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Abstract We prove that for F' : [0,00) x R® — K(R™) a Lipschitzian multifunction with compact
values, the set of derivatives of solutions of the Cauchy problem

z’ € F(t,z),z(0) =€,
([0, 00),R™).
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1. Introduction and the main result

Let Sp(€) be the set of solutions of the Cauchy problem
g € F(t,z), z(0)=¢&,

where F : [0,T] x R® —» K(R"™) is a compact-valued multifunction, Lipschitzian with
respect to z, £ € R™, and let

Sp(§) ={z' 1z € Sr(§)}

be the set of derivatives of solutions.

Bressan et al. (2] proved that the set of fixed points of a multivalued contraction on
L'([0,T),R") is an absolute retract (for the case when the multivalued contraction has
convex values, such a result was obtained by Ricceri [12]), and using this they established
that S,(&) is a retract of the space L!([0,T],R™). As a consequence, one has that the
solution set Sp(£) turns out to be an absolute retract 7).

A different approach based on the Baire category was used by De Blasi and Pianigiani in
[6] to prove the contractibility of the set Sext £(£), where ext F' is the set of extreme points
of a Lipschitzian, closed convex-valued multifunction F. Other topological properties of
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the solution sets were obtained by many authors, and we refer among others to [2,4, 8,

10,11,14].
Let consider the Cauchy problem

z' € F(t,:l?),l‘(O) = ga (PE)

where F : [0,00)xR™ — K(R™) is a compact-valued multifunction satisfying the following
assumptions.

(Hy) F is £ ® B(R™)-measurable.
(H2) There exists I € L ([0, 00), (0, )) such that, for any z, y € R",

du(F(t z), F(¢,y)) <U@®)llz - yll, ae te0,00).

(H3) There exists 8 € LL ([0, 00),R) such that

loc

du ({0}, F(¢,0)) < B(t), a.e.te[0,00).

It was recently proved in [13] that under the assumptions (H;)—(H3) the set Sp(£) of
all solutions of the Cauchy problem (P;) is arcwise connected in the space of continuous
functions z : [0, 00) — R™ with derivative ' € L}, ([0, 00), R™) endowed with the distance

2’ — v/ (6) | e
1+ /0 le'(6) - (&)l dt

d(z,y) = [|lz(0) — y(0)I + Z

Let
Sp&) = {u € LL.([0,00),R™) : u(t) € F(t,§ + /Ot u(s) ds), ae te [0,00)}

be the set of derivatives of solutions of the problem (P;).
The aim of this paper is to establish a more general topological property of the solution
set Sp(€), namely the following theorem.

Theorem 1.1. If F : [0,00) x R® = K(R"™) is a compact-valued multifunction satis-
fying (H1)—(H3) and £ € R™, then there exists a continuous map H : L}, ([0,00),R") —
L} ([0,00),R™), such that

(i) H(u) € Sp(§), for all u € L{, _([0,00),R™);

(ii) H(u) =wu, whenever u € S;(§).
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2. Preliminaries

Let R™ be a real n-dimensional Euclidean space with norm || - ||. Denote by K(R™) the
family of all compact non-émpty subsets of R™ with the Hausdorff-Pompeiu distance
dp (-, ) defined by

dg (A, B) = inf [la — b inf [la — b||}.
1 (4, B) = max{sup inf |la - b, sup inf Jla - b][}

Let B(R™) be the family of Borel subsets of R™ and £ be the o-algebra of Lebesgue
measurable subsets of [0, 00). We denote by £® B(R™) the product o-algebra on [0, 00) x
R™, generated by the sets A x B, where A € £ and B € B(R").

For every k > 1 we denote by I; the interval [0,k] and by L!(Ix,R™) the space of
integrable functions u : Iy, — R™ with the norm

k
wm¢=4numma 1)
1

As usual, L ([0, 00), R™) denotes the space of locally integrable functions w : [0,00) —
R™, whose topology is generated by the family of seminorms {px : £ > 1}, where

k
mM=Mmm=AHWW&

A subset K C L'(Ix,R") is called decomposable (see [9]) if for any u,v € K and any
Lebesgue measurable subset A C I,

uxa +vxr0\4 € K,

where x4 is the characteristic function of A. Denote by D(L!(Ix,R™)) the family of all
closed and decomposable subsets of L' (I, R™).

Let S be a separable metric space, X be a separable Banach space and let C(X) be
the family of all closed non-empty subsets of X. Let A be a o-algebra of subsets of S.

A multifunction @ : § — C(X) is said to be lower semicontinuous if the set {s € S :
P(s) C C} is closed in S for any closed subset C C X.

We say that & : § — C(X) is .A-measurable if {s € S : #(s) N C # 0} € A for any
closed subset C C X.

By selection from the multifunction @ : § — C(X) we mean any function ¢ : § = X
such that ¢(s) € H(s) for all s € S.

The following lemma follows from Proposition 2.1 in {5].

Lemma 2.1. Let S be a separable metric space and F* : Iy, x § — C(R™) be a
L ® B(S)-measurable multifunction such that s — F*(t, s) is lower semicontinuous. Then
the multifunction s — Gp-(s), defined by

Gr(s) = {ve L' (I,R") : v(t) € F*(t,s), a.e. t € Ix},

is lower semicontinuous from S into D(L(I,R")) if and only if there exists a continuous
map f3: S — L'(I;,R) such that

d(0, F* (¢,3)) < B(s)(t), a.e in Ij.
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Theorem 3 and Proposition 4 in [3] imply the following lemma.

Lemma 2.2. If & : § — D(L'(Ix,R")) is a lower continuous multifunction with
closed, decomposable and non-empty values, ¢ : S — L'(I,R") and ¢ : S — L'(I;,R)
are continuous maps, and if, for every s € S, the set

H(s) =cl{v € &(s) : ||[u(t) — e(8) )l < ¥(s)(t), a.e. t € I}

is non-empty, then the multifunction s — H(s) is lower semicontinuous, and, conse-
quently, it admits a continuous selection (cl stands for closure).

Now let F : [0,00) x R™ — K(R™) satisfy (H;)—-(Hs) and £ € R™ be given. For every
k > 1 and for u € L(Ix,R™) define

t
a(t) =¢ +/ u(s)ds, tel, (2.2)
0
and

Bo(w)(8) = lu@)ll +BE) +IOla@), ¢t € L, (2.3)

where the functions [, 3 € Li ([0,00),R™) are given by (Hz) and (Hj). Since, for any
uy, us € LY(I,R™),

1Bo(u1) — Bo(u2)llne < (L + 1 rcllusdllun — uallnk,

it follows that 8o : L'(Ix,R™) — L(I;,R) is continuous, for any k > 1.
Moreover, by (Hz) and (H3) we obtain that for any k € N and any u € L!(I,R™):

d(u(t), F(t,4(t))) < Bo(u)(t), ae. te . (2.4)

Denote
Sk (&) ={ue LY(Ix,R™) : u(t) € F(t,a(t), a.e. t € I }.

Then we have the following proposition.

Proposition 2.3. If ¢ : L(I;,R™) — L'(I;,R™) is a continuous map such that
¢(u) = u for any u € Sg 1, (£), then the multifunction u — &% (u) defined by

@k(u) — {Wk(u)a ifu ¢ S/F,lk (é)a
{u}, ifu € Sg 1, (§),

where
U (w) = {v € L (I1,R™) : u(t) € F(t, p(u)(t)), ae. t € I}

is lower semicontinuous with closed decomposable and non-empty values.
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Proof. Let C C L!'(Ix,R") be a closed subset and let (u,)nen converge to some ug in
LY(Ix,R™) and $*(u,,) C C for any n € N. Let vy € $*(u) and for every n € N consider
a measurable selection v, from the measurable multifunction ¢ — F(t, o(u,)(t)) such
that: v, = u, if u, € S'F’,k (€), and

loa(t) — vo ()| = d(vo(t), F(t, p(un)(1)), ae. t € I

if un € S, (£)- In both cases,

[on(t) — vo ()| < d(F(t, p(un) (), F(t, o(uo)(2)))
< UB)eun)(®) - pluo) B,

which implies

lon = vollue < Nz Mu.iloun) — w(wo) k-
Then, by the continuity of ¢ : L! (I, R™) — L!(Ix,R™), we obtain that (v, )nen converges
to vg in L' (I, R™). Since v, € ®*(u,) C C, Vn € N, and since C is closed we get v € C.
Therefore, *(ug) C C and the lower semicontinuity of &* is proved.

On the other hand, the inequality (2.4), the continuity of 8y, and Lemma 2.1 imply
that ¥* has closed, decomposable and non-empty values, and the same holds for the
multifunction &, a
3. Proof of the main result

We shall prove that for every integer k > 1, there is a continuous map h* : L!(I;,R™) =
L(I;,R™) with the following properties:

(P1) R*(w) = u whenever u € Sf |, (£);
(P2) h*(u) € 8%, (£) for every u € L (I, R™);
(Pa) KF(u)(t) = k¥ (uls,_,)(t), for t € Ty _1.
Fix € > 0 and for n > 0 set
=(n+1/n+2)e.
For u € L'(I;,R™) and n > 0 define
B (w)() = e + B¢) + UDNGON, te T,

and

n+1 /ﬂo )( [m ) (3)]n ds+[m7(lt!)]n€n+1, (3-1)

where m(t) = fo I(s)ds and [ is given by (H2).
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By the continuity of the map 8} = By proved in the previous section we obtain easily
that 6} : L'(I;,R®) — L!(I},R) is continuous. Moreover, by a similar computation to
the one provided in [1, p. 122] we get

/ ()81 (u)(5) ds = / By o) A=l g, [
< Gnp1 (W) (3.2)

Set h}(u) = u. We claim that for any n > 1 there exists a continuous map hl :
LY(I;,R™) — L1(I;,R™) satisfying the following conditions:

(i) h}(u) = u whenever u € S, (£);
(i) hL(u)(t) € F(t, hl_ (u)(t)), ae. t € Iy;
(i) (AL (w)() — BL_; ()(®)]) < L)L, (w)(E), ae. t € I;

where, for simplicity, [(¢)d5(u)(t) is understood as B3 (u)(t) + €o.
Indeed, define

o) = {q/l (u) ff " s:F,,l ),
{u}, if u € Sgy, (6),

where
Tl(u) = {v € L*(I,,R™) : v(t) € F(t,u(t)), ae. t € I},

and, by Proposition 2.3 (for p(u) = u and k = 1), we obtain that ¢} : L(I;,R") —
D(LY(I,,R™)) is lower semicontinuous. Moreover, due to (2.4), the set

Hi(u) = cl{v € &l(u) : |lv(t) — u(t)| < B(u)(t) + €0, ae. t € I1}

is non-empty for any w € L'(I;,R™). Then a continuous selection h] from u — H](u)
exists by Lemma 2.2 and it satisfies (i)-(iii).
Assume we have constructed h},. .., hl satisfying (i)-(iii). Then by (ii), (iii) and (3.2)
we get
d(h}(u)(t), F(¢, Rl () 1)) <1 t)/ ()01 _;(u)(s)ds
< I(t)6L(u)(t), ae t€l. (3.3)
Define the multifunction @}, : L(I1,R™) — C(L* (1, R™)) by
By = (T g SEL)
{u}, if w € Sg,1,(6),

where
WL, (u) = {v € L'(I;,R™) : v(t) € F(t, hL(u)(t)), ae. t € I}.
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Apply Proposition 2.3 (for ¢(u) = hl(u)) and obtain that &}, is a lower semicontinuous
multifunction with closed decomposable and non-empty values. Moreover, by (3.3), the
set

Hp 1 (u) = cl{v € 4, (u) : lv(t) = by (W) ())] < U(E)S(u)(2), ae. t € I}

is non-empty for any u € L!(I;,R™). Then we can apply Lemma 2.2 and obtain the
existence of a continuous selection hl , from u — H}, (u), hence satisfying (i)—(iii),
proving the claim.

Now, by (iii) and (3.2) one obtains that

[m(l)]

Ilhnts () = hn(w)llix < (185 (w)ll1 + €,

and this implies that (hl(u))nen is a Cauchy sequence in the Banach space L(I1,R"),
hence it converges to some h!(u) € L!(I,R™). Moreover, since the map u — || (u)}11
is continuous, it is locally bounded and the Cauchy condition is satisfied by (hl(u))nen
locally uniformly with respect to u, so the map u — h!(u) is continuous from L*(I;,R")
into L! (I], R"’)

By (i) it follows that h!(u) = v ifu € Sk 1,(£) and, by (ii) and the closure of the values
of F, we obtain that, for any u € L!(I;,R"),

R (w)(t) € F(t, bl (u)(t)),

hence h'(u) € St ; (€). Therefore, h' : L'(I;,R™) — L'(I;,R™) is continuous and satis-
fies (P;) and (P2).

We shall now construct a continuous map h? : L!(I5,R*) — L!(I,R") from hl,
satisfying (P1)—(Ps).

For this, define h2 : L' (Io, R™) — L}(I3, R™) by

he(u)(t) = B (ulr,) ($)xn, + w(t)xr\n (B) (34)

and state that it is continuous.
Indeed, fix any uy € Ll(Ig,]R") Since h' is continuous at uglr, for any o > 0, there
exists {, > 0 such that ¢, < $o and, for every v € L'(I;,R™):

llv = woln, Il < ¢ = A (v) — R (uolr) 1 < 3o

Then, for any u € L!(Iz,R™) with ||u — ug|1,2 < {s, one has that

2
1A (u) = h3(uo)ll12 = lIA* (ulr,) — h* (volr,) Il + /1 llu(t) — wo(®)l dt < o,

which implies the continuity of h3.
Moreover, since h'(u) = u for u € 8%, (€), by (3.4) we obtain that

hy(u) =u, whenever u € Sg,(€).
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For any u € L(Iz,R™), define
U2 (u), if S ,
¢%(u) — 1( ) 1 u ¢ f‘,l;(&)
{u}, if u € Sg 1, (£),

where

T (u) = {w € L' (15, R™) : w(t) = h'(u|1,)(t)x1, (¢) + v(E) X\ 1, (B),
v(t) € F(t, RR(W)(t), ae. t € L\ 1}.

We can apply Proposition 2.3, for k = 2, p(u) = h%(u), and obtain that &2 is lower
semicontinuous from L'(I,R™) into D(L!(I,R™)). Moreover, for any u € L}(I;,R"),

d(h2(w)(t), F(t, RE(w)(2))) = d(u(t), F(t, BA(u)(£))x1m\1: (2)
< BEu)(t), ae tel, (3.5)

where
B (w)(®) = ()| + B) + U IR )OI, t € L.
Since

Ba(u)(t) = Bo(u)(t) + Ut)IR' (ulr,) — ulliaXma\n (B),
by the continuity of Gy and h! we obtain that 82 : L!(I3,R™) — L'(I,R) is continuous.

Set
82 () () = / B =mOL 4, )

and, by the continuity of the map 32, we easily obtain that 62 : L(I2,R™) — L(I, R)
is continuous. Moreover, as in (3.2) with 82 (u) instead of 33 (u), we have

/l(s )62 (u)(s) ds—/ B2 () (s m(s)] ds +[mfﬁ] €n
< 6241 (u)(t). (3.6)

We shall prove that for any n > 1 there exists a continuous map hZ : L(I,,R™) —
L1(I3,R") satisfying

(i) h2(u)(t) = R (u|r,)(t), for t € Iy;

€n+17

(i) h2(u) = u whenever u € S 1, (£);
(iii) h2(u)(t) € F(t,h2_ 1( ), a.e. t € Iy;

(iv) [[R2(u)(®) = b2 1 (W)@ < U5 1 (u)(t), ae. t € I;

where ()62 (u)(t) is understood as G2 (u)(t) + €.
Define

H?(u) = cl{v € #3(u) : ||v(t) — ha(u)(t)|| < B2(u)(t) + €0, a-e. t € I},
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and, by (3.5), the set H?(u) is non-empty for any u € L'(I5,R"). Since &? is lower
semicontinuous, and the functions hZ and B2 are continuous, Lemma 2.2 can be applied
and obtain the existence of a continuous selection h} from u — H?(u), which satisfies
(i)—(iv).

Assume we have constructed h%,...,h2

2 satisfying (i)—(iv). Then, by (H2), (iv) and
(3.6), one obtains

d(R2 (w)(8), F(t, RE(2))) < L(2) / (s)82_y (w)(s) ds
<UD (W)(t), ae. te I (3.7)

Define the multifunction &2, : L'(I;,R™) — C(L*(11,R™)) b

( ) { n+1(u)7 if u ¢ S%‘,Ig(g)}
{u}, if u € Sp1,(6),

2
¢n-&-l

where

W21 (uw) = {w € L' (12, R™) : w(t) = k' (ulr,) )x1, () + v()x1\1, (B),
v(t) € F(t, R2(u)(t)), ae. te L\ 1},

and, by Proposition 2.3, we obtain that it is lower semicontinuous with closed decom-
posable and non-empty values. Moreover, by (3.7), the set

H2,,(u) = v € BL,,(u) : [lu(®) — R2(@)(®)]| < UD)S2(w)(t), ae. t€ L}

is non-empty for any u € L'(I,,R"). By applying Lemma 2.2 we obtain the existence
of a continuous selection A2, from u — H},,(u), satisfying (i)—(iv). We need to prove
that the sequence (h2(u))nen is a Cauchy sequence in the Banach space L!(I,R™) with
norm || - ||1 2, locally uniformly with respect to u. But this follows by a similar reasoning
to the one made for (h}(u))nen and the remark that (iv) and (3.6) imply

1621() — B2l 2 < Wbl sy, 1 g

Therefore, (h2(u))nen converges in L!(I,R™) to some h?(u) € L!(I>,R™) and the map
u = h2(u) is continuous from L!(I5,R™) into L!(I5, R™). Moreover, by (i) it follows that

h2(u)(t) = h'(u|r,)(t), forte Iy;

by (ii),
hl'(u) =u, ifue Sk, (E);

and by (iii) and the closure of the values of F' we obtain that for any u € L!(I>, R™)

h2(w)(t) € F(t,R2(u)(t)), ae.t€ L.
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Therefore, h? satisfies properties (P;)~(P3).

Similarly, for any k > 2, we obtain a continuous map h* : L1(I,R?) = L!(Ix,R")
from h*~1: L(Ix_;,R™) — L!(Ix_1,R"), satisfying properties (P, )—(P3).

Define H : L, ([0,00),R™) — L{. ([0, c0), R™) by

1 1
loc loc

Hu)(t) = h*(ulr,)(t), k=1,2,....

By using (P3) and the continuity of each h* it is easy to see that H is well defined and
continuous. Moreover, for each u € L ([0, 00),R™), by (P2) we have

Hw)|r(t) = hk(uhk)(t) € S}”k (§), foreachk=1,2,...,

hence
H(u) € SE(6).
O
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