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Abstract

A steady two-dimensional free-surface flow in a channel of finite depth is considered. The
channel ends abruptly with a barrier in the form of a vertical wall of finite height. Hence
the stream, which is uniform far upstream, is forced to go upward and then falls under the
effect of gravity. A configuration is examined where the rising stream splits into two jets,
one falling backward and the other forward over the wall, in a fountain-like manner. The
backward-going jet is assumed to be removed without disturbing the incident stream. This
problem is solved numerically by an integral-equation method. Solutions are obtained for
various values of a parameter measuring the fraction of the total incoming flux that goes
into the forward jet. The limit where this fraction is one is also examined, the water then
all passing over the wall, with a 120° corner stagnation point on the upper free surface.

1. Introduction

When a uniform stream with velocity U generated far upstream meets a barrier in the
form of an inclined wall of height W in a channel of finite depth H, the stream is
thrown upward against gravity g, and there are several different possible local flow
configurations. Which of these flows occurs depends on non-dimensional parameters
such as the relative height w — W/H and angle /5 of the wall, and the upstream
Froude number

A stream with a backward-going jet is typical of solutions occurring when the wall
is effectively infinitely high. A free surface which is the upper boundary of the jet
is then formed after the stream reaches its maximum (stagnation) height on the wall.
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Hence the separation point of the free surface from the wall represents detachment
with a discontinuous change in flow direction, and is a stagnation point of the flow.
Solutions of this problem can be seen in Dias and Christodoulides [1], Dias and Tuck
[3] and Wiryanto and Tuck [9] for a vertical wall.

Solutions with a backward-going jet but smooth non-stagnant detachment from the
top of the wall without change in direction are another possible configuration, and can
occur if we reduce the height of the wall to a value which is a little lower than the
stagnation level. This type of solution can be obtained when the wall is itself inclined
backward, that is, with an angle /J > n/2 measured from the positive horizontal axis.
It does not appear to be possible for this flow to occur for a vertical wall. Wiryanto
and Tuck [10] were able to accurately compute solutions with /$ = 3n/4, up to close
to a configuration with a stagnation point on the upper free surface.

For all of these backward-going jets, any theoretical treatment as a well-defined
irrotational flow necessarily assumes that the jet is somehow absorbed or removed
before it has a chance to contaminate the incident stream by falling onto its surface.
This is not difficult to build into the mathematics, and is an idealisation of the real
situation which retains some validity for relatively thin jets.

If the wall height is reduced further, the jet may pass over the wall instead of being
thrown backward. At some wall angles (including the vertical) this is the only single-
jet possibility. In such cases of a forward-going jet, we can also describe the problem
as a "weir flow". Vanden-Broeck and Keller [8] computed such weir solutions, but
only for small Froude numbers (F < 0.3), as their main aim was to compare their
numerical results with experimental data. For the supercritical case (F > 1), Dias and
Tuck [2] solved the problem to determine the range of F where the solutions exist.

Another possible configuration, that can occur if the initial deflection of the stream
is nearly vertical, is a free surface with two jets, one forward and one backward. In the
case of flow emerging from a nozzle, this type of solution has been computed by Dias
and Vanden-Broeck [4] and Vanden-Broeck [7]. Solutions with two sheets covered
by one free surface were computed by Dias and Vanden-Broeck [4] for various angles
fiN of the nozzle. A critical value of the Froude number Fc which is based on the
width of the nozzle is obtained for each value fiN. Therefore, the solutions exist only
for F > Fc. When the nozzle is vertical, the flow becomes symmetric. Dias and
Vanden-Broeck compared their computations for this case with the results constructed
from two pouring flows, by superposing these flows to get the complete free surface
of the nozzle flow. This idea was then used to superpose two weir flows to obtain a
two-jet solution of the nozzle flow, where each jet was bounded by two free surfaces.
The latter solution was then computed by Vanden-Broeck [7] using a finite-difference
method for F -+ co.

For flows in the channel described above, two-jet solutions are computed in the
present work. We assume that the flow separates smoothly from the top edge of a
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vertical wall which has a height less than the stagnation value. The fraction a of fluid
forming the forward-going jet is one of the quantities that we consider. This parameter
a corresponds to a constant scaled value xff = a of the stream function for the dividing
streamline, which splits into two free surfaces at a stagnation point. When a tends to
1, the limiting case is a forward-jet solution with a stagnation point on the upper free
surface. We reproduce this configuration as a special case of the procedure for the
two-jet case.

In solving the problem, we use an integral equation formulation as in Wiryanto and
Tuck [9, 10]. Other references for this method can be seen in Goh and Tuck [5] and
Tuck [6]. We map the flow domain of the complex potential plane into an artificial
£ -plane. This transformation depends on the fraction a defined above, where o — 8/y
and 8, y are two parameters corresponding to the images of the stagnation point and of
one of the jets in the £ -plane respectively. We use these two parameters 8, y as input,
and the Froude number F and the scaled height w of the wall are obtained as output.
In practice, the latter two parameters would be presented by the physical situation,
and our procedure would then inversely determine 8, y, and hence a and the shape of
the free surfaces.

2. Problem formulation

We consider the two-dimensional flow configuration sketched in Figure l(a). The
flow domain is bounded on the right and below by impermeable plane walls and three
free surfaces forming two jets. The fluid is assumed to be inviscid and incompressible
and the flow to be steady and irrotational. We choose Cartesian coordinates with the
origin at the corner point C; that is, the ;c-axis is chosen to be along the bottom of the
channel and the v-axis is chosen to be up the vertical wall. Then we write z = x + iy
as the complex coordinate.

For the complex potential / = </> + ix[r, we introduce the potential function </>
and the stream function \Jr as follows. Without loss of generality, we choose (j> = 0
at the detachment point D, and ir = 0 to be the streamline ICDR, the bottom (IC)
and vertical (CD) walls having (/> < 0, and the free surface DR having <j> > 0. We
denote by Q the value of i}r on the incoming free surface streamline IL. The dividing
streamline IS and the upper streamline LSR have rjr = a Q.

Mathematically, the problem is to find a stream function \jr{x,y) satisfying Lap-
lace's equation (V2^ = 0) within the flow domain, subject to Dirichlet conditions
\jr = constant, no flow across the solid boundaries and the free surfaces, and the
condition of constant pressure on the free surfaces provided by Bernoulli's equation

2 W? + f2
y) + gy= constant. (2.1)
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FIGURE 1. (a) Sketch of the flow and the coordinates, (b) The complex potential plane/ = <t> + iir. (c)
The complex f -plane.
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The problem is non-dimensionalized by taking U as the unit velocity and the depth far
upstream H as the unit length. Therefore the volume discharge Q is scaled to unity,
and Bernoulli's equation becomes

l-F2{ir2
x+f]) + y=l-F2 + \. (2.2)

In non-dimensional variables, the flow domain in the / -plane becomes an infinite
strip of unit height, as shown in Figure l(b). This is then mapped to a lower half-plane
of an artificial variable f = f + i?j shown as the shaded area in Figure l(c). The
streamlines ^ = 0, V = 1 and x/r = a corresponding to the upper free surface LSR
are mapped to the real axis of £ so that the points L, R and D are mapped into the
points — y, 0 and 1. The images of the points C and S are denoted by £c and — 8
respectively. The transformation from the / -plane to the £ -plane can be written as

( 2 .3 ,

The fraction of fluid a falling beyond the wall can be shown to be equal to S/y, and
the end of the dividing streamline at <f> — <ps to satisfy

y

Instead of solving for ijr, the problem is inverted to find the complex velocity
df/dz = u — iv as an analytic function of £. To do so, we introduce the hodograph
variable

f'(z) = en, . (2.4)

where fi(£) = r(f) — i#(£)- The magnitude of the velocity at any point is given by
\f'(z)\ = eT(f) and the angle that any streamline makes with the horizontal is #(£)•
Hence, the kinematic condition on the solid boundaries can be presented in terms of
the angle of the wall

[0, f o r | c < ? )

[JT/2, for 1 < £ < £c,

where #(£) = 0 ( | + iO), and the dynamic condition on the free surfaces becomes

l-F2e2< + y=l-F2 + \. (2.6)

The relation between r and 0 can be obtained by applying Cauchy's theorem to
the function Q (£)/(£ — £*) on a path consisting of the real £-axis, a semi-circle at
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l£l = oo in the lower half-plane, and a circle of vanishing radius about the point £*.
Hence, we have

(2.7)

for Im(£*) < 0 since |fi(£)| - • 0 as |£| -> oo. Note that the integral is of Cauchy
principal value form, denoted by PV. If we let Im(£*) -*• 0~, the real part gives

r(£*) = - I (2.8)

where £* = Re(£*). After substituting the known value of 9 given by (2.5) for £ > 1,
(2.8) becomes

On the other hand, the complex coordinates z and f are related by

(2.10)

This is obtained from (2.3) and (2.4). For the free surfaces, the major difficulty occurs
with integration of (2.10) on the real axis f = £ - iO, in which the factor £(£ + y) in
the dominator makes it essentially impossible to integrate through £ = 0 and £ = -y.
To avoid these singularities, we evaluate y by integrating (2.10) separately from three
different points, namely the top of the wall D with y(l) = w, the upstream point I
with y(-oo) = 1, and the free-surface stagnation point S with y(-8) = 1 + ±F2.
Therefore the y-values are

f1 dy
- \ -kd%' forO<£*

1 r.2 /"*' dy
-F + I - 4 , for — y < |
2 J-S dl;

(2.11)

with

dy

Equation (2.6) combined with (2.9) and (2.11) is in effect an integral equation for
£). Numerically, this equation can be solved by choosing collocation points on the
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free surfaces to construct a system of nonlinear algebraic equations. But this is not yet
a closed system. Two other equations must be included. One is the relation between
the wall height w and the parameter £c obtained by integrating dy/d% from 1 to £c

with 0 = n/2, yielding

1 ffce- '(g + j)
w = — I ———-d$. (2.12)

*• J\ £(£ + y)

The second equation is obtained by integration of (2.10) along the dividing stream-
line if (x, y) = a for — oo < <p < <j)s. We only take the imaginary part which is equal
to the stagnation level, that is,

V 7T J^,=a W +y) J 2
I m

where Q is computed from (2.7). In order to evaluate the integral in (2.13), we must
determine the corresponding curve of the dividing streamline in the £ -plane. For any
point (0, a) on this streamline, there is an image point in the £ -plane which we define
as £ = r e'a satisfying

<f> = (alogr + (l-flr)log/J) (2.14)
n

and

a = --{oa + (l-o)X), (2.15)
n

where

1
R = y/r2 + y2 + 2yrcosa

and

rsina
tan A =

y + rcos a

Numerically, (2.14) and (2.15) can be solved by constructing a system of nonlinear
equations from N points (<j)j,a), —oo < <j>j < <ps for j = 1,2, . . . ,N. Then
Newton's method is applied to the system to obtain r, and a, corresponding to <f>j.
This Newton iteration is carried out separately from the computation of the complex
integral (2.13).
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3. Numerical procedure

Now we describe the numerical procedure to solve the integral equation with the
two extra equations (2.12) and (2.13). Our major task is to approximate the integral
in (2.9). We truncate the integration domain up to £ = — T (T > 0) representing
the free surface far upstream, where T must be chosen large, and we approximate the
integration as a summation over M discrete values of 0(£). In order to accomplish
this, we need to partition the truncated interval [-T, 1] into M segments. The grid
spaces are made unequal so that grid points are crowded near the detachment point
(£ = 1), both points representing the jets (£ = 0 and £ = —y), and the stagnation
point (£ = —S).

The partition for each subinterval is given as follows. The first subinterval is from
£ = 1 to £ = e, where e is a small input parameter so that the jets are in an interval
with 2e-width. The segment end-points are

£ , = e - ' 2 \ fory = 0, 1 , . . . ,N,

where <f>i = —loge/N2. The second subinterval [—5, — e] is divided into N — 1
segments with end-points

£ 2 * + w = -Be-"-1?*, for; = 1, 2 , . . . , N,

where 02 = — log(e/<5)/(N — I)3. Similarly for the third subinterval, from £ = — y + e
to £ = —S, we discretize into segments with end-points

hs+j =-Y + (Y~ S)e-(J~l)3<h, foij = 1, 2 , . . . , N,

where </>3 = \og{(y — 8)/€}/N3. For the free surface from I to L, we discretize into
2N segments, with end-points

; = - y - e ^ - " * , for; = 1 , 2 2N,

where </>4 = log{(T — y)/e}/(2N — 1). The total number of segments is M = 5N.
The Cauchy principal-value integral in (2.9) is approximated by assuming piece-

wise linear behaviour of the numerator for each segment, giving

> , _ , - 9,)

f £* - £/ 1 £,_, - £*
+ (0,_, - 0,)-f ^ } log 2i_!—1- , (3.1)

£,_, - £/ J £( - £*

https://doi.org/10.1017/S0334270000011760 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011760


466 L. H. Wiryanto and E. O. Tuck [9]

where 0, = 0(£;) with 0O = n/2 and

^ ( 2N- (3.2)
[it, forl = 2N + l.

The expression (3.2) represents the streamline ijs = a splitting into two free surfaces
with 18O°-different directions at the stagnation point £ = %2N-

We replace f * in (3.1) by collocation points chosen as the mid-points

(3.3)

for./ = 1,2,... ,N,N + 2,... ,3N,3N+2,... ,5tf,with&+1 = <?/2 and £*„
—y — e/2. Similarly, 0* = #(£*) is defined as the average of 0,-_i and 0,- except that
Off+l and ^V-n are extrapolated linearly from 6N and 6jJ, and from 63N+i and ^ + 2
respectively.

The system of nonlinear equations is obtained by substituting the approximate
value of (2.9) and (2.11) into (2.6) for each collocation point, and completed with
(2.12) and (2.13). This system is used to determine the M + 2 unknowns, that is,
0 i , . . . , 02N-\, 02Ar+i» • • • . 9M* F, W and | c . We choose S and y as input quantities, in
order to keep fixed the discretization during the iteration process in Newton's method.
The IC05NBF package of the NAG routine library was used to solve the system. Most
of the computations were performed with N = 40 (M = 200), e = 0.00005 and
T = 106, and with convergence of Newton's method to within error 10"8. These
tolerances are ample to achieve better than 3 significant figure accuracy in all plotted
quantities.

4. Numerical results

4.1. Two-jet solutions The procedure described in the previous section is used
to compute solutions with two jets for various values of S and y. Once the system
of nonlinear algebraic equations is solved, the free-surface profile is evaluated by
integrating (2.10) numerically along the £-axis from - T to 1. Similarly, integration of
(2.10) along £ = £(</>, a) is used to evaluate the coordinate of the dividing streamline
\jr(x,y) = a which is terminated at S with <f> = <f>s. The x-value at the stagnation
point is then used to determine the x -coordinate of the upper free surface covering the
right and left jets.

Typical profiles are shown in Figures l(a), 2 and 3 for different values of S and y.
A free-surface profile with a = 0.6 (8 = 6 and y = 10) is shown in Figure l(a). The
Froude number and the wall height corresponding to this figure are F = 2.370 and
w = 1.929. The other figures both represent the free-surface profile with a = 0.8,
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FIGURE 2. A free-surface profile with a = 0.8 (5 = 1).
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FIGURE 3. Similar to Figure 2 but from S = 30 (still a = 0.8).

but from quite different values 8 and y, namely 5 = 1 corresponding to Figure 2, and
8 = 30 for Figure 3. The Froude numbers and the wall heights for these profiles are
F = 2.124 and w = 1.141 for Figure 2, and F = 1.994 and w = 1.038 for Figure 3.

At a fixed value of a (which is the ratio between 8 and y), our computations show
that the Froude number decreases on increasing S. This is accompanied by decreasing
the wall height until a certain level I D ^ is reached, and then the wall height increases
again. A plot of both physical quantities w and F is shown in Figure 4 for three
different values of a, namely 0.6, 0.7 and 0.8. The last curve is for a = 1, to be
discussed below.

Along the curves a = constant, the splash seems to move farther and farther
upstream from the wall as we decrease the Froude number. This shifting is shown by
an increase in the horizontal distance d between the stagnation point and the vertical
wall. As an illustration, we can see the free-surface profile in Figure 2 (F = 2.124)
and Figure 3 (F = 1.994) with d = 1.061 and 3.428 respectively. Other values of d
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FIGURE 4. Plots of relative wall height w = W/H versus Froude number F, for various values of the
flux fraction a in the forward-going jet.

are shown in Figure 5 plotted versus the Froude number F, for the three values of a
given above.

Our results suggest that, at each fixed value of a, there is a minimum Froude
number Fc(o). For example, Figure 5 suggests that d —> oo as F —>• Fc from above.
Our plots of free surfaces suggest that, for large values of d, a uniform stream is
formed downstream before the wall is reached. Therefore, this configuration may be
considered as a generalisation of the problem solved by Dias and Tuck [3]. The flow
is then from left to right in a channel without a wall, such that the stream is uniform
on both sides of the jet, supercritical far upstream and subcritical far downstream.
Although there is now only a single backward-going jet, the parameter o still measures
the fraction of the stream that continues to the right. If we let a -» 0, we should
then recover the unique solution of Dias and Tuck [3] with Fc(0) = 2.994. Although
we have not computed results for small enough a to approach this limit, the trend in
Figure 5 is consistent with it.

4.2. Solutions with a stagnation point In the formulation in the previous section,
the parameter S can be allowed to be either 0 or y, with consequent disappearance of
one of the two jets. For the first case 8 = 0, the formulation represents a flow with a
backward-going jet only. The end of the dividing streamline S then corresponds to

0 = _ I log -*—
n y + 1

on rjs = 0 which is mapped to £ = 0 . But from our knowledge of the exact zero-
gravity solutions (see [2]), we expect that such solutions exist only for wall inclination

https://doi.org/10.1017/S0334270000011760 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011760


[12] Open-channel flow meeting a barrier 469

12

10

8

d 6

4

2

a

•

-

-

•

1.8

= 0.8

\

\

2

a =0.7 \

\ \

2.2

.7=0.6

2.4 2.6
F

-

-

-

-

2.8 3

FIGURE 5. Plots of distance d between stagnation point and wall versus F, for various a.

P > n/2. Therefore, we do not consider this case here, since we have P = n/2 in the
present paper.

The second case S = y (or a = 1) represents a flow with a forward-going jet only.
Our transformation is then

~ (4.1)

which is obtained by taking S -> y in (2.3). Therefore, the stagnation point is at
4> = — log y/n on \lr = I. This point is mapped to £ = —y by (4.1).

On the other hand, the transformation (4.1) gives a relation between the complex
coordinate z and £

dz 12 (4.2)

so that the y -values of the free surfaces are evaluated from

w —

1 2

2

:</f, f o rO<r< l

/ — </£, for — y < % * < 0
7-v a?

(4.3)

where dy/dl; = —e z sin6/(n%). For the upper free surface, we integrate (4.2)
starting from the stagnation point so that it is possible to reach non-unit depth as
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FIGURE 6. A free-surface profile with a 120° stagnation point on the upper free surface, obtained in the
limit when a = 1. The wall height is w = 0.243.

-1 -

- 8 - 6 - 4 - 2 0 2

FIGURE 7. Similar to Figure 6, with w = 0.450.

£* —• — T. To avoid this, we use a boundary condition

(4.4)

which contributes in constructing the system of nonlinear equations.
Following the procedure in the previous section, M + 2 equations are obtained, that

is, M equations from the collocation points, equation (2.12) by substituting 8 = y and
equation (4.4). These are used to solve for M + 3 unknowns 9j,(j = 1,2,... , M),
F, w and £c. The (M + 3)-rd equation is obtained by imposing the constraint that
the upper free surface makes a 120-degree angle at the stagnation point. If #2JV is the
angle at the stagnation point and 0^ is the angle at the same point extrapolated from
02jv+i and 62N+2, we have

(4.5)

https://doi.org/10.1017/S0334270000011760 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011760


[14] Open-channel flow meeting a barrier 471

FIGURE 8. Variation with wall height w of the x-coordinate xm of the free-surface stagnation point, for
solutions as in Figures 6 and 7 with a = 1.

Here we use subtraction since the angle of the free surface for — y < £ < 0 must be
negative. Then the system is solved by Newton's method.

Two free-surface profiles are shown in Figures 6 and 7 for y = 1 and 0.1 respec-
tively. The corresponding physical quantities are F = 1.354 and w = 0.243 for
Figure 6, and F = 1.668 and w = 0.450 for Figure 7. It is interesting to note from
these profiles that the stagnation point moves forward as the wall height is increased.
We confirm this by plotting the *-coordinate of the stagnation point jcstag versus w in
Figure 8. This shifting of the stagnation point agrees with the results in Dias and Tuck
[2] for the case of a free-surface flow without a stagnation point.

The plot of F versus w for solutions with a stagnation point is shown together with
the previous results as the curve a = 1 in Figure 4. In contrast with the other curves
for a < 1, we found that this case gives a monotone relationship between w and F.

5. Conclusions

We have performed accurate numerical calculations for a free-surface flow consist-
ing of a stream with incoming speed U, splitting into two jets in a channel of finite
depth H blocked by a vertical wall of height W. We obtained a relationship between
F = U/^/gH and w = W/H for fixed values of the fraction a of fluid forming the
forward-going jet. If we increase this parameter a toward 1, the relationship tends to
the boundary of a region where solutions with a forward-going jet exist. On the other
hand, our procedure is not able to obtain any two-jet solutions for a < 0.4. Neverthe-
less, two-jet solutions exist with a wall height which is less than the stagnation height
at a fixed Froude number. We can conclude this from the limiting case a ->• 0, which
gives <f>s > 0 on the streamline i/r = 0.

This present work contributes in obtaining transition solutions between forward-
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jet solutions as in Dias and Tuck [2], and backward-jet solutions with a stagnation
point on the wall as in Dias and Christodoulides [1] and Wiryanto and Tuck [9].
Unfortunately, the two-jet configurations computed here still do not cover the whole
gap in the parameter range. Further work is needed on this matter. Determination of
the limiting solution at the minimum Froude number F = Fc(o) is another interesting
problem, that could be examined as a generalisation of the steady breaking wave of
Dias and Tuck [3].

Acknowledgements

The first author is a staff member of the Department of Mathematics, Bandung
Institute of Technology, Ganesha Street 10 Bandung, Indonesia. The present work
was carried out when he was a PhD student at the University of Adelaide, supported
by Ausaid.

References

[1] F. Dias and P. Christodoulides, "Ideal jets falling under gravity", Phys. Fluids A 3 (1991) 1711—
1717.

[2] F. Dias and E. O. Tuck, "Weir flows and waterfalls", J. Fluid Mech. 230 (1991) 525-539.
[3] F. Dias and E. O. Tuck, "A steady breaking wave", Phys. Fluids A 5 (1993) 277-279.
[4] F. Dias and J.-M. Vanden-Broeck, "Flows emerging from a nozzle and falling under gravity", J.

Fluid Mech. 213 (1990) 465^77.
[5] M. K. Goh and E. O. Tuck, 'Thick waterfalls from horizontal slots", J. Engng. Maths. 19 (1985)

341-349.
[6] E. O. Tuck, "Efflux from a slit in a vertical wall", J. Fluid Mech. 176 (1987) 253-264.
[7] J.-M. Vanden-Broeck, 'Two-dimensional jets aimed vertically upwards", J. Austral. Math. Soc.

Sen 5 34(1993) 393^00.
[8] J.-M. Vanden-Broeck and J. Keller, "Weir flows", J. Fluid Mech. 176 (1987) 283-293.
[9] L. H. Wiryanto and E. O. Tuck, "A back-turning jet formed by a uniform shallow stream hit-

ting a vertical wall", in International Conference on Differential Equations, Inst. Tek. Bandung,
Indonesia, October 1996 (eds. B. van Groesen and E. Soewono), (Kluwer, 1997) 371-379.

[10] L. H. Wiryanto and E. O. Tuck, "A boundary-element solution of a free-surface flow in a blocked
channel", in 8th Computational Techniques and Applications Conference, Adelaide, September
1997 (eds. J. Noye, M. Teubner and A. Gill), (World Scientific, Singapore, 1998) 743-750.

https://doi.org/10.1017/S0334270000011760 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011760

