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Droplet evaporation in inert gases
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A general mixed kinetic-diffusion boundary condition is formulated to account for the
out-of-equilibrium kinetics in the Knudsen layer. The mixed boundary condition is used
to investigate the problem of quasi-steady evaporation of a droplet in an infinite domain
containing inert gases. The widely adopted local thermodynamic equilibrium assumption
is found to be the limiting case of infinitely large kinetic Péclet number Pek, and it
introduces significant error for Pek � O(10), which corresponds to a typical droplet radius
a of a few micrometres or smaller. When compared with experimental data, solutions
based on the mixed boundary condition, which take into account the temperature jump
across the Knudsen layer, better predict the time evolution of a than the classical D2-law
(i.e. a2 ∝ t, where t denotes time). In the slow evaporation limit, an analytical solution is
obtained by linearising the full formulation about the equilibrium condition, which shows
that the D2-law can be recovered only in the large Pek limit. For small Pek, where the
process is dominated by kinetics, a linear relation, i.e. a ∝ t, emerges. When the gas phase
density approaches the liquid density (e.g. at high-pressure or low-temperature conditions),
the increase in the chemical potential of the liquid phase due to the presence of inert
gases needs to be accounted for when formulating the mixed boundary condition, an effect
largely ignored in the literature so far.

Key words: drops, condensation/evaporation

1. Introduction

Evaporation of droplets in inert gases occurs in a wide range of practical applications
and have been investigated extensively since the pioneering work of Maxwell (1890).
His approach of modelling the evaporation process based on macroscopic conservation
laws assuming continuum liquid and gas phases has been proved adequate for sufficiently
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large droplets (i.e. Knudsen number Kn = λ/a � 1, where λ is the mean free path in
the gas phase, and a is the droplet diameter) and is now widely adopted. Over the
years, continued efforts have been made to correct for some of the assumptions made
by Maxwell, such as the quasi-steady (QS) gas phase, negligible internal and external
flow (including the Stefan flow) and negligible droplet heating, as reviewed in detail in
the literature (Sazhin 2006; Sirignano 2010). However, the paradoxical assumption of the
local thermodynamic equilibrium at the interface (net evaporation can occur only when
the interface region is out of equilibrium) persists and is still widely adopted in recent
theoretical and experimental work (Lu et al. 2017; Finneran, Garner & Nadal 2021).
The local thermodynamic equilibrium assumption allows for the determination of the
vapour partial pressure in the close vicinity of the droplet surface (hence the vapour
concentration), based on the liquid surface temperature. As a result, it serves as a sufficient
boundary condition to couple the transport process in the liquid phase to those in the gas
phase through a continuum hydrodynamic model without considering the non-equilibrium
kinetics. This approach is adopted widely in the modelling the evaporation of isolated
droplets (Sazhin 2006; Sirignano 2010; Holyst et al. 2013a) and also droplets on an
impermeable substrate (Deegan et al. 1997, 2000; Poulard, Be & Cazabat 2003).

Meanwhile, in experimental and theoretical work dealing with evaporation of droplets
in their own vapour (Lu et al. 2019; Rana, Lockerby & Sprittles 2019), the local
thermodynamic equilibrium is replaced by a more rigorous out-of-equilibrium kinetic
boundary condition where the evaporative mass flux J depends on the difference in
the chemical potential between the liquid and the vapour phase. This kinetic boundary
condition enables the decoupling of the low Mach number gas phase from the liquid
phase, so a ‘one-sided’ model can be developed to model the liquid evaporation dynamics.
Due to this convenience, the one-sided model was also used frequently in modelling the
dynamics of an evaporating liquid film (Burelbach, Bankoff & Davis 1988; Oron, Davis
& Bankoff 1997; Craster & Matar 2009). Assuming the evaporative mass flux across the
out-of-equilibrium kinetic region – i.e. the Knudsen layer – should equal the mass flux out
of this region, a mixed kinetic-diffusion boundary condition can be formulated to couple
the liquid and gas phases (Kryukov, Levashov & Sazhin 2004; Sultan, Boudaoud & Ben
Amar 2005; Holyst et al. 2013a). Sultan et al. (2005) also identified the kinetic Péclet
number Pek = ukH/DAB (where uk is the typical kinetic velocity, H is the characteristic
length and DAB is the mass diffusivity between the liquid A and the inert gas B) to
be the key dimensionless group, and showed that the local thermodynamic equilibrium
assumption corresponds to the limiting case of an infinitely large Pek. When formulating
the boundary condition, existing works focused on slow evaporation (thus ignoring the
Stefan flow) and adopted the widely used Hertz–Knudsen (HK) relation (Knudsen 1950) –
i.e. (1.1) – to model the kinetics of net evaporation

J = 1√
2πRA

s

(
σe

pA
s√
Ts

− σc
pA

k√
Tk

)
. (1.1)

In this expression, σe and σc are empirical evaporation and condensation coefficients,
( pA

s , Ts) and ( pA
k , Tk) are the vapour pressure of species A and temperature on the

liquid surface and just outside the Knudsen layer, respectively, and RA
s is the specific gas

constant of species A. The HK relation was originally derived based on the assumption
of an equilibrium Maxwellian velocity distribution in the gas phase and decoupled
evaporation and condensation processes (i.e. σe and σc are constants). The HK relation
is considered as semi-empirical, due to the absence of explicit expressions for σe and
σc. Analytical expressions for σe and σc based on the statistical rate theory in the
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thermal-energy-dominated limit (TED-SRT) were recently proposed by Persad & Ward
(2016), as shown in (1.2a,b) and (1.3a–c)

σe = pA
s

pA
k
σ̂e, σc =

√
TK exp

[−(N + 4)(1 − TK)
]

TK
−(N+4)

, (1.2a,b)

where

σ̂e = exp
[
(N + 4)(1 − TK)

]
TK

N+4
, TK = Tk

Ts
= 1 + δT, δT = Tk − Ts

Ts
. (1.3a–c)

In these expressions, N is the number of internal vibration degrees of freedom (which is
3n − 6 for nonlinear molecules consisting of n atoms and 3n − 5 for linear molecules).
Experimental data reviewed by Persad & Ward (2016) suggest that δT is typically much
smaller than unity, so that σ̂e and σc can be linearised about Tk = 1, which yields
σ̂e = 1 + O(δT

2
) and σc = 1 + δT/2 + O(δT

2
). The TED-SRT formulation shows that

both σe and σc are explicit functions of ps, Ts, pk and Tk, so that the evaporation and
condensation processes are coupled. As highlighted by Persad & Ward (2016), considering
Tk is always larger than Ts in cases of net evaporation, it is clear that σc > 1 during the
evaporation. Therefore, the conventional interpretation that σc represents the fraction of
molecules condensed into liquid on reaching the liquid surface is not physically sound.
Sultan et al. (2005) set σe = σc = 1 and Ts = Tk (a common approach adopted in the
literature) which de facto implies thermodynamic equilibrium in the Knudsen layer (Persad
& Ward 2016). In addition, in (1.1), ps is commonly taken to be the saturated pressure p�

s
of the pure substance without correcting for its change due to the presence of inert gases.
The impact of adopting this mixed boundary condition and relevant simplifications on
predicting the evaporation rate of a droplet has yet to be quantified.

In this work, we derive more general mixed kinetic-diffusion boundary conditions that
take into account the Stefan flow (§ 2). The mixed boundary condition is formulated based
on either the semi-empirical HK model or the analytical TED-SRT model and includes
corrections for the change of liquid chemical potential due to the presence of inert gas
and the temperature jump across the Knudsen layer. The mixed boundary condition is then
applied to investigate the problem of QS evaporation of a spherical droplet in an infinite
domain containing inert gases. The full and linearised solutions for the QS evaporation
problem are presented in § 3. The analytical and numerical results are then compared with
the experimental data reported in the literature. The comparison shows the potential errors
caused by the local thermodynamic equilibrium assumption and the neglect of the change
of the chemical potential of the liquid phase (i.e. the effect of the inert gas). Conclusions
regarding the impact of such a generalised mixed kinetic-diffusion boundary condition on
the evaporation rate, and future work, are presented in the final section.

2. Formulation of the mixed boundary conditions

We consider here a spherical droplet of size a of pure substance A evaporating in an
infinite gas domain that consists of vapour A and inert immiscible gases B, as in figure 1.
When required, partial properties of a pure substances (e.g. evaporating substance A or
inert gas B) are denoted using superscripts A and B, respectively, whereas properties
of the whole gas phase (i.e. the mixture of gaseous A and the inert gas B) have no
superscript. Throughout the article, the superscript l stands for the liquid domain. All
quantities evaluated at the liquid interface and just outside the Knudsen layer are labelled
with subscripts s and k, respectively.
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Surface condition, s

End of Knudsen layer, k

T∞, ω∞, p∞

ω = 1

T, ω, pA, u = f (r, t)

r = a(t), ps
A = peq(Ts, ps)

pk
A < ps

A
r = a0

r = 0

r → ∞

r

Figure 1. Illustration of the evaporation of a droplet in an infinite gas domain. Note that the Knudsen layer
represents the conceptual out-of-equilibrium kinetic region: its outer boundary is not sharp due to the continuity
of the partial pressure and temperature.

2.1. Mass conservation across the Knudsen layer
Assuming an infinitely thin Knudsen layer, mass conservation requires that

J = ρk(uk − us) · n̂, (2.1)

where ρ is the density, u is the velocity and n̂ is the normal outward unit vector. The
immiscibility of B in A results in a vanishing mass flux of B across the interface, such that
the evaporation mass flux equals the mass diffusion flux of A, which can be written as

J = JA
k = −ρkDAB[∇ω · n̂]k

1 − ωk
= ρkDAB[∇Φ · n̂]k

Φk
, (2.2)

where ω is the mass fraction of A, and Φ = 1 − ω. Here, we consider the case where the
total pressure in the gas domain remains unchanged (i.e. Ma � 1). In the case of high
Mach number, the pressure relaxation process in the gas domain needs to be accounted
for to find the change in pressure. To proceed, a kinetic model within the Knudsen layer
(e.g. the analytical TED-SRT model or the semi-empirical HK model) needs to be used to
predict J.

2.2. The HK-based mixed boundary condition
Assuming that the Knudsen layer is not too far from thermodynamic equilibrium and
the velocity profile in the gas domain is Maxwellian, Struchtrup et al. (2017) proposed
the following kinetic model in a pure vapour environment, based on the extension of the
Onsager–Casimir reciprocity relations:⎡⎢⎢⎢⎣

peq
s − pk√
2πRA

s Ts

− peq
s√

2πRA
s Ts

Ts − Tk

Ts

⎤⎥⎥⎥⎦ =
[

r11 r12
r21 r22

]⎡⎣ J
qv

RA
s Ts

⎤⎦ , (2.3)

where coefficients r11 = 1/π + 9/32, r12 = r21 = 1/16 + 1/(5π), r22 = 1/8 + 13/(25π),
peq

s is the equilibrium vapour pressure of species A and qv is the heat flux adds to
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the vapour. In the case of a negligible change of sensible heat inside the droplet, qv =
−JL, where L is the latent heat of evaporation. The above expression is an extension of the
HK model taking into account the Stefan flow due to net evaporation, with the additional
assumption σe = σc = 1. It also predicts the temperature jump across the Knudsen layer,
which is commonly ignored in the literature. As shown by Persad & Ward (2016),
assuming either Tk = Ts or σe = σc does not introduce major discrepancies compared
with experimental results (�5 %), but making both assumptions simultaneously forces
the Knudsen layer into equilibrium, which could lead to significant errors. When applied
in an inert gas environment, while the form of (2.3) might hold as long as the Knudsen
layer is not too far from equilibrium, i.e. a linear irreversible process, the coefficients and
peq

s should be corrected by taking into account inert gases. The effect of inert gases on the
temperature jump is evidenced by the empirical correlation (2.4) proposed by Holyst et al.
(2013b). Equation (2.4) is based on curve fitting of data obtained from molecular dynamic
(MD) simulations of the evaporation of a droplet made of a Lennard–Jones fluid in inert
gases and reads as

Tk − Ts

T∞ − Ts
= 1

1 + a/(Cλ)
, (2.4)

where C is a fitting parameter calculated to be 2.35, and λ is the mean free path of inert gas
molecules. Equation (2.4) shows that a smaller λ leads to a smaller temperature jump. This
makes sense because the thermalisation process becomes more efficient as the collision
frequency increases at reduced λ.

When the liquid surface is assumed to be at thermodynamic equilibrium, peq
s can be

determined by equating the chemical potential of the liquid phase μl and that of the vapour
phase μv . In order to find the change of chemical potential due to the presence of inert
gases, we consider an isothermal gas addition process. The chemical potentials of the
liquid phase and vapour phase of A in the absence of any inert gas at temperature Ts and
pressure p�

s are denoted by μl� and μv�. As the inert gas is added to the system to reach a
new equilibrium at increased total pressure ps, one obtains

μl(Ts, ps) − μl�(Ts, p�
s) = μv(Ts, peq

s ) − μv�(Ts, p�
s). (2.5)

Applying the Gibbs–Duhem equation yields∫ ps

p�
s

vl dp =
∫ peq

s

p�
s

vv dp, (2.6)

where vl, vv and vv� are molar volume of A in liquid phase, and the vapour phase with
and without inert gas, respectively. In the case of constant liquid molar volume and ideal
gases, one obtains

peq
s = p�

s(Ts) exp(vs), with vs = vl
(

1
vv

− 1
vv�

)
. (2.7)

It appears from (2.7) that the exponential correction factor could become significant as
the specific volume ratio increases, e.g. at high system pressure or low gas temperature.
Note that the assumption of ideal gas needs to be corrected at high pressure or very low
temperature. To assess the value of p�

s , the Clausius–Claperon equation – which is derived
assuming (i) an ideal gas law, (ii) negligibly small gas phase density (compared with that
of the liquid phase) and (iii) constant latent heat – can be integrated between the local
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equilibrium conditions at far field (i.e. outside the boundary layer) and that at the liquid
surface. One obtains

p�
s = p∞ exp

[ L
RA

s

(
1

Tsat∞
− 1

Ts

)]
, (2.8)

where all properties at infinity are labelled with the subscript ∞. In the previous
expression, Tsat∞ is the saturated temperature at p∞.

By combining (2.2), (2.3), (2.7) and (2.8), and accounting for the surface tension σT
based on Kelvin’s law, we obtain the following mixed kinetic-diffusion boundary condition
based on HK model:√

1
2πRA

s Ts

{
c1p∞ exp

[ L
RA

s

(
1

Tsat∞
− 1

Ts

)
+ vs + σ̄

a

]
− (

c1 + c2�T
)

pA
k

}
= ρkDAB[∇Φ · n̂]k

Φk
, (2.9)

where c1 = r22/(r11r22 − r2
12), c2 = c1r11/r22 and σ̄ = 2σT/(RA

s Tlρl).

2.3. The TED-SRT-based mixed boundary condition
Combining the analytical TED-SRT formulation derived by Persad & Ward (2016), i.e.
(1.2a,b), together with (2.2), (2.7) and (2.8), and accounting for the surface tension, the
following mixed boundary conditions can be derived:

√
1

2πRA
s

⎧⎪⎪⎪⎨⎪⎪⎪⎩σ̂e

{
p∞ exp

[ L
RA

s

(
1

Tsat∞
− 1

Ts

)
+ vs + σ̄

a

]}2

pA
k
√

Ts
− σc

pA
k√
Tk

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = ρkDAB[∇Φ · n̂]k

Φk
.

(2.10)

2.4. Dimensionless forms of the mixed boundary conditions
To make the mixed kinetic-diffusion boundary conditions (2.9) and (2.10) dimensionless,
the initial droplet radius a0, the initial Stefan flow gas velocity DAB/a0 and the quantity
a2

0/DAB are chosen as the typical length, velocity and time, respectively. The quantity ρ∞
is chosen as the typical gas density, such that the typical evaporative mass flux becomes
ρ∞DAB/a0.

The mixed boundary condition based on the TED-SRT model (2.10) can be written in a
dimensionless form as

ln(BM + 1)

Pek
= p̄2 exp(2χ)σ̂e

√
1 + δT

[
ε(Ψ + 1 − Φ∞)−1 − (ε − 1)

]2 − σc

(1 − Φ∞ + εΦ∞)−1(1 − κ)1/2[ε(Ψ + 1 − Φ∞)−1 − (ε − 1)]
, (2.11)
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where

BM = ωQS,k − ω∞
1 − ωQS,k

, BT = cA
p

L (T∞ − TQS,k), (2.12a)

Pek = uka
DAB

, uk =
(

RA
s T∞
2π

)1/2

, p̄ = p�(T∞)

p∞
, ε = MA

MB , (2.12b)

Ψ = Φ∞BM

BM + 1
, χ = γ

γ − 1

(
1
Ja

− 1 + δT
Ja − BT

)
+ vs + σ̄

a
, (2.12c)

Ja = cA
p,∞T∞
L , κ = BT

Ja
, vs = ρ̄[1 + (ε − 1)Φ∞](1 − p̄), ρ̄ = ρ∞

ρl . (2.12d)

In the above expressions, γ is the specific heat capacity ratio, cp is the specific heat
capacity, Ja is the Jakob number, BM and BT are the Spalding heat and mass transfer
numbers, respectively, and TQS,k and ωQS,k are the temperature and mass fraction obtained
from the QS solutions.

The mixed boundary condition based on the HK formulation (2.9) can also be made
dimensionless in the same way, which yields

ln(BM + 1)

Pek
=
√

1 + δT{c1[BM + 1 + (ε − 1)Φ∞]p̄ exp(χ) − (BM + 1 − Φ∞)(c1 + c2δT)}√
1 − κ [ε(BM + 1) − (ε − 1)(BM + 1 − Φ∞)] (1 − Φ∞ + εΦ∞)−1

.

(2.13)

Similarly, the analytical temperature jump model developed for evaporation in the pure
vapour environment, i.e. (2.3) can be non-dimensionalised to become

δT = ln(BM + 1)

Pek

[
r12 − r22

γ (δT + 1)

(γ − 1)(Ja − BT)

] √
1 − κ

p̄ exp(χ)[ε − (ε − 1)(1 − Φ∞)]
.

(2.14)

The empirical temperature jump model proposed for the evaporation in inert gases, i.e.
(2.4), can be recast dimensionlessly as

δT = κ

(1 − κ)(1 + ãλ̄) − 1
, with λ̄ = a0

Cλ
. (2.15)

Both (2.11) and (2.13) show that the validity of the assumption of local thermodynamic
equilibrium depends on the value of Pek. As Pek → ∞, the infinitely fast kinetic
convection process instantaneously smooths out any imbalance in the chemical potential
difference across the Knudsen layer – i.e. left-hand sides of (2.11) and (2.13) → 0 – so the
Knudsen layer will instantaneously be in thermodynamic equilibrium. The evaporation
rate is then limited by the mass diffusion of A out from the Knudsen layer. One can also
see from (2.14) that δT → 0 as Pek → ∞. When Pek → ∞, both (2.11) and (2.13) can be
significantly simplified, and one obtains

BT = Ja −
{

1
Ja

+ γ − 1
γ

[
ln
(

BM + 1 + (ε − 1)Φ∞
BM + 1 − Φ∞

)
+ ln(p̄) + vs + σ̄

a0ã

]}−1

.

(2.16)
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In the case where p̄ → 1, and {vs, σ̄ } → 0, (2.16) can be further simplified to recover the
diffusion-dominated boundary condition (Finneran et al. 2021):

BT = Ja −
{

1
Ja

+ γ − 1
γ

[
ln
(

BM + 1 + (ε − 1)Φ∞
BM + 1 − Φ∞

)]}−1

. (2.17)

3. Quasi-steady droplet evaporation

3.1. Solution to the QS problem
In cases where buoyancy is negligible (i.e. large Froude number) and the internal flow
in the droplet is absent, the problem becomes spherically symmetric. With further
assumptions of a QS incompressible ideal gas phase, negligible pressure work and viscous
dissipation (i.e. small Eckert number), constant fluids properties and in the absence of the
Soret/Dufour effect and droplet heating, we obtain the following classical formulation of
the problem (Spalding 1979; Abramzon & Sirignano 1989; Finneran et al. 2021):

dã2

dt̃
= −2ρ̄

Le
cp

ln(1 + BT), (3.1)

BM + 1 = (BT + 1)Le/cp, (3.2)

where ã and t̃ are the rescaled droplet size and time, respectively, Le = k∞/(cp,∞ρ∞DAB)

is the Lewis number, k is the thermal conductivity and cp = cA
p,∞/cp,∞.

Note that both (2.17) and (3.2) are independent of the droplet size ã so BM and BT are
constants during evaporation under the local thermodynamic assumption (i.e. the limit of
Pek → ∞), which leads to the classical D2-law, i.e. ã2 ∝ t̃. However, the D2-law is no
longer valid as we move away from this limit or the surface tension becomes important
because both BM and BT will be functions of ã. As Pek reduces, the chemical potential
difference across the Knudsen layer increases so the local thermodynamic equilibrium
assumption becomes less accurate. As Pek → 0, the mass diffusion of A out from the
Knudsen layer becomes more efficient than the kinetic process so that the evaporation
rate is limited by the slow kinetics. As a result, the out-of-equilibrium kinetics becomes
more prominent towards the end of the evaporation process. For a dilute gas, DAB ∼ T3/2,
uk ∼ T1/2, so Pek ∼ T−1 and the local thermodynamic equilibrium can more easily break
down at high temperature.

The full problem of QS droplet evaporation can be solved numerically based on (3.1) and
(3.2), together with the mixed kinetic-diffusion boundary conditions (e.g. (2.11) or (2.13))
and a temperature jump model (e.g. (2.14) or (2.15), or assuming negligible temperature
jump). In this work, the numerical results were obtained based on the fourth-order
Runge–Kutta methods with variable timesteps to ensure accuracy.

At the slow evaporation limit, the QS droplet evaporation problem based on (3.1), (3.2),
(2.13) and (2.14) can be linearised about the equilibrium condition – i.e. {δT, BM, BT} =
0 – to get

dã2

dt̃
= −2ρ̄BM, BM = Le

cp
BT , sIT

1 δT + sIT
2

Pek
BM = 0, (3.3a–c)[

1
Pek

+ c1p̄σ̄Ω∞(ε − 1)

a0ã
+ sHK

1

]
BM + sHK

s BT + sHK
3 δT = sHK

4 , (3.4)
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where

sHK
1 = c1

[
p̄(1 + vs)(ε − 1)Φ∞ + Φ∞

]
, sHK

2 = c1p̄
γ [1 + (ε − 1)Φ∞]

(γ − 1)(Ja)2 , (3.5a)

sHK
3 = c1p̄

γ [1 − (ε − 1)Φ∞]
(γ − 1)Ja

+ c2(1 − Φ∞), (3.5b)

sHK
4 = c1 {p̄ [1 + (ε − 1)Φ∞] − 1 + Φ∞} , (3.5c)

sIT
1 = p̄[ε − (ε − 1)(1 − Φ∞)], sIT

2 = r12 − r22
γ

(γ − 1)Ja
. (3.5d)

If (2.15) is used to predict the temperature jump,

sIT
1 = 1, sIT

2 = − cp

Le
Pek

ã Ja λ̄
. (3.6a,b)

The rescaled TED-SRT relation, i.e. (2.11), has a singularity at the equilibrium condition
so its linearisation is not pursued in this work.

The solution to problem (3.4) can then be derived as

(ã2 − 1) + c3(ã − 1) = −c4 t̃, (3.7)

where

c3 = 2(1 − sHK
3 sIT

2 /sIT
1 )

(sHK
1 + sHK

2 cp/Le)Pe0
, Pe0 = uka0

DAB
, c4 = 2ρ̄sHK

4

sHK
1 + sHK

2 cp/Le
. (3.8a–c)

In the large Pe0 limit, c3 tends to be zero such that one recovers the classical D2-law.
At small Pe0, the second linear term becomes dominant so the droplet diameter shrinks
linearly with time. The solution for the cases of negligible temperature jump across the
Knudsen layer can be found by setting sHK

3 = 0. The lifetime of the droplet τHK can be
found to be τHK = τD2(1 + c3), where τD2 = 1/c4 is the droplet lifetime assuming local
thermodynamic equilibrium. Therefore, the actual lifetime of an evaporating droplet will
be longer than the prediction from the classical D2-law due to the kinetic-limited regime
towards the end.

3.2. Comparison with experimental data
To test the validity of the mixed kinetic-diffusion boundary condition, both the numerical
results from the full QS problems and the linearised analytical results are compared with
the experimental data reported by Jakubczyk et al. (2012) and Holyst et al. (2013b)
for the evaporation of triethylene glycol (TEG) and diethylene (DEG) glycol droplets
in dry nitrogen and water droplets in humid air. In their experiments, the isolated
droplet evaporates very slowly in a nearly isothermal gas domain due to a small gradient
in the vapour pressure close to the interface. This enables an accurate time-resolved
measurement of the droplet size based on an interferometry technique. Their measurement
uncertainty for the droplet size is reported to be up to 10 nm for a single-component droplet
(Jakubczyk et al. 2012). The physical properties of different fluids and all other parameters
used in the model are summarised in table 1. All properties are evaluated from the NIST
database (Kroenlein et al. 2012), except for DAB (TEG/DEG in dry nitrogen (Lugg 1968);
water in air Massman 1998) and p� for TEG and DEG. The saturation pressure p� at 298 K
for both TEG and DEG is very low and no direct experimental data could be found from
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M cp p� σ L ρl DAB
Substance (g mol−1) (kJ kg−1 K−1) (pa) (N m−1) (kJ kg−1) (kg m−3) (mm2 s−1)

TEG 150.17 1.398 0.0575 0.04513 527.4 1120 5.9
DEG 106.1 1.386 0.635 0.0432 545.6 1113 7.3
Water 18 4.191 1483.5 0.0738 2470.4 999.35 23.5

Table 1. Physical properties of fluids used in modelling. Both TEG and DEG are evaporated in dry nitrogen
at 298 K, 98.7 kPa. Water is evaporated in humid air at 286 K, 99 kPa and 97 relative humidity. The value of λ
in dry nitrogen and humid air is 66 and 63 nm, respectively (Holyst et al. 2013b).

the literature. Therefore, it was taken as the value leading to the best fit of the measured
droplet size, in the region where the classical D2-law is valid, i.e. when the droplet size
is sufficiently large so that the kinetic effects are negligibly small (Pek > 30), and the
measurement uncertainty is less than 0.5 %.

The predicted ã2 and measured ã2
exp and their relative difference, i.e. (ã2

exp − ã2)/ã2
exp,

together with the corresponding Pek for the evaporation of a water droplet in humid air are
shown in figure 2(a,b). We can clearly see that the classical D2-law (i.e. assuming local
thermodynamic equilibrium and ignore surface tension) becomes increasingly inaccurate
as the droplet shrinks (i.e. Pek reduces). At large Pek, the kinetic process is always
much more efficient than the mass diffusion so that the evaporation rate is diffusion
limited. However, as the kinetic process becomes less efficient than the mass diffusion for
reduced droplet sizes, it becomes the limiting factor and the evaporation rate is decreased.
When the surface tension is taken into account, the classical model assuming local
thermodynamic equilibrium overestimates the evaporation rate even further, due to the
increased saturation pressure at small curvature. Incorporating the mixed kinetic-diffusion
boundary conditions with no temperature jump across the Knudsen layer can consistently
improve the prediction. However, the extent of improvement is dependent on the magnitude
of the temperature jump. When the temperature jump is significant, e.g. evaporation of
water in humid air – figure 2(a,b), the improvement is very limited. In contrast, when
the temperature jump is small, e.g. evaporation of TEG/DEG in dry nitrogen shown in
figure 2(c,d), the improvement is very significant. From figure 2, we can also observe that
both accommodation coefficients in (1.1) are very close to 1 when the interface is near
equilibrium so that negligible differences are introduced by using the semi-empirical HK
correlation with unity accommodation coefficients instead of the more rigorous TED-SRT
kinetic model. However, the difference will be larger when the evaporation occurs further
away from the equilibrium such that there is a larger temperature jump.

From figure 2(a), we can also see that incorporating the temperature jump model
developed for the evaporation of a droplet in its pure vapour (i.e. (2.14)) yields an
unrealistically large temperature jump δT across the Knudsen layer (∼10 K) and
consequentially a significantly slower evaporation rate. A closer look to (2.3) suggests
that the large value of δT stems from the very low equilibrium vapour pressure on the
liquid surface, i.e. peq

s and δT will diverge as peq
s → 0, which is not physically acceptable

and needs further correction. If the empirical temperature jump model (2.15) is deployed,
the QS solution matches the experimental results well in all cases. This good match is a
clear indication of the dominant role that the inert gases play in the thermalisation of the
vapour molecules emerging from the evaporation. However, the absence of the physical
properties of the pure substance (possibly link to the value of A) and the heat flux in this
empirical correlation means that it does not account for the energy of the emerging vapour
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(ã
2 ex

p 
−

 ã
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Figure 2. Comparison between the modelled droplet sizes and experimental results. (a,b) Evaporation of a
water drop in humid air (experimental data are from Holyst et al. 2013b). (c) Evaporation of a TEG drop in dry
nitrogen (experimental data are from Jakubczyk et al. 2012). (d) Evaporation of a DEG drop in dry nitrogen
(experimental data are from Holyst et al. 2013b).

molecules properly. The linearised solution, surprisingly, works even better than the full
formulation in most cases. This could be an indication that the full formulation needs
further revision, possibly through the development of a more rigorous temperature jump
model across the Knudsen layer. In summary, among the different models tested, the best
option to correct for the error caused by the local thermodynamic equilibrium assumption
is to use the mixed kinetic-diffusion boundary condition together with the empirical
temperature jump model.

3.3. Parameter domain study
To quantify the potential errors induced by the local thermodynamic equilibrium
assumption on the prediction of the evaporation rate, we compared the values of BT
calculated at different (Pek, Φ∞), as shown in figure 3(a). As expected, the error becomes
significant when Pek � O(10) and increases as Pek is further reduced. Figure 3(b) shows
that the errors introduced by neglecting the change in liquid surface chemical potential
(due to the presence of inert gas) become significant only when ρ̄ � O(10−1), which
corresponds to high-pressure or low-temperature conditions. Naturally, as one gets closer
to the critical point, the ideal gas law breaks down and a more realistic gas model need to
be considered.
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Figure 3. Comparison of BT values calculated at different conditions. Cases of evaporation of a water
drop in humid air ignoring the surface tension effect are considered in this calculation: Le = 0.8659, cp =
0.6031, p̄ = 0.01, Ja = 0.485, γ = 1.124, A = 2.35, λ = 63 nm. (a) Percentage error coming from the local
thermodynamic equilibrium assumption at different {Pek, Φ∞} when ρ̄ = 1 × 10−3; (b) percentage error in
ignoring the change of liquid phase chemical potential due to the presence of inert gas at different {Pek, ρ̄}
when Φ∞ = 0.98.

4. Conclusion

In summary, we proposed a more general mixed kinetic-diffusion boundary condition and
applied it to solve the QS spherical droplet evaporation problem. The boundary condition
formulated here is an extension of the concept of mass conservation across the Knudsen
layer introduced by Sultan et al. (2005) and accounts for the Stefan flow due to net
evaporation, the change of the chemical potential of the interface due to the presence
of inert gases and the temperature jump across the Knudsen layer. The mixed boundary
conditions are based on either the semi-empirical HK model or the analytical TED-SRT
model developed by Persad & Ward (2016). The dimensionless forms of the boundary
conditions show that the classical D2-law, i.e. a2 ∝ t, is valid in the large Pek limit. In
this limit, the kinetics is infinitely fast so that any chemical potential difference across the
Knudsen layer is smoothed out and the evaporation rate is limited by the mass diffusion
outside the Knudsen layer. As Pek reduces, the chemical potential difference across the
Knudsen layer starts developing and the local thermodynamic equilibrium assumption
breaks down. In the small Pek limit, kinetic processes become the limiting factor and
the evaporation rate is significantly lower than that predicted by the classical D2-law. The
linearised solution in the slow evaporation limit produces a linear scaling law, i.e. a ∝ t,
in the limit of small Pek. Comparison with experimental data available in the literature
(Jakubczyk et al. 2012; Holyst et al. 2013b) for the evaporation of TEG, DEG and water
droplets suggests that the mixed kinetic-diffusion boundary condition with an empirical
temperature jump model (obtained by Holyst et al. (2013b) through the curve fitting of
data obtained from MD simulations) better predicts the evaporation rate compared with
the D2-law, especially in regions where Pek � O(10). It has also noted that the existing
temperature jump model based on the evaporation of a droplet in its pure vapour proposed
by Struchtrup et al. (2017) leads to an unrealistic prediction of the temperature jump
across the Knudsen layer, at least when the equilibrium vapour pressure is small, and
consequentially is a significant underestimation of the evaporation rate. In comparison,
the empirical temperature jump model leads to a much better prediction. However, it does
not properly account for the energy feed into the vapour molecules emerging from the
evaporation (i.e. no dependency on the heat flux). Therefore, a more rigorous temperature
jump model needs to be derived that takes into account both the energy feed into the
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vapour molecules and their thermalisation process due to collisions with the inert gas
molecules. At high pressure or low temperature, the increase of the chemical potential
at the interface due to the presence of inert gases needs to be accounted for, to better
predict the evaporation rate. While the current analysis is limited to the QS evaporation
problem, the proposed mixed kinetic-diffusion boundary conditions are applicable to the
general problem of droplet evaporation. Accounting for additional effects, such as gas
phase transiency, real gas behaviour at high pressure or low temperature and convection
both inside and outside droplet, would demand further work.
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transport of energy and mass flux during evaporation of liquid droplets into inert gas: computer simulations
and experiments. Soft Matt. 9 (32), 7766–7774.

JAKUBCZYK, D., KOLWAS, M., DERKACHOV, G., KOLWAS, K. & ZIENTARA, M. 2012 Evaporation of
micro-droplets: the “radius-square-law” revisited. Acta Phys. Pol. A 122 (4), 709–716.

KNUDSEN, M. 1950 Kinetic Theory of Gases. Mehuene.
KROENLEIN, K., MUZNY, C.D., KAZAKOV, A.F., DIKY, V., CHIRICO, R.D., MAGEE, J.W.,

ABDULAGATOV, I. & FRENKEL, M. 2012 NIST Standard Reference Database 203 Web Thermo Tables
(WTT), Professional Edition. National Institute of Standards and Technology. Available at: https://www.
nist.gov/mml/acmd/trc/web-thermo-tables-wtt/nist-srd-wtt-203-pro.

KRYUKOV, A.P., LEVASHOV, V.Y. & SAZHIN, S.S. 2004 Evaporation of diesel fuel droplets: kinetic versus
hydrodynamic models. Intl J. Heat Mass Transfer 47, 2541–2549.

LU, Z., KINEFUCHI, I., WILKE, K.L., VAARTSTRA, G. & WANG, E.N. 2019 A unified relationship for
evaporation kinetics at low Mach numbers. Nat. Commun. 10 (1), 2368–2375.

LU, Z., WILKE, K.L., PRESTON, D.J., KINEFUCHI, I., CHANG-DAVIDSON, E. & WANG, E.N. 2017 An
ultrathin nanoporous membrane evaporator. Nano Lett. 17 (10), 6217–6220.

LUGG, G.A. 1968 Diffusion coefficients of some organic and other vapors in air. Anal. Chem. 40 (7),
1072–1077.

MASSMAN, W.J. 1998 A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O,
NO, and NO2 in air, O2 and N2 near STP. Atmos. Environ. 32 (6), 1111–1127.

958 A18-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-7651-4329
https://orcid.org/0000-0002-7651-4329
https://orcid.org/0000-0002-9371-1383
https://orcid.org/0000-0002-9371-1383
https://www.nist.gov/mml/acmd/trc/web-thermo-tables-wtt/nist-srd-wtt-203-pro
https://www.nist.gov/mml/acmd/trc/web-thermo-tables-wtt/nist-srd-wtt-203-pro
https://doi.org/10.1017/jfm.2023.109


H. Zhao and F. Nadal

MAXWELL, J.C. 1890 The Scientific Papers of James Clerk Maxwell. Cambridge University Press.
ORON, A., DAVIS, S.H. & BANKOFF, S.G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys.

69 (3), 931–980.
PERSAD, A.H. & WARD, C.A. 2016 Expressions for the evaporation and condensation coefficients in the

Hertz–Knudsen relation. Chem. Rev. 116 (14), 7727–7767.
POULARD, C., BE, O. & CAZABAT, A.M. 2003 Freely receding evaporating droplets. Langmuir 19 (21),

8828–8834.
RANA, A.S., LOCKERBY, D.A. & SPRITTLES, J.E. 2019 Lifetime of a nanodroplet: kinetic effects and regime

transitions. Phys. Rev. Lett. 123 (15), 154501.
SAZHIN, S.S. 2006 Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci.

32 (2), 162–214.
SIRIGNANO, W.A. 2010 Fluid Dynamics and Transport of Droplets and Sprays. Cambridge University Press.
SPALDING, D.B. 1979 Combustion and Mass Transfer. Pergamon.
STRUCHTRUP, H., BECKMANN, A., RANA, A.S. & FREZZOTTI, A. 2017 Evaporation boundary conditions

for the R13 equations of rarefied gas dynamics. Phys. Fluids 29 (9), 092004.
SULTAN, E., BOUDAOUD, A.I. & BEN AMAR, M. 2005 Evaporation of a thin film: diffusion of the vapour

and Marangoni instabilities. J. Fluid Mech. 543, 183–202.

958 A18-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.109

	1 Introduction
	2 Formulation of the mixed boundary conditions
	2.1 Mass conservation across the Knudsen layer
	2.2 The HK-based mixed boundary condition
	2.3 The TED-SRT-based mixed boundary condition
	2.4 Dimensionless forms of the mixed boundary conditions

	3 Quasi-steady droplet evaporation
	3.1 Solution to the QS problem
	3.2 Comparison with experimental data
	3.3 Parameter domain study

	4 Conclusion
	References

