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Abstract

The problem of solving a differential-difference equation with quadratic non-linearities of
a certain type is reduced to the problem of solving an associated linear differential-
difference equation.

Consider differential-difference equations of the general form

(1) = r()x(t) + x()[6(¢)x(2) — 6(¢r — Dx(¢ — 1], (1
with r and 8 known functions, and x an unknown function of the variable ¢. The
class of equations so defined is rather restrictive, even though r and @ are
essentially arbitrary, but it is not without possible applications.

For example x(7) could represent, in a continuous approximation, the size at
time  of a population whose growth is restricted by pairwise competition between
its members, when members above a certain age do not compete amongst
themselves. Were it not for this last condition, the familiar logistic equation

x(1) = rx(r) + 0x(2)’, )
with r (positive) and 8 (negative) constants could be expected to define a useful
deterministic model of the variation in time of the population size. The second
term on the right-hand side of (2) models the effects of pairwise competition
amongst all members. However, if members above a certain age do not compete
amongst themselves, and if death of members has no significant effect on the
population size during the period of interest, then a more appropriate competition
term is

Ox(1)[x(t) — x(£ = 1)] ()
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with @ a negative constant. Here the term in square brackets represents, for a
suitable scaling of ¢, the size of the subpopulation whose members are not above
that certain age. Then in place of (2) one obtains equation (1), with r and 8

constant.
Equations of the form (1) can be linearized as follows. First, set
y(t) = x(t)e RO where R(t) = fr(t) dt (4)
so that (1) is replaced by
2(1) = y(0)[6(£)eOp(2) — 8(r — 1)eRe V(s — 1)]. (5)
Next, write
y(t) = f(t = 1) /f(¢). (6)

(This may be compared with the substitution y = f/f which can be used to
linearize a Riccati differential equation.) Then

2(0) =[A)f(e = 1) = () (e = D] /12, (™)

and (5) becomes
(=) =/t —1)
=[6(1)eROf(r — 1" — 0(1 — DR Of()f(r = 2)], ()
that is,
SOt = 1)+ 0(t — 1)eRDp(1 — 2)]
=f(e = D[ /(r) + 6()e*Of(t = D] (9)

This has the general form

f(£)g(t — 1) = f(r — 1g(s) (10)
which implies
g(1) = p(1)/(1), (11)
where
p(t=1)=p(s). (12)
Thus
f(2) + 8(2)eOf (e = 1) = p(1)/(2), (13)
or equivaiently
A [e=P0g(1)] + 6(1)eRO=POf( — 1) = 0 (14)

dt
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where
P(1) = [ p(e) dr. (15)
Since (12) holds,
ePU=D=P) = )\ (16)
with A constant, and so (14) can be written as
h(t) + N0(1)eROh(t —1) =0 (17)
where
h(t) = e "Of(e). (18)
Because of (16),
f(e = 1)/f() = Ah(t = 1) /h(1), (19)
and one can summarize by saying that solutions of (1) have the form
x(2) = Ae*On(t — 1) /h(2), (20)

where A is constant and 4 satisfies (17).

Consider an initial value problem for (1). Suppose that r(¢) and (¢t — 1) are
continuous for ¢ > 1, and that a function x(¢) is sought which is continuous for
0 <t < T; which satisfies (1) for 1 <t < T; and which, for 0 <: <1, equals a
prescribed, continuous and everywhere non-zero function ¢(t). More general
conditions (on ¢ in particular) could be considered, but these will suffice for
illustrative purposes. The value x(1) defined by (1) at 7 = 1 must be interpreted as
%(1+).

Then a function A(¢) should be sought, which is continuous for —1 << T;
which is non-zero for 0 < ¢ < T, and which satisfies (17) for 0 < ¢ < T and for a
non-zero value of A to be determined. The initial data for A, that is, the value
Y(t + 1) of h(2) for —1 < ¢t < 0, must be determined by the initial data for x, as
must the appropriate value of A. Again, the value #(0) defined by (17) at t = 0
will have to be interpreted as h(0+). The condition that 4 should be non-zero for
0 <t < T may be regarded as determining the largest possible value of T for
which the problem under consideration is well-posed: at the smallest positive
value of ¢ for which & vanishes (if indeed r, § and ¢ are such that a finite such
value exists), then continuity of x will fail by virtue of (20).

Now (20) implies that
o(t) = AefOY(t)/h(t) forO<:<1. (21)
From (17) and continuity of h at ¢t = 0 one has
n(t) = v(1) —A/O’o(T)eR<f>¢(T)dT for0<s<1, (22)
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which, combined with (21), gives
q)(t)[\lz(l) = A [o(r)e*4(r) dT] = AeROy(1) for0<r<l. (23)
This is easily inverted to give
o(t) = c¢(t)exp[—R(t) —fo’a(f)qb(f)df] for0<r<1,  (24)

and

A= q)(l)exp[—R(l) —fo‘o(f)(p(T) df]. | (25)

From (21) and (22) one can see that the (non-zero) value of the arbitrary constant
¢ in (24) is immaterial: one can set ¢ = 1. Furthermore, the indefinite integral in
(4) can of course be chosen such that R(1) = 0 in (25), if desired. In this way the
initial value problem for (1) is reduced to an initial value problem for (17), for a
particular value of A.

The solution of (17) can be investigated by known techniques. (See for example
Bellman and Cooke [1].) In particular, when r and @ are constants, so that
R(1) = rt, the solution of (17) has been considered in detail by de Bruijn [2]. (See
also Mahler [4] and Kato and McLeod [3].)
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