NORMAL RADICALS AND NORMAL CLASSES OF MODULES
by W. K. NICHOLSON and J. F. WATTERS

(Received 6 May, 1986)

The study of special radicals was begun by Andrunakievic [1]. A class ? of prime
rings is called special if it is hereditary and closed under prime extensions. The upper
radicals determined by special classes are called special. In later works Andrunakievi¢ and
Rjabuhin [2] and (3] defined the concept of a special class of modules.

A left R-module M is called prime if RM #0 and every non-zero submodule has the
same annihilator as M (equivalently, if Im =0, where [ is an ideal of R and m € M, then
either m =0 or IM =0). Let $(R) be a class of prime R-modules and & ={J¥(R), the
union being over all rings R. Then & is called special if it satisfies the following
conditions:

(S.1) for every ring R, R-module M, and ideal I of R with I c (0: M), M € ¥(R) if
and only if M € $(R/I);

(S.2) if M € (R) and I is an ideal of R with IM # 0 then M € ¥(I);

(S.3) if I is an ideal of R and M € ¥(I) then IM € $(R).

If & is a special class of modules then

? = {R :R has a faithful module in ¥(R)}
is a special class of prime rings. Conversely, if 2 is a special class of rings and we set
F(R)={gM:M is a prime R-module and R/(0: M) € #}

then & ={J #(R) is a special class of modules.

The notion of a normal class of prime rings was defined in [5], where it was also
shown that every such class is special and that a radical is normal and special if and only if
it is the upper radical determined by a normal class. In this note we introduce the idea of
a normal class of modules and prove that every normal class of prime rings is determined
as above by a normal class of modules. It is also proved that such module classes are
special and we note that the classes of prime modules, irreducible modules, and prime
modules with non-zero socle are normal.

Normal classes of rings arise in studying rings connected in a Morita context. This is a

Vv
- S]’ where R and S are rings and gV and (W are bimodules, together
with bimodule homomorphisms V@& W — R, W®zV — S satisfying associativity

R
four-tuple [

. o RV e
conditions which are equivalent to insisting that C = [ W S] be an associative ring under

the usual matrix operations. We shall refer to C as the context ring. The context is called
S-faithful if S #0 and VsW # 0 for all non-zero s € S. If P is an ideal of R then we denote
{s€S:VsW c P} by Sp.
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ProposITION 1 [5]. The following are equivalent for a class P of rings.

v
(a) If [VI; S is a Morita context and P is an ideal of R such that R/P € P then
either Sp =S or S/Sp € P.
R V1. . .
b) If [W g|Ba Morita context and R € P then either So=S or $/S, € P.
R V7. . . o
© I w s|Bsan S-faithful Morita context, then R € P implies S € P.

A class 2 of prime rings is called normal if it satisfies the conditions of Proposition 1.

DEerIniTION 1. Let [‘I:/ Z] be a Morita context. Then a context module is a pair of
modules zM, ¢N with module homomorphisms a:V®sN— M, B:WRgM— N

M7 . .
satisfying associativity conditions so that D = [N] is a C-module for the context ring C
under the usual matrix operations.

R V
Given a context [W S] and an R-module M we can construct an S-module M° so

M
that D = [ M°] is a context module. The construction appeared in [4].

For every v e V there is a Z-morphism v-: W@z M — M defined by v-(w®@m) =
(vw)m forallwe W, me M. Put X =), .y ker(v-) and M°=(W ® M)/X. Then M° is an
S-module. The map B of Definition 1 is given by $:w @ m— (w @ m) + X and we write
this image as wm. The map « of Definition 1 is given by a:v ® n— v-t, where te W @ M

M
and n =t + X. This image is written as vn. Thus [M°] is a C-module.

Some properties of this module are worth identifying here. A number of module
properties are known to pass from M to M° (see [4]). In particular if M is faithful then M°
is faithful. Also from the construction we have:

(a) if ne M° and Vn =0 then n =0;

(b) M°=WM;

(c) if M is faithful and VSW #0 then SM°#0.

For (a), note that if n=t+ X, te W®M then v-t=0 for all veV; so te X and
n=0; (b) is clear from the definition of M° and wm, and (c) follows from (VS)M° =
(VSW)M.

DEeriniTION 2. Let A(R) be a class of prime R-modules and & =U AN(R), the union
being over all rings R. Then & is called normal if it satisfies (S.1) and

|%
] and context module D = [%] such that

R
text
(N) for every contex [W s
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(i) for all n e N, Vn =0 implies n =0, and
(i) N=WM and SN #0, M € N¥(R) implies N € ¥(S).

THEOREM. Let N be a normal class of modules. Then
P = {R:R has a faithful module in N(R)}

is a normal class of prime rings. Conversely, if P is a normal class of prime rings and we
define, for every ring R,

N(R)={gM:M is a prime R-module and R/(0: M) € P}
then ¥ = U N(R) is a normal class of modules.

Proof. If ¥ is a normal class of modules and M € N'(R) is a faithful R-module, then
(0:M) =0 is a prime ideal of R and @, as defined, is a class of prime rings. From the

R V7. . .
comments after Definition 1, if [ ] is an S-faithful Morita context then the context

module [ M°] satisfies (i) and (ii) of (N) and M° is faithful. Hence M° € ¥ (S), S € ?, and
2 is a normal class of prime rings.

Now let 2 and ¥ be as in the statement of the converse. For (S.1), suppose that M is
an R-module and [ is an ideal of R with Ic(0:M). Put R=R/I. Note that
0:M)zg=(0:M)/I and if reR and F=r+1[ then F/m=rm for all me M. Thus
R/(0:M)z=R/(0: M) and M is a prime R-module if and only if it is a prime R-module.
Therefore M € N(R) if and only if M € &'(R).

For (N), suppose that the context and context module are as described in Definition
2 and that M € #(R). To see that N is a prime S-module, let J be an ideal of S and n e N
with Jn =0. Then (VIW)(Vn) = 0; so either (VJW)M =0 or Vn =0, since M is a prime
R-module. If Vn =0 then n =0 from (i). If (VIW)M =0 then VJIN =0 from (ii) and
JN =0 from (i). Thus N is a prime S-module. To prove that S/(0:N) € 2, observe that
(0:N)={seS:VsW < (0: M)} from (i) and (ii) in (N). From Proposition 1 (a), either
(0:N)=3S8 or §/(0:N) e 2. Since SN #0, by hypothesis, it follows that S/(0:N) e .

ProposiTioN 2. Every normal class of modules is special.

Proof. Let X be a normal class of modules. Let M € ¥(R) and I be an ideal of R

R 1 M

with IM #0. Consider the context [ R I] and context module D = [ M]' If Im=0,

me M, then m =0 since M is a prime R-module and IM # 0. Therefore the conditions

(N) (i) and (N) (ii) from Definition 2 are satisfied and so M € #(I). This establishes (S.2).
For (S.3), let I be an ideal of a ring R and M e N(I). Consider the context

’ M
U I;] and context module [ IM]' Since M is a prime I-module, IM#0 and
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I(IM)#0. Hence R(IM)+0 and the conditions (N) (i) and (N) (ii) of Definition 2 are
satisfied; so that IM € ¥ (R).

ExampLEs. The three classes we shall consider here were shown to be special in [3].
Thus (S.1) is satisfied. We shall use the notation of (N).

1. The class of all prime modules is normal. Let M be a prime R-module, J an ideal
of §, and n € N. As in the proof of the Theorem, Jn = 0 implies IN=00orn=0;so Nis a
prime S-module.

2. The class of all irreducible modules is normal. Let M be an irreducible R-module
and neN, n#0. Then 0#Vn; so Vh=M and SnoWVn=WM=N. Thus N is an
irreducible S-module.

3. The class of all prime modules with non-zero socle is normal. Let M be a prime
R-module with minimal submodule K. If (VW)K =0 then (VW)M =VN =0, which
implies that N = 0. But SN #0; so (VW)K #0. Hence WK #0. Let n #0, n € WK. Then
0# Vn c K and, by the minimality of K, Vn = K. Therefore $Sn o (WV)n = WK and WK
is a minimal submodule of N. Along with Example 1 this proves the normality of this
class.

Remark. It was shown in [3] that the class # determined by the module classes in
Examples 2 and 3 is the class of primitive rings.
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