1 tanh(κ1(h − f )))} dk (4.7)

for n + m even, and

ψm
n ≡ φ

m
n+1 +

κ1

n − m + 1
coth(κ1(h − f ))φm

n

=
Pm

n+1(cos θ)
rn+2 +

κ1

n − m + 1
coth(κ1(h − f ))

Pm
n (cos θ)
rn+1

+
1

(n − m + 1)!

∫ ∞

0

knJm(kR)
k(Dk4 + 1 − εK) sinh(kh) − K cosh(kh)

× {(−1)me−k(h− f )(k(Dk4 + 1 − εK) cosh(ky)

− K sinh(ky))(k + κ1 coth(κ1(h − f ))) + (−1)n+1(K + k(Dk4 + 1 − εK))e−k f

× cosh(k(h − y))(k − κ1 coth(κ1(h − f )))} dk (4.8)

for n + m odd. Taking f → 0 in (4.7) and (4.8), we obtain wave-free potentials having
singularity on the ice cover given by

χm
n =

Pm
n+1(cos θ)

rn+2 +
κ1

n − m + 1
tanh(κ1h)

Pm
n (cos θ)
rn+1

+
1

(n − m + 1)!

∫ ∞

0

knJm(kR)
k(Dk4 + 1 − εK) sinh(kh) − K cosh(kh)

× {(−1)me−kh(k(Dk4 + 1 − εK) cosh(ky) − K sinh(ky))(k + κ1 tanh(κ1h))

+ (−1)n+1(K + k(Dk4 + 1 − εK)) cosh(k(h − y))(k − κ1 tanh(κ1h))} dk
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Figure 1. Form of the free surface for infinitely deep water with n = 2.
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Figure 2. Form of the free surface for infinitely deep water with n = 5.

for n + m even, and

χm
n =

Pm
n+1(cos θ)

rn+2 +
κ1

n − m + 1
coth(κ1h)

Pm
n (cos θ)
rn+1

+
1

(n − m + 1)!

∫ ∞

0

knJm(kR)
k(Dk4 + 1 − εK) sinh(kh) − K cosh(kh)

× {(−1)me−kh(k(Dk4 + 1 − εK) cosh(ky) − K sinh(ky))(k + κ1 coth(κ1h))

+ (−1)n+1(K + k(Dk4 + 1 − εK)) cosh(k(h − y))(k − κ1 coth(κ1h))} dk

for n + m odd.
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Figure 3. Form of the free surface for uniform finite depth water with h/ f = 3 and n = 2.
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Figure 4. Form of the free surface for uniform finite depth water with h/ f = 3 and n = 5.

5. Numerical results

The velocity potential Φ(x, y, z, t) defining the motion in the fluid corresponding to
a wave-free potential Ψm

n (x, y, z, t) can be written as

Φ(x, y, z, t) =
g f n+3

ω
Ψm

n (x, y, z, t),

where g is the acceleration due to gravity and ω is the circular frequency assuming
time-harmonic dependence of the wave-free potential. We can write

Ψm
n (x, y, z, t) = Re(ψm

n (x, y, z)e−iωt),

so that
Φ(x, y, z, t) = Re(φ(x, y, z)e−iωt).
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Figure 5. Form of the free surface due to the presence of surface tension at the free surface for infinitely
deep water with n = 2 and M/ f 2 = 1.
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Figure 6. Form of the free surface due to the presence of surface tension at the free surface for infinitely
deep water with n = 5 and M/ f 2 = 1.

Then the depression η(x, z, t) of the upper surface is given by

η(x, z, t) =
1
g
∂Φ

∂t
(x, 0, z, t)

=
1
g

Re(−iωφ(x, 0, z)(cos(ωt) − i sin(ωt)))

= − f n+3ψm
n (x, 0, z) sin(ωt).

We write ψm
n (x, 0, z) as ψm

n (R, 0) where R = (x2 + z
2
)1/2, since a wave-free potential is a

function of R and y only, so that

ζ(R, t) ≡
η(R, t)

f
= − f n+2ψm

n (R, 0) sin(ωt)

is the nondimensionalized depression of the upper surface of the fluid.
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Figure 7. Form of the free surface due to the presence of surface tension at the free surface for uniform
finite depth water with h/ f = 3, n = 2 and M/ f 2 = 1.
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–2.0
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Figure 8. Form of the free surface due to the presence of surface tension at the free surface for uniform
finite depth water with h/ f = 3, n = 5 and M/ f 2 = 1.

For numerical computation we choose ωt = π/2 and m = 0, and the nondimension-
alized upper surface depression ζ is plotted against R/ f in a number of figures. Other
values of ωt and m can also be taken. In Figures 1, 2, 5, 6, 9, 10, 11 and 14, ζ is
depicted against R/ f for infinitely deep water and n = 2, 5 and K f = 0.1, 0.5, 1. In
Figures 3, 4, 7, 8, 12 and 13, ζ is depicted against R/ f for uniform finite depth water
with h/ f = 3, n = 2, 5 and K f = 0.1, 0.5, 1. Figures 1, 3, 5, 7, 10, 12 correspond to the
case n = 2, and Figures 2, 4, 6, 8, 11, 13 to the case n = 5.

Figures 1–4 correspond to the case of water with a free surface, observed for y = 0,
r = r′ and θ = θ′. Expression (3.5) shows that ψm

n (R, 0) is independent of the wave
number K, so that ζ is likewise. That is why there is only one curve for ζ in Figures 1
and 2 corresponding to any value of K f . From Figure 3, it is seen that the wave profiles
for K f = 0.1,0.5,1 almost coincide and no significant change in amplitude is observed.
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Figure 9. Form of the free surface due to the presence of surface tension at the free surface for infinitely
deep water with n = 2 and M/ f 2 = 0.001.
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Figure 10. Form of the upper surface due to the presence of an ice cover for infinitely deep water with
n = 2, D/ f 4 = 1 and ε/ f = 0.01.

From Figure 4, it is observed that the amplitude of the wave profiles increases as K f
increases from 0.1 to 1. In all of these figures it is observed that as R/ f increases, the
wave profile decays to zero rapidly and ultimately dies out.

In Figures 5–9, ζ is depicted against R/ f , taking into account the effect of surface
tension at the free surface. The surface tension parameter M/ f 2 is chosen to be 1 in
Figures 5–8, and K f = 0.1, 0.5, 1. From Figure 5, it is observed that as K f increases
from 0.1 to 1, the amplitude of the wave profile decreases. In Figure 6, the wave
profiles are just the opposite to those in Figure 5. The same nature of the wave profiles
is observed in Figures 5 and 7 and in Figures 6 and 8. In Figure 9, M/ f 2 is taken to
be very small (0.001) so that there is almost no effect of the surface tension at the free
surface. The curves in Figure 9 (for K f = 0.1,0.5,1) become almost a single curve and
coincide with the curve in Figure 1, as should have been expected. From Figures 1–4
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Figure 11. Form of the upper surface due to the presence of an ice cover for infinitely deep water with
n = 5, D/ f 4 = 1 and ε/ f = 0.01.
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Figure 12. Form of the upper surface due to the presence of an ice cover for uniform finite depth water
with h/ f = 3, n = 2, D/ f 4 = 1 and ε/ f = 0.01.

and 5–8 it is observed that the presence of surface tension at the free surface decreases
the amplitude of the free surface profile.

In Figures 10–14, the case of water with an ice cover modelled as a thin elastic
plate floating on the water is considered. In Figures 10–13, the stiffness and mass
parameters, D/ f 4 and ε/ f respectively, are taken as D/ f 4 = 1 and ε/ f = 0.01. Here
also it is observed from Figure 10 that as K f increases from 0.1 to 1, the amplitude
of the wave profile decreases. The wave profiles in Figure 11 are opposite to those in
Figure 10. The same nature of the wave profiles is observed in Figures 10 and 12 and
in Figures 11 and 13. In Figure 14, the stiffness parameter D/ f 4 is chosen to be small
(D/ f 4 = 0.001 and ε/ f = 0.01) so that the ice cover becomes almost a free surface
and n is taken to be 2. The curves in Figure 14 shrink to a single curve which is almost
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Figure 13. Form of the upper surface due to the presence of an ice cover for uniform finite depth water
with h/ f = 3, n = 5, D/ f 4 = 1 and ε/ f = 0.01.
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Figure 14. Form of the upper surface due to the presence of an ice cover for infinitely deep water with
n = 2, D/ f 4 = 0.001 and ε/ f = 0.01.

the same as in Figure 1. It is observed from Figures 10–13 that the amplitude of the
wave motion decreases due to the presence of the ice cover.

6. Conclusion

Wave-free potentials in deep water and water of uniform finite depth with a free
surface for three dimensions are constructed in a systematic manner. These are also
obtained taking into account the effect of the presence of surface tension at the free
surface and also in the presence of an ice cover modelled as a thin elastic pate. The
form of the free surface or ice cover due to a multipole at (0, f , 0) is depicted against
the distance for different values of K f and n, ωt = π/2 and m = 0 being always taken.
It is observed from all of these figures that the free surface depression/elevation is
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maximum above the singularity and tends to zero as the distance from the origin
becomes large. This is quite plausible. The results can also be extended to free surface
boundary conditions with higher-order derivatives (compare with the work of Manam
et al. [25] and Das et al. [11]).

Acknowledgements

The authors thank the reviewers and Professor L. Forbes, Associate Editor, for their
comments and suggestions for improving this paper. They also thank DST (research
project SR/SY/MS:521/08) and CSIR, New Delhi, for financial assistance.

References
[1] R. Barakat, “Vertical motion of a floating sphere in a sine-wave sea”, J. Fluid Mech. 13 (1962)

540–556; doi:10.1017/S0022112062000920.
[2] W. E. Bolton and F. Ursell, “The wave force on an infinite long circular cylinder in an oblique

sea”, J. Fluid Mech. 57 (1973) 241–256; doi:10.1017/S0022112073001138.
[3] A. Chakrabarti, “On the solution of the problem of scattering of surface water waves of the edge

of an ice cover”, Proc. R. Soc. Lond. A 456 (1997) 1087–1099; doi:10.1098/rspa.2000.0552.
[4] I. K. Chatjigeorgiou, “Hydrodynamic exciting forces on a submerged oblate spheroid in regular

waves”, Comput. & Fluids 57 (2012) 151–162; doi:10.1016/j.compfluid.2011.12.013.
[5] I. K. Chatjigeorgiou, “The analytic solution for hydrodynamic diffraction by submerged prolate

spheroids in infinite water depth”, J. Engrg. Math. 81 (2013) 47–65;
doi:10.1007/s10665-012-9581-x.

[6] D. Das and B. N. Mandal, “Oblique scattering by a circular cylinder submerged beneath an ice-
cover”, Internat. J. Engrg. Sci. 44 (2006) 166–179; doi:10.1016/j.ijengsci.2006.01.001.

[7] D. Das and B. N. Mandal, “Water wave radiation by a sphere submerged in water with an ice-
cover”, Arch Appl. Mech. 78 (2008) 649–661; doi:10.1007/s00419-007-0186-1.

[8] D. Das and B. N. Mandal, “Wave scattering by a circular cylinder half-immersed in water with an
ice-cover”, Internat. J. Engrg. Sci. 47 (2009) 463–474; doi:10.1016/j.ijengsci.2008.10.001.

[9] D. Das and B. N. Mandal, “Construction of wave-free potential in the linearized theory of water
waves”, J. Marine Sci. Appl. 9 (2010) 347–354; doi:10.1007/s11804-010-1019-0.

[10] D. Das and B. N. Mandal, “Wave radiation by a sphere submerged in a two-layer ocean with an
ice-cover”, Appl. Ocean Res. 32 (2010) 358–366; doi:10.1016/j.apor.2009.11.002.

[11] D. Das, B. N. Mandal and A. Chakrabarti, “Energy identities in water wave theory for free-surface
boundary condition with higher-order derivatives”, Fluid Dyn. Res. 40 (2008) 253–272;
doi:10.1016/j.fluiddyn.2007.10.002.

[12] D. Das and N. Thakur, “Water wave scattering by a sphere submerged in uniform finite depth water
with an ice-cover”, Marine Struct. 30 (2013) 63–73; doi:10.1016/j.marstruc.2012.11.001.

[13] J. W. Davys, R. J. Hosking and A. D. Sneyd, “Waves due to steadily moving source on a floating
ice plate”, J. Fluid Mech. 158 (1985) 269–287; doi:10.1017/S0022112085002646.

[14] R. Eatock Taylor and C. S. Hu, “Multipole expansions for wave diffraction and radiation in deep
water”, Ocean Engrg. 18 (1991) 191–224; doi:10.1016/0029-8018(91)90002-8.

[15] D. V. Evans and R. Porter, “Wave scattering by narrow cracks in ice-sheets floating on water of
finite depth”, J. Fluid Mech. 484 (2003) 143–165; doi:10.1017/S002211200300435X.

[16] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. Part I. Higher-order
series solution”, J. Fluid Mech. 169 (1986) 409–428; doi:10.1017/S0022112086000708.

[17] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. Part 2. Galerkin
solution”, J. Fluid Mech. 188 (1988) 491–508; doi:10.1017/S0022112088000813.

[18] C. Fox and V. A. Squire, “On the oblique reflexion and transmission of ocean waves at shore fast
sea ice”, Philos. Trans. R. Soc. Lond. A 347 (1994) 185–218; doi:10.1098/rsta.1994.0044.

https://doi.org/10.1017/S1446181113000357 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0022112062000920
http://dx.doi.org/10.1017/S0022112073001138
http://dx.doi.org/10.1098/rspa.2000.0552
http://dx.doi.org/10.1016/j.compfluid.2011.12.013
http://dx.doi.org/10.1007/s10665-012-9581-x
http://dx.doi.org/10.1016/j.ijengsci.2006.01.001
http://dx.doi.org/10.1007/s00419-007-0186-1
http://dx.doi.org/10.1016/j.ijengsci.2008.10.001
http://dx.doi.org/10.1007/s11804-010-1019-0
http://dx.doi.org/10.1016/j.apor.2009.11.002
http://dx.doi.org/10.1016/j.fluiddyn.2007.10.002
http://dx.doi.org/10.1016/j.marstruc.2012.11.001
http://dx.doi.org/10.1017/S0022112085002646
http://dx.doi.org/10.1016/0029-8018(91)90002-8
http://dx.doi.org/10.1017/S002211200300435X
http://dx.doi.org/10.1017/S0022112086000708
http://dx.doi.org/10.1017/S0022112088000813
http://dx.doi.org/10.1098/rsta.1994.0044
https://doi.org/10.1017/S1446181113000357


194 H. Dhillon and B. N. Mandal [20]

[19] R. Gayen Chowdhury and B. N. Mandal, “Motion due to fundamental singularities in finite depth
water with an elastic solid cover”, Fluid Dyn. Res. 38 (2006) 224–240;
doi:10.1016/j.fluiddyn.2005.12.001.

[20] R. Gayen Chowdhury, B. N. Mandal and A. Chakrabarti, “Water-wave scattering by an ice-strip”,
J. Engrg. Math. 53 (2005) 21–37; doi:10.1007/s10665-005-2725-5.

[21] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products (Academic Press, New
York, 1980).

[22] E. P. Gray, “Scattering of a surface wave by a submerged sphere”, J. Engrg. Math. 12 (1978)
15–41; doi:10.1007/BF00042802.

[23] H. T. Havelock, “Waves due to a floating sphere making periodic heaving oscillations”, Proc. R.
Soc. Lond. A 231 (1955) 1–7; doi:10.1098/rspa.1955.0152.

[24] A. Hulme, “The wave forces on a floating hemisphere undergoing forced periodic oscillations”,
J. Fluid Mech. 121 (1982) 443–463; doi:10.1017/S0022112082001980.

[25] S. R. Manam, J. Bhattacharjee and T. Sahoo, “Expansion formulae in wave structure interaction
problems”, Proc. R. Soc. Lond. A 462 (2006) 263–287; doi:10.1098/rspa.2005.1562.

[26] B. N. Mandal and D. Das, “Construction of wave-free potentials in linearized theory of water
waves in uniform finite depth water”, Rev. Bull. Calcutta Math. Soc. 18 (2010) 173–184.

[27] B. N. Mandal and S. K. Goswami, “Scattering of surface waves obliquely incident on a fixed half
immersed circular cylinder”, Math. Proc. Cambridge Philos. Soc. 96 (1984) 359–369;
doi:10.1017/S0305004100062265.

[28] C. M. Linton, “Radiation and diffraction of water waves by a submerged sphere in finite depth”,
Ocean Engrg. 18 (1991) 61–74; doi:10.1016/0029-8018(91)90034-N.

[29] C. M. Linton and H. Chung, “Reflection and transmission at the ocean/sea-ice boundary”, Wave
Motion 38 (2003) 43–52; doi:10.1016/S0165-2125(03)00003-9.

[30] C. M. Linton and P. McIver, Handbook of mathematical techniques for wave/structure
introductions (Chapman and Hall/CRC, Boca Raton, FL, 2001).

[31] Y. Liu, B. Teng, P. Cong, C. Liu and Y. Gou, “Analytical study of wave diffraction and radiation
by a submerged sphere in infinite water depth”, Ocean Engrg. 51 (2012) 129–141;
doi:10.1016/j.oceaneng.2012.05.004.

[32] M. Rahman, “Simulation of diffraction of ocean waves by a submerged sphere in finite depth”,
Appl. Ocean Res. 23 (2001) 305–317; doi:10.1016/S0141-1187(02)00003-2.

[33] P. F. Rhodes-Robinson, “Fundamental singularities in the theory of water waves with surface
tension”, Bull. Aust. Math. Soc. 2 (1970) 317–333; doi:10.1017/S0004972700042015.

[34] V. A. Squire, J. P. Dugan, P. Wadhams, P. J. Rottier and A. K. Liu, “Of ocean waves and ice
sheets”, Annu. Rev. Fluid Mech. 27 (1995) 115–168; doi:10.1146/annurev.fl.27.010195.000555.

[35] M. A. Srokosz, “The submerged sphere as an absorber of wave power”, J. Fluid Mech. 95 (1979)
717–741; doi:10.1017/S002211207900166X.

[36] R. C. Thorne, “Multipole expansions in the theory of surface waves”, Math. Proc. Cambridge
Philos. Soc. 49 (1953) 707–716; doi:10.1017/S0305004100028905.

[37] F. Ursell, “On the heaving motion of a circular cylinder on the surface of a fluid”, Q. J. Mech.
Appl. Math. 2 (1949) 218–231; doi:10.1093/qjmam/2.2.218.

[38] F. Ursell, “Surface waves on deep water in the presence of a submerged cylinder. I”, Math. Proc.
Cambridge Philos. Soc. 46 (1950) 141–152; doi:10.1017/S0305004100025561.

[39] F. Ursell, “Surface waves on deep water in the presence of a submerged cylinder. II”, Math. Proc.
Cambridge Philos. Soc. 46 (1950) 153–158; doi:10.1017/S0305004100025573.

[40] F. Ursell, “The transmission of surface waves under surface obstacles”, Math. Proc. Cambridge
Philos. Soc. 57 (1961) 638–668; doi:10.1017/S0305004100035696.

[41] F. Ursell, “Slender oscillating ships at zero forward speed”, J. Fluid Mech. 14 (1962) 496–516;
doi:0.1017/S0022112062001408.

[42] F. Ursell, “The periodic heaving motion of a half-immersed sphere: the analytic form of the
velocity potential, long-wave asymptotics of the virtual-mass coefficient”, Report for Fluid
Dynamics Branch, U.S. Office of Naval Research, 1962.

https://doi.org/10.1017/S1446181113000357 Published online by Cambridge University Press

http://dx.doi.org/10.1016/j.fluiddyn.2005.12.001
http://dx.doi.org/10.1007/s10665-005-2725-5
http://dx.doi.org/10.1007/BF00042802
http://dx.doi.org/10.1098/rspa.1955.0152
http://dx.doi.org/10.1017/S0022112082001980
http://dx.doi.org/10.1098/rspa.2005.1562
http://dx.doi.org/10.1017/S0305004100062265
http://dx.doi.org/10.1016/0029-8018(91)90034-N
http://dx.doi.org/10.1016/S0165-2125(03)00003-9
http://dx.doi.org/10.1016/j.oceaneng.2012.05.004
http://dx.doi.org/10.1016/S0141-1187(02)00003-2
http://dx.doi.org/10.1017/S0004972700042015
http://dx.doi.org/10.1146/annurev.fl.27.010195.000555
http://dx.doi.org/10.1017/S002211207900166X
http://dx.doi.org/10.1017/S0305004100028905
http://dx.doi.org/10.1093/qjmam/2.2.218
http://dx.doi.org/10.1017/S0305004100025561
http://dx.doi.org/10.1017/S0305004100025573
http://dx.doi.org/10.1017/S0305004100035696
http://dx.doi.org/0.1017/S0022112062001408
https://doi.org/10.1017/S1446181113000357


[21] Three-dimensional wave-free potentials in the theory of water waves 195

[43] F. Ursell, “The expansion of water wave potentials at great distances”, Math. Proc. Cambridge
Philos. Soc. 64 (1968) 811–826; doi:10.1017/S0305004100043516.

[44] S. Wang, “Motions of a spherical submarine in waves”, Ocean Engrg. 13 (1986) 249–271;
doi:10.1016/0029-8018(86)90018-1.

[45] J. V. Wehausen and E. V. Laitone, “Surface waves”, in: Handbuch der Physik, Vol. IX (Springer,
Berlin, 1960), 446–778; doi:10.1007/978-3-642-45944-3 6.

[46] G. X. Wu, “Radiation and diffraction by a submerged sphere advancing in water waves of finite
depth”, Proc. R. Soc. Lond. A 448 (1995) 29–54; doi:10.1098/rspa.1995.0002.

[47] G. X. Wu and R. Eatock Taylor, “Radiation and diffraction of water waves by a submerged sphere
at forward speed”, Proc. R. Soc. Lond. A 417 (1988) 433–461; doi:10.1098/rspa.1988.0069.

https://doi.org/10.1017/S1446181113000357 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0305004100043516
http://dx.doi.org/10.1016/0029-8018(86)90018-1
http://dx.doi.org/10.1007/978-3-642-45944-3_6
http://dx.doi.org/10.1098/rspa.1995.0002
http://dx.doi.org/10.1098/rspa.1988.0069
https://doi.org/10.1017/S1446181113000357

	Introduction
	Statement of the problem
	Wave-free potentials for water of infinite depth
	Water with a free surface
	Effect of surface tension at the free surface
	Water with an ice cover

	Wave-free potentials for water of uniform finite depth
	Water with a free surface
	Effect of surface tension at the free surface
	Water with an ice cover

	Numerical results
	Conclusion

