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MODULI SPACES OF THE STABLE VECTOR BUNDLES
OVER ABELJIAN SURFACES

HIROSHI UMEMURA

Let X be a projective non-singular variety and H an ample line bundle
on X. The moduli space of H-stable vector bundles exists by Maruyama
[4]. If X is a curve defined over C, the structure of the moduli space (or
its compactification) M(X, d, r) of stable vector bundles of degree d and
rank r on X is studied in detail. It is known that the variety M(X, d, r)
is irreducible. Let L be a line bundle of degree d and let M(X, L, r) denote
the closed subvariety of M(X, d, r) consisting of all the stable bundles E
with det E = L. We know the global Torelli theorem holds for the mapp-
ing X— M(X, L, r) if the genus g of X > 2 and (d,r) = 1. Namely, let X’
be a non-singular projective curve of genus g and L’ be a line bundle of
degree d on X’. Then the variety M(X, L, r) is isomorphic to M(X’, L', r)
if and only if X is isomorphic to X’. In higher dimensional case, very
little is known about the moduli space of H-stable vector bundles. The
moduli spaces have been studied only on two types of surfaces. When X
is a hyperelliptic surface, we determined the moduli spaces of H-stable
vector bundles with trivial Chern classes in Umemura [14]. In this case
the Moduli spaces are not connected when we fixed the numerical Chern
classes. Barth [1] proved the moduli space of H-stable vector bundles
with ¢, = 0 of rank 2 over P, is irreducible and rational. In this paper,
we work over abelian surfaces A and we study the moduli spaces of some
H-stable vector bundles. In the first example, a component of the moduli
spaces is isomorphic to A X A and in the second example, it is birationally
isomorphic to the symmetric product S”(A). In both cases, the local Torelli
theorem holds (see for precise statements, Theorem 5 and Theorem 21).
We know nothing about the connectedness of the moduli spaces.

Let X be a non-singular algebraic surface defined over an algebraically
closed field £ and H an ample line bundle over X. We know that, if we
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fix numerical Chern classes c;, ¢, and a number r, the coarse moduli space
M(c,, c;) of H-stable vector bundles of rank r exists. The moduli space
M(c,, c,) is a scheme of finite type over & and the Zariski tangent space
T, at a closed point x e M(c,, ¢;) is isomorphic to H(X, End E) where E
is the H-stable vector bundle corresponding to the point x (see Maruyama
[4]). The scheme consisting of all the irreducible components of M(c,, c,)
passing through x is called the moduli space of E and denoted by X(E).
From now on, we assume all schemes are defined over C.

LEMMA 1. Let Y be an irreducible non-singular algebraic variety and
& be a family of H-stable vector bundles over X parametrized by Y, i.e. &
is a locally free sheaf over Y X X and for any closed point y € Y, the vector
bundle E, over y X X is H-stable. Let f: Y — M(c,, c;) denote the map defined
by &. We assume that, for any closed point yc Y, dim H(X, End E)) =
dim Y. If f is injective, then f is an open immersion. In particular Y is
birationally equivalent to an irreducible component of M(c,, c;).

Proof. In fact, for any closed point y € Y, dim H(X, End E,) = dim Y
<dimX < dim H'(X, End E,). Hence dimf(Y) = dimX and f(X) is con-
tained in the open subset of nonsingular points of Mc, ¢,). Therefore
the analytic map f*": X*" — M(c,, ¢,)*® is an open immersion. It follows
from Mumford [9], f is étale. Now the lemma follows.

LEMMA 2. Let A be an abelian surface (abelian variety of dimension 2),
H an ample line bundle over A and E an H-stable vector bundle over A.
If E is absolutely simple, of type M, and a model, then there is an in-
Jjection A X A— X(E).

Proof. Let % be the Poincaré line bundle over A4 X A, p:AX (A X A)
—> A be the map defined by

p(a, b,c) =a+c,

and py: A X (A X A)— A X A be the projection. Consider the vector
bundle & = p*EQ@pt? over A X (A X A). This is a family of H-stable
vector bundles over A parametrized by A X A. The vector bundle over
a point (L, a) € AX Ais T*E®L. Letf: A X A— X(E) be the map defined
by €& If T)YEQL=TIEQL, T*E~TIEQL QL' hence Tk E
~EQL QL. In particular T} . P(E)~ P(E). The hypothesis that
E is a model implies H(P(E)) =0 where H(P(E)) = {xe A|P(E) ~
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T#P(E)} (Umemura [15]). Hence a =d. We get EQL~ EQL. It
follows from the absolute simplicity of E that L ~ L’. This proves f is
injective. See Umemura [15].

Let F be an V-stable vector bundle with numerical Chern classes c,,
¢, and of rank r over an abelian surface A. Let ye M(c, c,) be the cor-
responding point. Let us put A(F) = (r — 1)c — 2rc,, —A4(F) is equal to
the second Chern class of End F.

LeEmMmA 3. The dimension of the Zariski tangent space at y is equal
to —A(F) + 2.

Proof. It follows from the Riemann-Roch theorem, dim H°(A, End F)
— dim H'(A, End F) + dim H*(A, End F) = —c,(End F) = A(F). By the Serre
duality dim H°(A, End F) = dim H*(A, End F'). Since a stable bundle is
simple, dim H°(A, End F') = 1. Hence dim H'(A, End F) = — 4(F') + 2 which
is equal to the dimension of the Zariski tangent space at y.

LeMMA 4. Under the same hypothesis as in Lemma 2, moreover if
AME) = —2, then X(E) is irreducible and A X A is isomorphic to X(E).

Proof. Let x' ¢ X(E) and E’ the corresponding H-stable bundle. By
Lemma 3 dim H'(A, End E') = — 4(E’) + 2. Since E’ has the same numeri-
cal Chern classes as E, —A(E') + 2= —A(E) + 2 =4. Now it follows
from Lemmas 1 and 2 that the map f constructed in the proof of Lemma
2 is an isomorphism.

ExampLE 1. Let C be a non-singular projective curve of genus 2, P a
point of C and J the Jacobian variety of C. Let C™ be the n-th symmetric
product of C. We assume n > 3. There is a projection ¢: C™ — J defined by

@+ - +@)=(@ + - +Q —nP),

where @, e C for 1 <i<n. We know that there exists a vector bundle
E,_, of rank n — 1 over J such that C™ is J-isomorphic to P(E,_,)). We
proved in Umemura [4] that E is @(C)-stable, of type M, and a model.
The number 4(E) is also calculated —2. Hence we can apply Lemma 4.
The moduli space X(E,_,) is isomorphic to J X J. The determinant defines
a map IXT>d (y—det E,)). This map is surjective and all the fibers
which we denote X’(E,_,) are isomorphic to J. Hence we proved:

THEOREM 5. The scheme X'(E,_,) is isomorphic to J. The local Torelli
theorem holds for C— X'(E,_)).
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ExampLE 2. Let A be an abelian surface and L be a principal polari-
zation of A, i.e., L is ample and dim H°(A, L) = 1. Let n > 3 be an integer
and L; be a line bundle algebraically equivalent to L and ¢; a non-zero
section of L, 1<i<n. ¢, is uniquely determined up to the multipli-
cation of a non-zero constant. Let E(L, L,, ---, L,) be the coherent sheaf
over A defined by the exact sequence:

O-—)@‘—)L]@Lz@ e @Ln_)E(LlyLm ""Ln)'—)o’

(1)
11— (9013502’ ° 5S0n) .

The coherent sheaf E(L,, L,, - - -, L,) does not depend on the choice of ¢,.

For, let ¢ be another non-zero section of L,. There exists a non-zero con-

stant ¢; such that ¢} = c,p,. Hence the diagram

002 LOL® - OL,

Id“ | qu

0-—s0 2 LOL® . -®L,

is commutative where @ is the injection of the exact sequence (i), @' is
the injection obtained from @ by replacing ¢, by ¢; and ¥ is the 0 linear
map defined by the diagonal matrix

Let C be an irreducible non-singular projective curve of genus 2. Let
P be a point of C and ¢ the map of C to J defined by ¢(Q) = (Q — P).
We denote by C the image ¢(C). Let P, P, ---, P, be the points of C
such that @(2P;) is isomorphic to the canonical bundle K of C. Let C,
be the image of C in J defined by ¢(@ — P,) = 0(Q — P,)e J for Qe C.

LEmma 5. If x is a point of J such that x &\ J:_, C,, then CN (C +
)N (C + 2x) = .

Proof. Suppose that CN C + xN C + 2x is not empty. Then there
exist three points @, @, Q" of C such that 0(Q — P) = (' — P) + x,
(@ — P) = 0(Q" — P) + 2x. Hence 0(Q — Q') = x, O(Q — @) = 2x. There-
fore 022Q — 2Q’') = O(Q — ). Finally we get O(Q + Q" — 2Q') = 0. We
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study two cases separately.

Case (i) K+ 0(2Q’). In this case, by the Riemann-Roch theorem
dim H(C, 0(2Q)) = 1. Hence it follows from 0(Q + Q" — 2Q’) = @ that
Q + Q" = 2@’ as divisors. Consequently @ = @’ and @” = @’. This shows
x =0. Hence x& C; for every i. This is a contradiction.

Case (ii) K = 0(2@’). Hence there exists an i such that @ = P..
Therefore x = O(Q — ') = O(Q — P,) is in C,. This is impossible.

Let D be the effective divisor on A such that L ~ @(D). Such divisors
are limited: (a) There exist a non-singular curve C of genus 2 and a point
P of C such that the abelian variety A is isomorphic to the Jacobian
variety J of C and D coincides with C. (b) There exist two elliptic curves
C,, C, such that the abelian variety A is isomorphic to C, X C, and D is
C,x0yO0Xx C, (Weil [18]). Let us study first the case (a).

CoroOLLARY 6. For any integer N,, there exist an integer N > N, and
a point x€dJ of order N such that CN (C + x) N (C + 2x) = .
This is an easy consequence of Lemma 5.

LeMMA 7. Let x be a point of the Jacobian variety J(= A) of order
N>3and L=0C). IfCN(C+x)N---N(C+ (N — 1x) = I, then E(L,
T*L, - --, T#_1,L) is an L-stable locally free sheaf.

Proof. The locally freeness of E(L, T}L, - - -, T _1.) is evident. The
cyclic group (x) operates on the exact sequence;

(li) 0— @%L@ TjL@ Tt (’D T(#;V—I)JL——)E(L’ T.;kL, ) T(fv‘—l)zL) —0.
Hence there exists an exact sequence of vector bundles over A’ = A/(x);
(iii) 0—-0—-F-—->E —0

such that #* (iii) is isomorphic to (ii) where = is the isogeny A — A/(x).
F'is nothing but the direct image =,L (Morikawa [7]). Hence by Takemoto
[11], F is det F-stable. The line bundle det F will be denoted by L.
Suppose that E’ is not L’--stable. Then there exist a non-zero locally free
sheaf G’ of rank < N — 1 and a morphism g’ of 0,~-modules E’ — G’ such
that g’ is surjective on A’ — (a subvariety of codimension >2) and such that

(@(E)L) o ((G)L)

@) nE) = )
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Since F is L’-stable,
(c(F)-L') _ (eG)-L)
“ A O
Let now M’ be a line bundle over A’. Then N(M’-L) = z*(M’'-L’) =
(=*M'-L®") = N(z*M’'-L). Hence we proved (#*M’-L) = (M’-L’). Apply-
ing this rule to the inequalities (iv) and (v), we get
(LoV-L) - ((G)-I) _ (I®V-L)

N rG) ~— N-1

where G = n*G’. Consequently
92 (c(G)-L) <9 2 .
STae St N-a

Since r(G) < N — 1, it follows that (c,(G)-L) = 2r(G) + 1. If we put G =

GQ®L™, then (¢(G)-L)=1. Let ¢ be the isogeny y+— Ny of A onto A

itself. Then, since the morphism induced by g’ o*(L@® T}L @ --- @ T _,.L)
N

T

QL'=0D --- DO — ¢*G is surjective on A — (a subvariety of codimen-
sion >2), H%(A, ¢*G det G) + 0. On the other hand, since the spectral
sequence degenerates, we get H'(A, ¢* det G)=~H(A, o,0* det G) = DPyreo,
H(A, £ @det G). Therefore, there exists a line bundle % on A such that
o* % ~ 0, H(A, #®det G) # 0. Let D be an effective divisor on A such
that ¢*% = 0,, O(D) = & ® det G. Then (D-L)=1. Thisis impossible as
we proved in Umemura [16].

LEmMmA 8. Using the same notation as in the preceding lemma, we as-
sume moreover N>4 and CN(C+ x)N(C+ 2x) =S. Then E(L, T*L, - - -,
T*.L) is an L-stable locally free sheaf for 3 < m < N.

Proof. We put E, = E(L, T¥L, ---, T¥,,,L) for 2<r< N —1. The
local freeness of E, follows from the hypothesis C N (C + x) N (C + 2x) = &.
Now we prove the L-stability of £ by the descending induction on r.
Lemma 7 shows that E,_, is L-stable. Let us assume E, is L-stable for
anr, 3<r< N —1 and show E,_, is L-stable. The diagram

0—0-T>LOTL® ---®TEL

. K

OH@hL@TﬁL@ ('BT(ﬂ:—l):cL
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is commutative where 9,.(1) = (¢, TFp, - -+, Tie), 0+ o H'(A, L), 9,_,(1)
= (p, T¥ep, -+, TE_1,0) and ¥, is the projection onto the first r factors.
The projection ¥, induces a surjection: ,: E, — E,_, and the Ker , =
T*L. Hence we get an exact sequence

0O—-L—>E —E,_,—0,

where L' = T#L. Tensoring L’-' with the exact sequence, we obtain a
new exact sequence

0-0—-E —-E _,—0.

Our induction hypothesis is that E; is L-stable and we have to show E/_,
is L-stable. Let G be a non-zero locally free sheaf of rank < r — 1 and
E!_, — G be a morphism which is surjective on X — (a subvariety of co-
dimension >2). By the stability of E/, (¢,(E))-L)/r(E)) < (c(F)-L)/r(G).
Since ¢,(E]) is algebraically equivalent to L, we get 2/r < (¢;(F)-L)/r(G).
If (¢,(F)-L) > 2, then

(clE/_)-L) _ 2 2 _ (e(F)-L)

r(E/_) r—1 rG — rG

Hence we may assume (¢,(F)-L) = 1. Then there is a generically surjec-
tive homomorphism (L@ TFL® -- - ®TEL)Q TEL' - G T*L'. The
argument of the proof of Lemma 7 shows this is impossible.

Let us now examine the case (b).

LemMma 9. Let C, C, be elliptic curves. A = C, X C, and L = 0(C, X
0+ 0X C,). Letr be an integer > 2 and x, be a point of order r + 1 of
C,1<i<2 If we put x = (x,x,), then E(L, T*L, ---, TXL) is an L-
stable locally free sheaf.

Proof. Let us put E= E(L, TfL, ---, TXL), C,X0U 0 X C,= D.
Since DN T*D N TED = &, E is locally free. Let us show the restriction
E|; o (xesp. Elyxg,) on C; X 0 (resp. 0 X C,) of E is stable. We need

SuBLEMMA 10. Let C be an elliptic curve and M a line bundle of
degree 1 on C. Let s be an integer >2 and y be @ point of C of order
s+ 1. Let E be the coherent sheaf defined by the following exact sequence;

0>0->LPT/)LD---@T)L—->E—-0

(vi)
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where 0 = € H'(C,L). Then E is locally free and stable.

Proof of the sublemma. For the same reason as in the proof of the
lemma, E is locally free. As in the proof of Lemma 7 the cyclic group
(y) operates on the exact sequence and there exists a exact sequence of
vector bundles

(vii) 0-0—-F—>E -0

over C' = C/(y) such that z*(vii) is isomorphic to (vi) where = is the
isogeny C— C/(y). For the same reason as before, F is stable. Let E' —
G’ be a non-trivial quotient vector bundle. Since F is stable, 1/(s + 1)
= d(F)[r(F) < d(G")[r(G"). Hence d(G’) > 1. Since r(E’) > r(G’"), d(E")/r(E’)
= 1/r(E) < d(G)[r(G’). This shows E’ is stable. Since the degree of =
is s, and s is relatively prime to r(E) =s — 1, a*E’ = E is stable.

Let us come back to the proof of Lemma 9. Let G be a non-zero
locally free sheaf of rankr on A and E(L, T}L,---,TXL)— G be a
morphism which is surjective on A — (a subvariety of codimension >2).
Since the restrictions are stable,

(c(B)-C:X0) _ dE|C X0 - dG|C X0 _ ((G)-Ci X0

r(E) r(E) r(G) r(G)
and
(c(E)-0X C) - (c(@)-0X C)
r(E) r(G) '
Therefore
(E)-L) _ ((E)-C X0 | (E)0XC)  ((G)-CiX0)
r(E) r(E) r(E) r(G)
+ c(@-0X C) _ (c(G)-L)
r(G) r@

Lemma 11. Let us assume that E(L,, L, ---,L,) = E is locally free.
Then the number AE) = (r(E) — 1)c,(E)* — 2r(E)c,(E) is equal to —2n.

Proof. The first Chern class ¢,(E) is numerically equivalent to L®"
and the second Chern class ¢,(E) is numerically equivalent to (n(n — 1)/2)L*.
Hence,

NE) = (n — ntL — 2(n — 1)_”(_"2:&52

=2n—2)n* —2(n — 1y’'n= —2n.
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Remark 12. We do not know whether all E(L,, L,, ---,L,) = E is L-
stable. We can prove the following assertion which will be used in the
sequel.

Lemma 13. Suppose that if i = j, L,+ L,. If E(L, L, ---,L,) = E is
locally free, E is simple (dim H'(A, End E) = 1).

SuBLEMMA 14. For 1<i<n, H(A,EXL)=0.

Proof. We have an exact sequence;
(viii) 0>E->LOL® - -®L,—>0-0.
Tensoring with L,, we get
(ix) 0-E®L—>L® L)®L—L —0.
The long exact sequence of cohomology group is;

0> HE®L)—>H(LOL® - ®L)® L)~ H(L)— -~ .

From the hypofhesi‘? H "((I:1 &) VLVZ @ - -®L)RL)~H %(0) and the homo-
morphivsm H((L,DPL,®---DL,)RL,) =~ H(0) - H(L,) is not zero. Hence
HA,EQ L) =0.

SuBLEmMA 15. HYA, E® L,) =~ HY0), for [ =1, 2.

Let us write the long exact sequence of cohomology of (ix) again;

0—H(L®L® - ®L,)® L) — H(L,) - H(E R L)
—H(©LOL® - ®L)QL)— H(L) > HEQL)
- H(L®L® - ®L)®L) - H(L) .

Now the assertion follows from the following;
(1) H(L®L® - ®L)®L) = H'(0) for any j.
(2) H(L)=0for1=1,2.

SusLEMMA 16. HYA, E) = 0, H(A, E) ~ HY0), dim H(A, E) = n + 1.

The first two assertions follow easily from the long exact sequence
of cohomology groups of the exact sequence (viii). The last assertion
follows from the Riemann-Roch theorem for E.

Proof of Lemma 13. Tensoring E with the exact sequence (viii), we get

(x) 0>EQE->LREPLRE®D.---OL,RE—>E—0.
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The last terms of the exact sequence are;

. > H'E) > H(EQ®E)
>H(,QE®LRE® --- ®L,® E) > H(E) .

By the Serre duality and Sublemmas 15 and 16,

dim H(E) = dim H\(E) = 1,
dim (L, QEDLQE®D .- ®L,QE)
=dimH(GLQEPLRE®---®L,QE)=0.

Hence dim HZ(E ® E) < 1. By the Serre duality dim H°(E’ ®E)<1. But
HY(E ® E) contains k as homothesies. Hence dim H(4, E® E) = 1.

Lemma 17. If E(L, L,, ---,L,) ~ E(L}, L;, - - -, L}), the set {L,, L,, - --,
L.} coincide with the set {L}, L,, ---, L.} counted with multiplicity.

In fact let M be a line bundle algebraically equivalent to L. Tensor-
ing M~' wth the exact sequence, we get

O-M'-(LSLD---PL)QM!
_)E(LlyL% "’,Ln)®M_1—')0'

Since M is ample, H(A, M™") = H'(A, M) = 0. Hence H(L,® L, P ---
®L)Y®M ") ~ H(E(L, L,, ---,L,) ® M~*). Since the dimension of H°((L,
®L®--- DL,)® M) is the number of times that M appears is the set
L,L, ---,L,, the lemma follows.

(xi)

LEmMA 18. Let M, M’ be line bundles algebraically equivalent to O.
If EL,L, ---,L,)y® M~ E(L, L, ---,L))® M’, then M ~ M’ and E(L,,
L,---,L,)~EW; L, ---,L).

Tensoring M~', we may assume M’ ~ ¢. Suppose that M is not iso-
morphic to ¢. Then tensoring M with the exact sequence (i), we get

O-M—->LO®LD---®L)IM—E(L, L,,---,L)YIM—0.
Since M is algebraically equivalent to 0, H{(A, M) = 0 for any i and
H(L®LS® - --®L,)®M) ~ H(E(L, L, - --, L,) ® M) .

Hence dim HYE(L,,L,, ---,L,)® M) =n. On the other hand, from the
exact sequence (i),

0— H(0) > H(L;®L;® --- ® L)) > H(EWL, L, - --, L)
- H(O) > HL®L,®---DL)=0.
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Hence dim HY(E(L,, L;, ---,L))=n+4+1 and E(L, L, ---,L,)® M is not
isomorphic to E(L;, L, - - -, L}).

n+l
Let now p;,.1t A X --- X A— A X A < i< n) be the projection onto
the product of i-th and (n -+ 1)-th factors. Let m: A X A — A be the group
law of A. Let .Z; be the inverse image (mop,,,.)*L and @, = (mop;,.)*(6)
where # is a fixed non-zero section of L. The coherent sheaf & on

n+1

— .
A X --. X A is defined by the exact sequence;

(xi) 00 -2 PLPD.-- - ¥, >80
i1
* 1'_)(61’@2, "':@n)

The coherent sheaf & is considered as a family of coherent sheaves on

n

. e A
the last A parametrized by the first A X --- X A. Let (x, x;, - -+, x,) be

3 NA‘—_\ . . .o
a point of A X --- X A. The restriction of the exact sequence (xii) to
the fibre (x;, ---,x,) X A is

0—0— THL + TXL + - -+ + T*L — E(T*L, TXL, -+, T*L) —0
1 (T%6,, TS0, -- -, T;:0,) )
The symmetric group ©, operateson A X --- X A henceon (A X --- X A)
X A. There is an operation of ©, on Z, @ %, ® ..- B Z, covering its

e A e
operation on (A X --- X A) X A. This operation is compatible with the
injection 0 - Z, @ %, ® -.- ®Z,. Hence &, acts on &. It follows from
the descent theory that there exists a coherent sheaf & over S"(4) X A
such that z*¢’ ~ & where S"(A) is the n-th symmetric product of A and

n
m:AX --- X A— S"(A) is the projection.

Let # be the Poincaré line bundle over A X A ~ A X A and Pas: S™(A)
X AXA—>AXA the projection. We put pf¥# =2 and & QF = &".
Then &” is a family of coherent sheaves on A parametrized by S"(A) X A.
Let (x,), («/,3)e S"(A) X A. If €”|,,4x4 is isomorphic to 6|, , x4 then
(x,y) = («/,y) by Lemma 17 and Lemma 18.

ProrosiTiON 19. There exists a non-empty open subset U of S"(A) such
that ) &”|UX A X A = &9 is locally free, (ii) for any point (x,y)e U X A,
8" |(x,y) X A is L-stable.
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Proof. Let X = {(x,y,2)e S"(A) X AX A|O(x,2) =0forany 1< i< n.
Then X is a closed subset of S"(4) X A X A. The coherent sheaf & is
locally free outside X. Let p,: S"(A) X A X A — S"(A) be the projection
onto the first factor. Since p, is proper, p,(X) is a proper closed subset
of S*(4) by Corollary 6. Let U’ = S*(4) — pi(X). Then ¢”"|U' X AX A
is locally free. By Corollary 6, Lemma 8 and Lemma 9, there exists a
point x € U’ such that 6 |(x,y) X A is L-stable for any point y X A. Since
the stability is an open condition by Maruyama [4], there exists non-empty
open subset U of U’ satisfying the condition (i) and (ii) of the proposition.

TuEOREM 20. The algebraic Qariety S"(A) X A is birationally isomorphic
to a component of the moduli space of L-stable vector bundles.

Proof. Since U X A parametrizes a family of L-stable bundles, we get
a morphism from U X A to a component of the moduli space. This map
is injective by Lemma 17 and Lemma 18. The theorem now follows from
Lemma 1, Lemma 3 and Lemma 11.

This component will be denoted by X,(A; L). Let g: X, (A; L) — A=
A be the map such that g(x) = (det £) ® L~!. Since this map is birationally
equivalent to S*(A) X A — A, ((x, -, %),y — > %, + (n— 1)y for xe A
= A, the fibre g7(2) = Y.(4; L) is birational to Z™(A) = {((x,, - - -, X%.), y)
eSA) X A| 2 % + (n — 1)y = O}

THEOREM 21. The map (A, L)— Y,(A, L) separates locally the moduli
space of the principally polarized abelian surfaces.

Proof. Let A, B be abelian varieties of any dimension. We put

ZMA) = {((xy, -+, %), ) € S(A) X A| 2%, + (n — D)y = 0},
Z"B) = {((x,, - -+, xa), ) € SU(B) X B| 2 %, + (n — 1)y = 0}

It is sufficient to show that, if Z"(A) is birational to Z*(B), then A is
isomorphic to B. This will be proved in Proposition 24.

Let X be an algebraic variety and n >0 an integer. The sym-

3 /‘_f‘—-P\ . .
metric group ©, acts on the product X X --- X X. The quotient variety
X X --- X X/©, is the n-th symmetric product of X and denoted by S™(X).

LemmA 22. Let A be an abelian variety. The closed subuvariety {(x,,
Koy -y X)) EAX - X A|D 0%, = 0} of S"(A) will be denoted by T"(A).
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Let T"(A) be a non-singular model of T*(4). If n> 2, H(T"(A), 2" = 0.

Let V be the universal covering space of A. Hence there exists a
lattice I' C V such that V/[' ~ A. H'(A, 0) ~ T where T = Hom¢(V, C)
(see Mumford [10]). By the Kiinneth formula, H'(A X --- X A,0) = T®
-+ @®T. The symmetric group actson H(A X --- X A, O)=TD---®T
as permutation of factors. Let U"(A) denote the closed subvariety {(x,, x,,

—_

e X)EAX - XA|IDP,x, =0 of AX --- XA and ¢ the inclusion

. n_l .
U(A)y=—>A X --- X A. U"A) is isomorphic to A X --- X A. Notice
that the symmetric group &, operates on U"(A) and U"(A)/S, = T*(A).
It is easy to check that the restriction of the map i*: H'(AX --- X A, 0)

n-1

— A e— — A —
=T® - -®@T—HWUYA),0) =T® --- ®T to the subspace U = {(¢, t,,
v t)eT+ -+ T332, t, = 0} is an isomorphism. Hence H'(U"(A), 0)°
= U® = 0. On the other hand HY(U"(A), 0)* = HY(T"(A), 0) by Proposi-
tion 9. 24, Ueno [12] hence the lemma is proved.

LEmMA 23. Any rational map f from T"(A) to B is trivial, i.e., f(f’n))
is a point.

Proof. Blowing up the given T"(A) if necessary, we may assume f
regular. Suppose that the dimension of f(T"(A)) is positive. Then there
exist a holomorphic 1-form o on B such that f*o = 0 which conducts
Lemma 22.

ProposITION 24. Let A, B be abelian varieties. If Z*(A) is birationally
isomorphic to Z"(B), then A is isomorphic to B.

Proof. If n =1, then Z'(A) = A, Z'(B) = B and the assertion is well
known (see. Weil [17]). We assume n=2. Let f:Z%(A)— Z%B) be a
birational map. Let 7, (resp. ;) be the map from Z?(4) to A(resp. from
Z"(B) to B) defined by m,((x, - -, %), ¥) = 201 Xy (resp. wp((xy, - - -, %), ¥)
= >7.,%;). Then by Lemma 23, finduces a birational map f: A — B such
that mzof = for,. Hence A is biregularly isomorphic to B.

In our examples, the moduli spaces have irregularity 4. The abelian
variety A X A operates on the moduli spaces; E— T¥EQL, xc A, Le A.
In most cases this operation is effective modulo finite group and hence
by a theorem of Matsumura-Nishi [6], the irregularity of the moduli
space > 4.
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QuEsTiON 25. When is the irregularity of the moduli space 47
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