
APPLICATION PAPER

Discovering effective policies for land-use planning with
neuroevolution

Daniel Young1,2, Olivier Francon1, Elliot Meyerson1, Clemens Schwingshackl3, Jacob Bieker4,
Hugo Cunha5, Babak Hodjat1 and Risto Miikkulainen1,2

1Cognizant AI Labs, San Francisco, CA, USA
2Department of Computer Science, The University of Texas at Austin, Austin, TX, USA
3Department of Geography, Ludwig-Maximilians-Universität, Munich, Germany
4Open Climate Fix, London, UK
5Cognizant Technology Solutions, Brussels, Belgium
Corresponding author: Daniel Young; Email: daniel.young2@cognizant.com

Received: 30 March 2024; Revised: 24 December 2024; Accepted: 04 April 2025

Keywords: carbon budget; climate change; evolutionary optimization; land-use change; neural networks; surrogate modeling

Abstract

How areas of land are allocated for different uses, such as forests, urban areas, and agriculture, has a large effect on the
terrestrial carbon balance and, therefore, climate change. Based on available historical data on land-use changes and a
simulation of the associated carbon emissions and removals, a surrogatemodel can be learned thatmakes it possible to
evaluate the different options available to decision-makers efficiently. An evolutionary search process can then be
used to discover effective land-use policies for specific locations. Such a system was built on the Project Resilience
platform and evaluated with the Land-Use Harmonization dataset LUH2 and the bookkeeping model BLUE.
It generates Pareto fronts that trade off carbon impact and amount of land-use change customized to different
locations, thus providing a proof-of-concept tool that is potentially useful for land-use planning.

Impact Statement

Land use is one of the factors contributing to climate change. In some cases, there is a choice on how the land is
used, e.g. for crops, range, pasture, or forest. If such decisions are made well, carbon emissions from land-use
change (ELUC) can bemitigated. This paper shows how a surrogate model can be trained to predict ELUC, and a
prescriptive model can then be evolved with the surrogate to optimize the land-use changes globally. These
models are combined into a proof-of-concept system that can be used to inform land-use decision-makers about
the best choices available to them, thus helping them mitigate climate change.

1. Introduction

One of the main factors contributing to climate change is CO2 emissions due to land-use change
(Friedlingstein et al., 2023). Land-use CO2 emissions depend crucially on how much land area is
allocated for different uses. Certain land-use changes, such as afforestation, can absorb carbon and are
considered a negative emission technology (NET) (National Academies of Sciences, Engineering, and
Medicine, 2019). However, not all land can be simply converted to forest; for example, land used for
crops and pasture is essential for other purposes such as food supply. Land-use patterns must therefore
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be planned to minimize carbon emissions while maintaining a satisfactory level of benefits received
from the land, or ecosystem services. It is also important to note that land-use planning on its own is not
enough to reach net-zero emissions. However, it can help offset emissions from sectors that are harder to
decarbonize.

Recently, several different approaches were taken in order to optimize land-use planning to minimize
carbon emissions. One such approach did so for the city of Nanjing in China using multi-objective linear
programming (Cai and Li, 2024). While effective, this optimization method cannot take advantage of
nonlinearities. In another approach, multi-criteria decision-making (MCDM) was used to optimize urban
development in the RajshahiMetropolitanArea of Bangladesh (Rahman and Szabó, 2022). This approach
uses manually ordered weights on outcomes to create solutions that trade off multiple objectives (Yager,
1988). Six pre-defined scenarios with fixed levels of trade-off are required in order to construct such
weights. The land-use planning taskwas also represented as a causalmachine learning task in the potential
outcomes framework (Rubin, 2005) with crop type as the treatment, environmental factors as the features,
and net primary productivity (NPP, i.e. the uptake flux in which carbon from the atmosphere is
sequestrated by plants) as the outcome (Giannarakis et al., 2022). Causality between treatment and
outcome was found to inform policy, but the approach does not create a comprehensive strategy. Thus, all
three methods were effective in their approach, but each had their own unique drawbacks.

In this paper, a new approach for land-use optimization was developed with these concerns in mind. It
takes advantage of nonlinearities in the data and automatically generates a Pareto front of land-use
planning policies that trade off multiple outcomes. This work was done as part of Project Resilience, a
non-profit project hosted by the ITU agency of the United Nations (ITU, 2023). The goal is to provide
decision-makers with a tool to know how their land-use choices affect CO2 fluxes in the long term and
make suggestions for optimizing these choices.

More specifically, the tool was designed to answer three questions: (1) For a geographical grid cell
identified by its latitude and longitude, what changes to the land use can be made to reduce overall CO2

emissions (or, in some cases, maximize carbon absorption)? (2)What will be the long-termCO2 impact of
changing land use in a particular way? (3) What are the optimal land-use choices that can be made with
minimal cost and maximal effect?

The approach is based on the Evolutionary Surrogate-assisted Prescription method (Francon et al.,
2020). The idea is to first utilize historical data to learn a surrogate model on how land-use decisions in
different contexts affect carbon emissions from land-use change, and then use this model to evaluate
candidates in an evolutionary search process for good land-use change policies.

As a result, a Pareto front is generated of solutions that trade off reduction in carbon emissions and the
amount of change in land use. Each point in the Pareto front represents an optimal policy for that trade-off.
Tomake the results trustworthy, the tool allows the decision-maker to exploremodifications to these policies
and see the expected effect. In the future, it should also be possible to evaluate the confidence of the
predictions, evolve rule sets to make the policies explainable, and utilize ensembling and further objectives
and preferences to make them more accurate. Thus, the tool harnesses several techniques in machine
learning to provide a proof-of-concept for decision-makers in optimizing land-use decisions.

The project page can be found at https://project-resilience.github.io/platform/projects/landuse.html,
and an interactive demo at https://landuse.evolution.ml.

2. Background

The surrogate-assisted evolutionary optimization method used on the project is first outlined below,
followed by the project background as the first application of Project Resilience.

2.1. Evolutionary surrogate-assisted prescription

Evolutionary Surrogate-assisted Prescription [ESP; (Francon et al., 2020)] is an approach for optimizing
decision-making in a variety of domains (Figure 1). The main idea is that a decision policy can be
represented as a neural network (or in some cases, as a set of rules), and a good policy can be discovered
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through population-based search, that is, using evolutionary computation techniques, in order to prescribe
actions in a given context. However, each candidate must be evaluated, which is difficult to do in many
real-world applications. Therefore, a surrogate model of the world is learned from historical data,
predicting how good the resulting outcomes are for each decision in each context.

More formally, given a set of possible contextsℂ and possible actionsA, a decision policyD returns a
set of actions A to be performed in each context C:

D Cð Þ¼A, (2.1)

whereC∈ℂ and A∈A. For each such C,Að Þ pair there is a set of outcomesO C,Að Þ, and the Predictor Pd

is defined as

Pd C,Að Þ¼O, (2.2)

and the Prescriptor Ps implements the decision policy as

Ps Cð Þ¼A, (2.3)

such that
P

i,jOj Ci,Aið Þ over all possible contexts i and outcome dimensions j is minimized (assuming
decreased outcomes are better). It thus approximates the optimal decision policy for the problem. The
predictor can be learned from historical data on CAO triples. In contrast, the optimal actions A for each
context C are not known and must therefore be found through search.

More specifically in land-use optimization, context refers to the details of a given area such as current
land use, a decision policy generates changes to the land use for the given area based on these details, and
the outcomes are (1) the emissions from land-use change (ELUC) predicted by the surrogate as a result of
this change, and (2) land-change cost, which is calculated as the percentage of the area changed.

ESP was first evaluated in reinforcement learning tasks such as function approximation, cart-pole
control, and the Flappy Bird game, and found to discover significantly better solutions, find them faster,
and with lower regret (deviation from the optimal reward) than standard approaches such as direct
evolution, Deep Q-Networks [DQN; (Mnih et al., 2015)], and Proximal Policy Optimization [PPO;
(Schulman et al., 2017)]. It thus forms a promising foundation for optimizing land use as well.

2.2. Project resilience

A major application of ESP to decision-making was developed for optimizing strategies for non-
pharmaceutical interventions (NPIs) in the COVID-19 pandemic (Miikkulainen et al., 2021). Using case

Figure 1. The Evolutionary Surrogate-assisted Prescription (ESP) method for decision optimization.
A predictor is trained with historical data on how given actions in given contexts led to specific outcomes.
It is then used as a surrogate in order to evolve prescriptors, that is, neural networks that implement
decision policies by prescribing actions for a given context, resulting in the best possible outcomes.
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and NPI data from around the world, collected in 2020–2022 by Oxford University’s COVID-19 project
(Hale et al., 2020), a neural network model was developed to predict the course of the pandemic; this
model was then used as a surrogate in evolving another neural network to prescribe NPIs. It discovered
different strategies at different phases of the pandemic, such as focusing on schools andworkplaces early on,
alternating policies over time, and focusing on public information and masking later. This application
demonstrated the power of ESP in discovering good tradeoffs for complex real-world decision-making tasks.

Encouraged by this application, the XPRIZE Pandemic Response Challenge (XPRIZE, 2023) was
developed in 2020–2021 for NPI optimization using the same predictor+prescriptor approach. The
competitors used several different machine learning or other techniques, and drew significant attention
to AI-supported decision-making. The results were effective and in some cases used to inform decision-
makers (e.g. on the 2021 surge in Valencia, Spain, and on the fall 2021 school openings in Iceland). An
important conclusion was that it was possible to convene a group of experts—data scientists, epidemi-
ologists, and public health officials—to build a useful set of tools to advise decision-makers on how to
cope with and plan around a health disruption to society.

This experience with the XPRIZE Pandemic Response Challenge then led to Project Resilience (ITU,
2023). The XPRIZE competition serves as a blueprint for a collaborative effort to tackle global problems.
The goal of Project Resilience is to build a public AI utility where a global community of innovators and
thought leaders can enhance and utilize a collection of data and AI approaches to help with better
preparedness, intervention, and response to environmental, health, information, social equity, and
similarly scoped problems. The project is hosted by the ITU agency of the United Nations, under its
Global Initiative for AI and Data Commons, and contributes to its general efforts toward meeting the
Sustainable Development Goals (SDGs).

Staffed by volunteers from around the world, Project Resilience was started in 2022 with the design of
a minimum viable product (MVP) platform. The goal is to.

• Develop an architecture to pull input and output data hosted by third parties;
• Build an application programming interface (API) for third parties to submit models.
• Develop code to compare both predictors and prescriptors in third-party models and produce a set of
performance metrics;

• Build a portal to visualize the assessment of predictors and prescriptors to include generations of key
performance indicators (KPIs) and comparison across models;

• Develop an ensemble model for predictors and prescriptors; and
• Provide a user interface to decision-makers to help them in their decision-making process.

Land-use optimization is the first application of this MVP, as described below.

3. Land-use optimization task

The data sources are described first, followed by how they are used as the context, action, and outcome
variables. The elements of the approach include the predictor and prescriptor models, a method for
modeling uncertainty, and ensembling the results.

3.1. Data

The data for carbon emissions (Emissions resulting from Land-Use Change, ELUC) originate from the
Bookkeeping of Land-Use Emissionsmodel [BLUE; (Hansis et al., 2015)], which attributes carbon fluxes
to land-use activities. A bookkeeping model is a semi-empirical statistical model that calculates CO2

fluxes based on changes in the carbon content of biomass and soil caused by land-use changes.
Bookkeeping models employ different carbon densities for different vegetation types (plant functional
types in BLUE) and use response functions to determine the temporal dynamics of the fluxes. Advantages
of bookkeeping models include their ability to separate anthropogenic from natural CO2 fluxes and to
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attribute fluxes to specific land-use change events (Dorgeist et al., 2024). Bookkeeping models thus differ
from more general climate models and land surface models that are based on parameterizations of physical,
chemical, and biological processes. BLUE is one of four bookkeepingmodels that are used to provide ELUC
estimates for the annually publishedGlobal Carbon Budget [GCB; (Friedlingstein et al., 2022, 2023, 2024)].
BLUE is particularly useful because it provides spatially explicit ELUC estimates. In this paper, BLUE is
used to estimate committed emissions due to land-use changes, which means that all the emissions or
removals caused by a land-use change event are attributed to the year of the event. The emission (or removal)
estimates thus relate to the long-term impact of a land-use change event, that is, up to multiple decades
(Houghton et al., 1983; Hansis et al., 2015).While in principle BLUE can be used as the surrogate model for
ESP, in practice its calculations are too expensive to carry out on demand during the search for good policies.
Therefore, a number ofBLUE simulationswere performedcovering a comprehensive set of land-use changes
for 1850–2022, resulting in a dataset that could be used to train an efficient surrogate model.

The Land-Use Change (LUC) data is provided by the Land-Use Harmonization project [LUH2; (Hurtt
et al., 2020)]. LUH2 provides data on fractional land-use patterns, underlying land-use transitions, and
key agricultural management information, annually for the time period 850-2100 at 0.25 × 0.25 degree
resolution. LUH2 provides separate layers for states, transitions, and management. Version LUH2-
GCB2022 from the Global Carbon Budget 2022 (Friedlingstein et al., 2022) was the basis for this paper.
It is based on the HYDE3.3 historical database (Goldewijk et al., 2017; Klein Goldewijk et al., 2017) and
uses the 2021 wood harvest data provided by the FAO agency of the United Nations. It consists of the
following land-use types:

Primary: Vegetation that has never been impacted by human activities (e.g. agriculture or wood
harvesting) since the beginning of the simulation

- primf: Primary forest
- primn: Primary nonforest vegetation

Secondary: Vegetation that is recovering from previous human disturbance (either wood harvesting
or agricultural abandonment)

- secdf: Secondary forest
- secdn: Secondary nonforest vegetation

Urban

- urban: Urban areas

Crop

- crop: All crop types pooled into one category

Pasture

- pastr: Managed pasture land
- range: Grazed natural land (i.e., grazing on grassland, savannah, etc.).

BLUE calculates yearly ELUC estimates based on the land-use changes provided by LUH2. Urban
areas are pooled into a single type; their carbon contents are too low, and the total urban area on the planet
is too small for differences among them to have a significant effect on the CO2 flux. All crop types are also
pooled into a single crop category. BLUE considers that the degradation of primary to secondary land
often lowers the carbon content in vegetation and soils, and it considers pastures and the degradation of
natural grasslands and savannahs by grazing. A complete overview of the model can be found in Hansis
et al. (2015).
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It is important to note two caveats in this data. First, the 0.25-degree spatial resolution of LUH2 is rather
coarse for land-use recommendations. Second, different crop types do have noticeable differences when
making decisions at a local level. To address these concerns, in the future more fine-grained land-use
estimates can be used and crop type can be added as a feature variable, and such extensions would allow
for more accurate prescriptions at the local level. In the meantime, the current versions of LUH2 and
BLUE are sufficient to build a proof-of-concept system that demonstrates the power of land-use planning
through neuroevolution.

Together the ELUC and LUC datasets form the basis for constructing the context, action, and outcome
variables, as will be described next.

3.2. Decision-making problem

The modeling approach aims to understand the domain in two ways: (1) In a particular situation, what are
the outcomes of the decisionmaker’s actions? (2)What are the actions that result in the best outcomes, that
is the lowest ELUC with the smallest change in land use? The data is thus organized into context, action,
and outcome variables.

Context describes the problem the decisionmaker is facing, that is, a particular grid cell, a point in time
when the decision has to be made, and the current land use at that time. More specifically it consists of:

• Latitude and Longitude, representing the cell on the grid. Climate information loosely correspond-
ing to plant functional types is implicitly represented in the location of the cell, as shown in
Appendix A.

• Area, representing the surface of the cell. Cells close to the equator have a bigger area than cells close
to the poles.

• Year, useful to capture historical decisions: The same cell may have been through many land-use
changes over the years.

• Land use, representing the percentage of land in the cell used by each type above. For
simplicity, all crop types were pooled into a single type. The percentages do not necessarily
reach 100% in each grid cell; a ‘nonland’ type (e.g. typically sea, lake, etc.) is assumed to fill
the remainder.

Actions represent the choices the decision-maker faces. How can they change the land? In the study of this
paper, these decisions are limited in two ways:

First, decision-makers cannot affect primary land. The idea is that it is always better to preserve
primary vegetation, such as pristine rainforests; destroying it is not an option given to the system.
Technically, it is not possible to re-plant primary vegetation. Once destroyed, it is destroyed forever. If
re-planted, it would become secondary vegetation, for which BLUE assumes lower carbon content than
for primary vegetation (Hansis et al., 2015).

Second, decision-makers cannot affect urban areas. The needs of urban areas are dictated by other
imperatives, and optimized by other decisionmakers. Therefore, the ESP system cannot recommend that a
city should be destroyed, or expanded. Further constraints on crop usage for food production are discussed
in Section 5.4

Outcomes consist of two conflicting variables. The primary variable is ELUC, that is, emissions
from land-use change. It consists of all CO2 emissions attributed to the land-use change, in metric tons
of carbon per hectare (tC/ha), obtained from the BLUE simulation. A positive ELUC means carbon is
emitted to the atmosphere and a negative number means carbon is taken up by vegetation. For
simplicity, all future CO2 emissions or removals are attributed to the initial year of the land-use change;
temporal dynamics in CO2 fluxes are not taken into account. Similarly, the full land-use change is
assumed to take place; incremental changes are not taken into account. The secondary variable is the
cost of the land-use change, represented by the percentage of land that was changed. This variable is
calculated directly from the actions.
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There is a tradeoff between these two objectives: It is easy to reduce emissions by changingmost of the
land, but that would come at a huge cost. Therefore, decision-makers have to minimize ELUC while
minimizing land-use change at the same time. Consequently, the result is not a single recommendation,
but a Pareto front where each point represents the best implementation of each tradeoff given a balance
between the two outcomes.

4. Models

The system consists of the predictor, trained with supervised learning on the historical data, and the
prescriptor, discovered through a evolutionary search in which each candidate is evaluated with the
predictor.

4.1. Prediction

Given the context and actions that were performed, the predictive model estimates the outcomes. In this
case, since the cost outcome (i.e. the percentage of changed land) can be calculated directly, only the
ELUC is predicted by the model. That is, given the land use of a specific location, and the land-use
changes that were made during a specific year, the model predicts the long-term CO2 emissions directly
caused by these land-use changes. The model does not predict non-ELUC emissions such as forest fires
that may lead to a change into secondary forest.

Any predictive model can be used in this task, including linear regression, random forest, or a neural
network; they are each evaluated below. As usual in machine learning, each model is fit to the existing
historical data and evaluated with left-out data.

4.2. Prescription

Given context, the prescriptive model suggests actions that optimize the outcomes. The model has to do
this for all possible contexts, and therefore it represents an entire strategy for optimal land use. The
strategy can be implemented in various ways, like sets of rules or neural networks. The approach in this
paper is based on neural networks.

The optimal actions are not known, but the performance of each candidate strategy can be measured
(using the predictive model), therefore, the prescriptive model needs to be learned using search tech-
niques. Standard reinforcement learning methods such as PPO and DQN are possible; the experiments in
this paper use evolutionary optimization, that is, conventional neuroevolution (Stanley et al., 2019). As in
prior applications of ESP (Francon et al., 2020; Miikkulainen et al., 2021), the network has a fixed
architecture of two fully connected layers; its weights are concatenated into a vector and evolved through
crossover and mutation.

5. Experiments

This section describes the main results of the project so far, including different ways to create good
predictors and the evolution of effective prescriptors based on them. The behavior of the discovered
prescriptors is analyzed quantitatively and through various ablation and extension studies. As a concrete
implementation of the mechanisms, an interactive demo of the entire land-use recommendation system is
described.

5.1. Prediction

In preliminary experiments, prediction performance was found to differ between major geographical
regions. To make these differences explicit, separate models were trained on different subsets of
countries: Western Europe (EU), South America (SA), and the United States (US), making up 1.12,
9.99, and 7.26 percent of the global dataset, respectively. The EU subset contains the UK, France,
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Germany, the Netherlands, Belgium, Switzerland, and Ireland. The SA subset includes Brazil, Bolivia,
Paraguay, Peru, Ecuador, Colombia, Venezuela, Guyana, Suriname, Uruguay, Argentina, and Chile.
These countries were chosen as a representative subset to make the experiments computationally less
expensive.

Upon examining the global dataset, a linear relationship was found between ∣ELUC∣ and land-use
change with an R-squared value of 0.92. Therefore, a linear regression (LinReg) was fit to the data as the
first predictive model. In preliminary experiments, the LinRegmodel was found to perform the best when
current land use, latitude, longitude, cell area, and timewere removed from the inputs. Thus, the difference
in land use was used as the only input feature in the experiments. Data from the years 1851–2011
(inclusive), totaling 38,967,635 samples globally, was used to train the LinReg models; the 2,420,350
remaining samples from 2012–2021 (inclusive) were used for testing.

Second, a random forest model (RF) was trained on the same data but now includes the full set of input
features, in order to take advantage of RF’s ability to decide which features are most useful. The forest
consisted of 100 decision trees with unrestricted maximum depth; at each split, a random subset of n
features was considered (where n is the square root of the total number of features). To make the training
time of the Global RF model feasible, it was trained with data from only 1982–2011. Preliminary
experiments showed that constraining the training set in this manner did not decrease performance
significantly. Both the linear regression and random forest models were trained using the scikit-learn
library (Pedregosa et al., 2011).

Third, a neural network (NeuralNet) was trained for the same task with the full set of features and data
from 1851–2011 using the PyTorch library (Paszke et al., 2019). The network was fully connected,
composed of an input layer, a single hidden layer of size 4096, and an output layer. The output layer took
as input the concatenation of the input layer and the hidden layer in order to take advantage of the observed
linear relationships more easily (Cheng et al., 2016). It was trained for three epochs with a batch size of
2048 using the AdamW optimization algorithm (Loshchilov and Hutter, 2019). After each epoch, the
learning rate was scaled by a factor of 0.1.

LinReg, RF, andNeuralNet models were trained separately on each region and globally.While LinReg
is deterministic and needed to be trained only once, RF and NeuralNet are stochastic in their initialization
and training andwere therefore trained 30 times to evaluate statistical significance. All models were tested
on all regions with data from the most recent years, that is 2012–2021, and evaluated on mean absolute
error (MAE) of predicted ELUC. As shown in Table 1, the LinReg models were fast to train, but they
performed the worst (i.e. they have the largest mean absolute error in almost all cases), suggesting that the
linear relationship is not enough to account for the data fully. RF performed significantly better than
LinReg in all regions but EU, significantly worse than NeuralNet in EU and US, and outperformed
NeuralNets in SA and globally. However, RF models do not generalize/extrapolate well to large changes
in land use that occur in the dataset infrequently (or not at all for some land types; Figure 2), which turns
out to be important when evolving prescriptors. Many prescriptor candidates suggest large land-use
changes, and the predictor model needs to be able to evaluate them. In contrast, NeuralNets capture
nonlinearities, which explains why they outperform LinReg in all regions. Most importantly, they
extrapolate well, which suggests that they are a better choice for the surrogate model in prescriptor
evolution. Additionally, LinReg and NeuralNet models have many fewer parameters than RF (taking
4 KB and 363 KB on disk respectively vs. 14GB for RF).

In order to visualize the behavior of the predictor models, they were queried with a synthetic dataset
created with every possible conversion from 100% land type A to 100% land type B (the types primf,
primn, and urban were excluded from B as was explained in Section 3.2). Because the RF and NeuralNet
take latitude, longitude, cell area, and year as input, 24,204 (1%) latitude/longitude/cell-area/year
combinations from the test dataset were sampled randomly and evaluated with each conversion. The
results were averaged across the samples to get the overall result for the conversion. Figure 2 shows these
results for the Global models. The first finding is that all models generally rank conversions to crops <
pasture < forest in terms of reducing ELUC, and generally agree on the sign of ELUC. This ranking also
generally aligns with those generated by the BLUE model. This consistency suggests that the results are
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reliable. Second, while LinReg and NeuralNet make similar predictions overall, their numerical values
differ in many places, presumably due to the nonlinearities. Third, despite RF’s generally high accuracy
in known scenarios, it is not able to generalize/extrapolate to large changes and instead predicts
low-magnitude ELUC values for all imposed land-use transitions.

Figure 2. Visualizing the differences in model behavior. Predictions for ELUC (tC/ha) are created for the
Global models using synthetic data created by changing 100% of land-use type A (row) to 100% of type B
(column) in a 1% sample across the range of latitude, longitude, cell area, and year occurring in the test
data. The results are averaged for each conversion from A to B. The models generally agree on the sign of
ELUC, which in turn aligns with the sign generated by the BLUE model, suggesting that the results are
reliable. The RFmodel is not able to extrapolate to large values, resulting in low predictions; LinReg and
NeuralNet are similar but differ numerically, presumably due to the differences between linear and
nonlinear predictions.

Table 1. Average training time and mean absolute error (MAE) in tC/ha of the trained models of each
type trained on each region and evaluated on that region as well as all other regions

Model Time (s) EU SA US Global

LinReg (EU) 0.047 0.033 0.172 0.169 0.206
LinReg (SA) 0.457 0.137 0.153 0.061 0.110
LinReg (US) 0.331 0.139 0.146 0.035 0.073
LinReg (Global) 4.644 0.139 0.150 0.035 0.074
RF (EU) 17.697 0.064 0.211† 0.161† 0.218†

RF (SA) 209.688 0.133∗† 0.071∗† 0.074† 0.126†

RF (US) 111.701 0.163 0.185† 0.032∗ 0.094†

RF (Global) 417.647 0.041∗† 0.076∗† 0.028∗ 0.045∗†

NeuralNet (EU) 10.711 0.025∗† 0.277 0.286 0.334
NeuralNet (SA) 103.696 0.248 0.100∗ 0.562 0.399
NeuralNet (US) 73.141 0.136† 0.225 0.024∗† 0.150
NeuralNet (Global) 1649.193 0.046∗ 0.110∗ 0.025∗† 0.050∗

Note. Statistical significance was estimated in each case with the unpaired t-test. The NeuralNet models are more accurate RF on EU and US, RFmore
accurate than NeuralNets on SA and globally; both are more accurate than LinReg in all regions (except RF on EU). Overall, the specializedmodels are
more accurate than the Global models. However, RFmodels do not extrapolate well (as seen in Figure 2), which is necessary for evaluating prescriptor
candidates. In contrast, NeuralNets do, and they are also otherwise reasonably accurate. Therefore, the Global NeuralNet model was used to evolve the
prescriptors. Bold: the best model in each region;
∗99% confidence the model outperforms LinReg.
†99% confidence that RF outperforms NeuralNet, or vice-versa.
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Thus, since NeuralNet achieves similar or better performance than the RF, extrapolates well to
extremes, and can learn nonlinear relationships in the data, the Global NeuralNet was used as the
surrogate model to evolve the prescriptors.

5.2. Prescriptions

The prescriptors were fully connected neural networks with two layers of weights, implemented with
PyTorch. The topology was fixed and only the weights were evolved. The input consisted of 12 float
values, that is the eight land-use percentages and the latitude, longitude, and area of the geographical cell,
as well as the year. The hidden layer contained 16 units with tanh activation.

During evolution, prescriptor candidates were evaluated on a fixed random subset of 1% of the Global
dataset from years 1851 to 2011 with the Global NeuralNet predictor. Prescriptor output was a single
vector of size five (the eight land-use percentages minus primf, primn, and urban, which were considered
fixed), produced by the ReLU activation function. These five outputs were normalized to sum to the
previous amount of land taken by these five types. The result is the prescriptor’s suggestion for the
percentage of land use of each type. The five outputs were combined with the fixed land-use values for
primf, primn, and urban to compute the difference from the initial land use. This difference was
concatenated with the initial land use as well as latitude, longitude, cell area, and year, and passed to
the Predictormodel to get the predicted ELUCmetric. The cost outcome, that is the percentage of land-use
change, was computed based on the difference between the five outputs and the corresponding inputs. All
positive differences were summed for a given cell and divided by the total land-use percentage of the cell
(excluding nonland). These metrics were aggregated across the evaluation data set to obtain the
performance outcome of each prescriptor candidate. Thus, a candidate was evaluated based on its average
performance in creating a strategy for each land area in the test set.

The aggregated ELUC and the land-use change outcomes were minimized with an evolutionary search
on the neural network weights. Conventional neuroevolution with crossover and mutation operators on a
vector of network weights was combined with NSGA-II (Deb et al., 2000) to make the search multi-
objective. In order to seed evolution with good coverage of the search space, two prescriptor models were
trained with backpropagation and injected into the initial population: One to prescribe no land-use
changes at all and the other to prescribe as much secondary forest (secdf) as possible (which was
observed to reduce ELUC the most). This process takes advantage of the Realizing Human Expertise
through AI (RHEA) framework (Meyerson et al., 2024) for distilling human intuition into evolutionary
search. Details and the impact of this seeding mechanism are discussed in Section 5.5. The rest of the
populationwas created randomly through an orthogonal initialization ofweights in each layerwith amean
of zero and a standard deviation of one (Saxe et al., 2014). Evolution was run for 100 generations with the
following parameters:

• mutation_type: gaussian_noise_percentage
• mutation_factor: 0.1
• mutation_probability: 0.2
• population_size: 100
• parent_selection: tournament
• initialization_distribution: orthogonal.

Figure 3 demonstrates the progress of evolution toward increasingly better prescriptors, that is those
that represent better implementations of each tradeoff of the ELUC and land-use change objectives. These
solutions are referred to as “Evolved Prescriptors” in the rest of the paper. They represent a wide variety of
tradeoffs and a clear set of dominant solutions that constitute the final Pareto front. That set is returned to
the decision-maker, who can then select the most preferred one to implement.

To demonstrate the value of evolutionary search, the Evolved Prescriptors were compared against
two heuristic baselines (Figure 4). Each of them converts as much land as possible to secdf, which has
the lowest ELUC, up to a set threshold. The first is a simple baseline called “Even Heuristic,”where an
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equal proportion of land up to the threshold is taken from all land-use types and converted to secdf. The
second is an optimal linear baseline called “Perfect Heuristic,” where as much land as possible is first
taken from the land-use type that has the highest weight in the Global LinRegmodel, then from the land-
use type that has the second highest weight, and so on until either the given land-use change threshold is
reached or there is no land left to convert to secdf. These heuristic solutions were created with evenly
distributed land-use change thresholds between 0% and 100% in order to generate heuristic Pareto

Figure 4. The Pareto fronts of Evolved Prescriptors versus heuristic baselines, with ELUC and land-use
change evaluated on the Global test set. The Evolved Prescriptors achieved better solutions than the
baselines in the middle-change region where the land-use changes matter the most, demonstrating that
they can take advantage of nonlinear relationships in land use to discover useful, non-obvious solutions.

Figure 3. Evolution of prescriptors with the Global NeuralNet predictor. (a) The Pareto front moves
towards the lower left corner over evolution, finding better implementations for the different tradeoffs of
the ELUC and land-use change amount objectives. (b) Each prescriptor evaluated during evolution is
shown as a dot, demonstrating a wide variety of solutions and tradeoffs. The final Pareto front (collected
from all generations) is shown as blue dots. It constitutes a set of solutions fromwhich the decision-maker
can choose a preferred one.
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fronts. All three methods were then evaluated on a random 1% sample of the Global test set from the
years 2012 to 2021.

As Figure 4 shows, the Evolved Prescriptors and the heuristics all converged in the high-change region
of the Pareto front, where 100% forest prescriptions dominate. The heuristics performed slightly better in
the low-change region, where the predictors may not be accurate enough to distinguish between small
changes. However, in the most useful middle-change region, the Evolved Prescriptors outperformed both
heuristics, demonstrating that they are likely exploiting the nonlinear relationships well.

The performance of each prescription method can be quantified in terms of hypervolume, which
measures howmuch of the solution space it dominates. It is calculated as the area above and to the right of
the Pareto front up to maximum possible change and zero ELUC, divided by the area of the entire search
space (which starts from zero change and lowest possible ELUC, which in turn is defined as the ELUC of
the Perfect Heuristic at themaximum change). The Evolved Prescriptors outperform the Perfect Heuristic,
which outperforms the Even Heuristic, with hypervolumes of 0.616, 0.566, and 0.512, respectively.

5.3. Prescriptor behaviors

It is interesting to analyze how the Evolved Prescriptors were able to improve upon the linear heuristics,
which were constructed to be quite good to begin with. One representative from each method was chosen
from the middle-change region and compared (Figure 5a). The heuristic methods both prescribe 19.8%
change and �12 and �14 ELUC on average, and the closest Evolved Prescriptor that dominates them
averages 19.7% change and �18 ELUC. In Figure 5b these averages were expanded to show the results
for actual samples in the test set (only 10% of those samples are plotted for readability). The samples for
the Even Heuristic are hidden under those of the Perfect Heuristic: When these heuristics cannot reach
their allocated thresholds, they change everything to secondary forest, resulting in overlapping points;
their points similarly overlap at the vertical line indicating the change threshold. Note that the Evolved
Prescriptor allocates more change to several samples than the Heuristic: This is because the heuristic’s
change threshold is set to 0.35 (in order to get to �20% change on average) whereas the Evolved
Prescriptor has no such restriction.

Figure 5. Comparing a selected Evolved Prescriptor with the Perfect Heuristic. (a) The average
performance of the Evolved Prescriptor dominates that of the heuristic. (b) The averages are expanded
into actual samples in the test set (subsampled for readability). The samples for the Even Heuristic are
largely hidden under the samples for the Perfect Heuristic. The Evolved Prescriptor suggests many more
large changes than the heuristic. (c) The differences in change percentage and ELUC between the
Evolved Prescriptor and the Perfect Heuristic for each test sample, with color indicating which solution
dominates. Surprisingly, this particular Evolved Prescriptor dominates the Perfect Heuristic only on a
single individual sample. Thus, evolution discovered the insight that it is possible to do well globally by
utilizing a few cases where large change is possible.
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The differences in change percentage and ELUC between the Perfect Heuristic and a typical Evolved
Prescriptor are plotted for each sample in the test set in Figure 5c. The heuristic dominates in the samples
in the upper right quadrant (where both differences are above 0, that is the prescriptor’s change and ELUC
are both larger than those of the heuristic) and the prescriptor in the bottom left quadrant. Surprisingly, the
Evolved Prescriptor dominates the Perfect Heuristic in only 1 of the 24,204 test samples. How can this be?

The reason is that evolution discovered a way to take advantage of large changes. As shown in
Figure 5b, the trained prescriptor is not constrained by a limit on every change it makes: As long as its
changes remain below the limit on average, it can make a few large changes. As a result, evolution
discovered a strategy where it makes only a few large changes, and makes them in cells where they have
the largest impact. Thus, even though the Evolved Prescriptor almost never beats the Perfect Heuristic in
any individual cell, when averaged across all cells, it dominates the heuristic. In other words, pick your
battles right, and you’ll win overall.

In order to see what the recommendations look like, the average policies of the three approaches are
illustrated in Figure 6a. The greatest amount of negative change made is to crop and positive is to
secondary forest, that is, all approaches recommend converting cropland to forest, which makes sense.
The greatest departure from the heuristics is that the Evolved Prescriptors recommend more crop change
and almost no rangeland change.

Where the Evolved Prescriptors picked their battles compared to the Perfect Heuristic is shown in
Figure 6b. Certain areas such as the Amazon rainforest were left untouched by both, because the system
does not allow primary forests (that capture much carbon) to be changed. The Evolved Prescriptors
avoided change in dry regions, such as the US Southwest, Sahara, Middle East, Central Asia, and
Northwestern Australia, where presumably only limited change is effective. The prescriptors recom-
mended more change in tropical, temperate, and continental regions like the US Midwest, Gulf of
Guinea, South and Southeast Asia, Continental Europe, and the Pampas region of South America. These
locations align with the change profile in Figure 6a: The areas where more crops can grow are changed
more, whereas plains and desert regions corresponding to rangeland are barely touched.

5.4. Constraining crop loss

While minimizing ELUC and change allows a decision-maker to find solutions along an important trade-
off, it does not limit how much cropland the prescriptor is allowed to change, which could lead to food

Figure 6. Characterizing the recommendations. (a) The strategies used by the Evolved Prescriptors and
the heuristics are illustrated by plotting the average amount of change in each land-use type. Primarily,
they all suggest converting cropland to secondary forest. The Evolved Prescriptor removes more crop on
average, and generally takes advantage of more change. (b) The learned ability of the Evolved
Prescriptor to allocate more or less change to certain regions. Primary forest is left untouched, dry
regions are changed less, and tropical, temperate, and continental regions are changed more.
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shortages. A step towards a more practical application is to optimize under such a constraint. To this end,
the same evolutionary setup was run with a third objective of minimizing absolute change in crops. This
approach assumes that the current level of crops is sufficient, however, the constraint could easily be set to
an arbitrary value. Consequently, a seed model, trained through backpropagation, was included in the
initial population to change asmuch land as possible to forest without removing any cropland. Such a seed
makes it more likely for evolution to discover solutions that do not prescribe as much crop change.
Evolution parameters were the same as in Section 5.2. These newly evolved prescriptor models were
compared to the previous heuristics as well as to a new “No Crop”Heuristic, that is, the Perfect Heuristic
without modifying any cropland.

Three main findings resulted from this experiment. First, the No Crop heuristic performs quite poorly
in the other two objectives, demonstrating thatmore sophisticated optimization is necessary to incorporate
this constraint. Second, evolution was able to find solutions trading off all three objectives, allowing a
decision-maker to fix the amount of crop to change before selecting their preferred solution. Third,
evolution was able to discover solutions that outperformed the Perfect Heuristic in all three objectives.
The trade-off can be seen in Figure 7a. The Pareto front is again plotted as in Figure 4, but this time, each
Evolved Prescriptor is colored by the difference in howmuch it changed cropland on average compared to
the Perfect Heuristic at the same level of change. There is a clear color gradient from more to less crop
change perpendicular to the Pareto front such that generally the candidates that prescribed more crop
change did the best and those that prescribed less did worse in terms of ELUC and change. Thus, a
decision-maker can first choose howmuch crop theywant to change, and then select the best prescriptor at
that level along the Pareto front.

The solutions that outperform the Perfect Heuristic in all three objectives are shown in Figure 7a
outlined in black. Each point represents a prescriptor that achieves a better ELUC with less change than
the Perfect Heuristic while also prescribing less crop change. Figure 7b shows the average prescription of
one such point in comparison to the heuristics in order to determine how it did so. The Evolved Prescriptor
changed slightly less crop but compensated by removing more pasture. This strategy allowed it to
prescribe less crop change, less change overall, and achieve a lower ELUC than the perfect heuristic,
showing the power of evolution in the case of three objectives. Ultimately, the results of this experiment
show the ability of the proof-of-concept system to incorporate realistic constraints such as those on food
production in order to make it practical in real-world decision-making.

Figure 7. Heuristics and Evolved Prescriptors with crop-change minimization as a third objective.
(a) The final Pareto front of the Evolved Prescriptors is plotted against the Perfect and No Crop
Heuristics. Each Evolved Prescriptor is colored according to how different its average prescribed crop
change is from the Perfect Heuristic. The points that are outlined identify Evolved Prescriptors that
outperform the Perfect Heuristic in all three objectives. (b) The average prescriptions of one such Evolved
Prescriptor. It reduces pasture more in order to reduce crops less while still outperforming the heuristics
along all objectives.
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5.5. Incorporating human expertise

When developing solutions to global societal problems with AI, incorporating expert human knowledge
may improve performance while also adding accountability and explainability (Meyerson et al., 2024).
The first step was taken in Section 5.2, where two hand-designed solutions were included in the initial
prescriptor population through RHEA.

In more detail, RHEA consists of (1) defining the problem so that experts can develop solutions to it,
(2) gathering a set of solutions from the experts, (3) distilling these solutions into a population of evolvable
models such as neural networks, and (4) discovering better models by evolving this population. The land-
use optimization problem was already defined with context, action, and outcome variables and was
therefore compatible with the framework. Next, the behaviors for prescribing no change and all change to
secondary forest were identified as useful extremes. In order to distill these behaviors, two sets of labels
for 10% of the training dataset were created in order to run backpropagation. One was constructed by not
changing the land use at all and the other changed as much land as possible to secondary forest. Then the
AdamW optimization algorithm was run to minimize mean squared error over 15 epochs to targets that
prescribed either no change or full change for a sampling of land-use cases. The resulting two trained
prescriptors were then injected into the initial population and evolution was run.

In order to determine how useful it is in general to incorporate human expertise in this manner, two
further experiments were run. One was an ablation study where no RHEAwas performed and the entire
initial population was randomly orthogonally initialized. The second one was an extended seeding study
where the Perfect Heuristic was queriedwith thresholds from5% to 95% in increments of 5%, prescriptors
were trained with backpropagation to imitate the results of each query, and the resulting 19 seed models
were added to the initial population together with the original two extreme prescriptors. The original and
the new experiments were each run 10 times. Pareto fronts for each generation were created by combining
all 10 trials’ candidates and then forming the Pareto front of the combined population. These Pareto fronts
were also used to compute the hypervolume at each generation.

The results, shown in Figure 8a, demonstrate the power of incorporating human expertise. When the
distilled seed models were removed, even with 10 trials, evolution was unable to discover the top half of
the Pareto front, missing out on the most realistic decision-making use cases (i.e. those with small
changes). In Figure 8b, the hypervolume of the No Seeding experiment barely reaches that of the Perfect
Heuristic. However, just including one seed on each end of the Pareto front, as in the original seeded
experiment, allowed evolution to achieve better results than the Perfect Heuristic. Additional seeds in the
full RHEA case did not significantly improve the final solutions. Thus, simply injecting two extreme
seeds based on human expertise was sufficient for this task.

The results of RHEA in a single run of the original two-seed experiment in Section 5.2 are further
illustrated in Figures 8a,d (the results with other trials were qualitatively similar). Figure 8c shows the
proportion of the final Pareto front that has a given candidate from the first generation as an ancestor. The
no-change and full-change seed behaviors are ancestors of 94% and 87% of the final Pareto front, thus
contributing to almost every prescriptor. The magnitude of that contribution is measured in Figure 8d by
constructing a tree of parents for each prescriptor in the final Pareto Front and counting how many times
each first-generation candidate was included in it. On average a model in the Pareto front is made up of
over 30% of the distilled no-change behavior, mutated and crossed-over throughout the generations of
evolution. This result aligns with the fact that the No Seeding experiment was unable to find the top left
corner of the Pareto front: The seeded experiment needed to use the no-change solution frequently to fill in
this top half. Very little behavior is taken from other randomly initialized models, showing the importance
of the seeded model. Distilling this particular behavior was crucial in order to achieve the final Pareto
front. The ultimate performance increase and explainability show how incorporating just a small amount
of human feedback can improve the automatic decision-making process. In the future, as more real-world
factors are taken into account, human expertise is likely to become evenmore valuable, and can be further
applied with RHEA.
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5.6. Interactive evaluation

An interactive demo of the trained/evolved models is provided at https://landuse.evolution.ml. It allows
the user to explore different locations, observe the prescribed actions for them, and see their outcomes. It is
also possible to modify those actions and see their effect, thus evaluating the user’s skills as a decision-
maker compared to that of machine learning.

As an example, Figure 9 shows the grid cells from which the user has selected one. The system
recommends a change in land use that results in a 26.02 tC/ha reduction in carbon emissions with a
28.96% land-use change. Using the sliders, the user can then explore alternative tradeoffs and modify
specific elements of each suggestion. For each variation, the user can then obtain the estimated carbon
reduction and land-use change percentage, and in this manner gain an understanding of the possible
attainable solutions and confidence in the preferred choice.

Figure 8. The value of incorporating human expertise. (a) Combined Pareto fronts over 10 trials for:
evolution run without initial seeding, the Perfect Heuristic, the original seeded Evolved Prescriptors
(evolved with two extreme seeds), and a full RHEA evolution (with an extended seeding of the population)
evaluated on the test dataset. The two extreme seeds achieved as strong results as extended seeding.
However, without any seeds evolution fails to find the top half of the Pareto front. (b) The hypervolume
comparison visualizes these results clearly as well. (c) The proportion of candidates in the Evolved
Prescriptors Pareto front from Section 5.2 that have a given candidate from the first generation in its
ancestry. The distilled 0% and 100% heuristics are ancestors of 94% and 87% of the Pareto front,
respectively. (d) The average contribution of each first-generation candidate to the samePareto front. The
distilled 0% perfect heuristic makes up on average over 30% of total ancestry for the candidates in the
final Pareto front. Thus, even limited seeding can have a significant effect on the quality of solutions,
suggesting that RHEA is instrumental in constructing practical solutions to complex decision-making
problems like land-use optimization.
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Figure 9. A suggested land-use change for a given location (screenshots from the demo at https://landuse.evolution.ml). The location is indicated by the red
dot among the UK grid cells. One Evolved Prescriptor is chosen from the middle region of the Pareto front spanning minimal change and minimal ELUC.
The current land use is shown on the left chart and the recommended one on the right chart, as well as the sliders on the left. This prescriptor recommends
decreasing pasture and crops and increasing range and secondary forest, resulting in a 26.02 tC/ha decrease in carbon emissions with a 28.96% land-use
change. The user can then select different solutions from the Pareto front and modify the sliders manually to explore alternatives.
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6. Future work

The project so far has resulted in a promising proof-of-concept for utilizing ESP in land-use planning. In
order to make it usable for real-world decision-makers, it needs to be extended with more fine-grained
data. Themodels so far did not distinguish between the different types of crops and only partly considered
regional variations in how land-use changes affect carbon stocks in soil and vegetation (through training
different models for different regions). The assumed values for carbon stocks in soil and vegetation
represent conditions of the recent past (Hansis et al., 2015); they do not consider environmental effects
such as disturbances due to fires or droughts or better vegetation growth due to CO2 effects or a warmer
climate, which can substantially impact terrestrial CO2 fluxes [e.g. (Luiz et al., 2018; Pongratz et al., 2021;
Rosan et al., 2024)]. Such additional features could be added as context input to the predictor and
prescriptor models, and the actions could be updated accordingly to prescribe more detailed policies.
Further, estimates of CO2 fluxes from land-use change also depend on the spatial resolution of the land-
use change dataset (Bultan et al., 2022; Ganzenmüller et al., 2022). Extending the project with such details
should lead to more precise and more fine-scale estimates of the impact of land-use change decisions,
allowing decision-makers to utilize these dimensions in the real world.

Another immediate future work direction consists of improving the predictor accuracy through ensem-
bling.Given thatmodels trained on specific regions perform the best on those regions, there is a good chance
that an ensemble of themwill do even better.Moreover, theremay be a benefit of including LinReg, RF, and
NeuralNet versions of these models in the ensemble as well. There are several ensembling techniques in the
Project Resilience codebase, such as averaging, sampling, and confidence-based ensembling, and con-
tributors are encouraged to submit more in the future. The effect of such alternatives will be evaluated in
future work, both on prediction accuracy and on driving the search for better prescriptors. The hypervolume
of the Pareto front can be used to compare the different approaches quantitatively.

The predictor creates point estimates of ELUC. A technique called Residual Input–Output kernel
[RIO; (Qiu et al., 2020)] can be used to estimate confidence in these predictions. The method builds a
Gaussian Process model of the residual error, quantifying the uncertainty. RIO is part of the Project
Resilience codebase but has not yet been used in the study in this paper.

Project Resilience also provides an alternative approach to prescription: Representing the prescriptor
as a set of rules (Shahrzad et al., 2022). This approach has the advantage that the behavior is transparent
and explainable, as demonstrated in prior experiments in other tasks (including NPI optimization
(Miikkulainen et al., 2021)). Rule-set evolution on land-use optimization will be evaluated in the future.

To make the system more immediately useful to decision-makers, the cost metric could be refined to
take into account region-specific costs of changing each particular land-use type to another. The approach
can also be extended with preferences and further objectives. For instance, the decision maker could
choosewhich crops should be preferred, whichmay bemore actionable than the large-scale changes in the
current dataset. It may be possible to optimize additional objectives, such as minimizing nitrate pollution
and water consumption, and maintaining or increasing food production, similar to how minimizing crop
change was optimized in Section 5.4. Further, instead of planning for a single year, it might be possible to
develop prescriptors that recommend land-use changes for the next several years: For instance, what could
be done in the next five years to reduce ELUC by a given target percentage. As data and simulations
become more accurate in the future, such refined and extended decisions should become possible.

Even though land-use change is an important factor, it alone is not enough to reduce emissions to net
zero. However, the framework designed in this project can be applied to other decision-making use cases
as long as available context, action, and outcome data exist. A comprehensive such effort, covering energy
policy and other factors, may eventually help reach climate-change goals.

7. Conclusion

Land-use policy is an area relevant to climate change where local decision-makers can have a large
impact. In this paper, historical data and simulation technology are brought together to build an efficient

e30-18 Daniel Young et al.

https://doi.org/10.1017/eds.2025.18 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2025.18


machine-learning model that can predict the outcomes of these decisions efficiently for different contexts.
An evolutionary optimization process is then used to identify effective policies, balancing the cost of land-
use change and its effect in reducing carbon emissions. Machine learning methods can thus play an
important role in empowering decision-makers to act on climate change issues.
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A. Appendix A

A.1. Using location as a proxy for climate information
Different locations have different emissions from land-use change due to the climate. They are affected by both the initial makeup of
the land use and the conditions of the cell such asweather, soil, and type of vegetation. TheBLUEmodel takes this type of vegetation
into account as plant functional types (PFTs) when calculating ELUC. In order to test if the predictor model encodes such climate
information, an experiment was run to see if similar trends arose in both the predicted ELUC from the NeuralNet and the carbon
densities (i.e. potential for carbon release) computed from the BLUE model using plant functional types. Similarities in the results
would indicate that the predictor model is able to learn climate information from plant functional types even when they are not
explicitly passed in as features.

Figure A1. Location as a Proxy for Climate. Different climates have different plant functional types
(PFTs), which in turn have different carbon densities. (a) The carbon density, or potential carbon release,
calculated with the BLUE model across the globe. (b) NeuralNet-predicted ELUC when each land cell is
converted entirely to crop, acting as a proxy for carbon density. The same general qualitative trends
appear across the globe with some outliers, showing the ability of the NeuralNet to model climate
information implicitly through plant functional types.
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The carbon densities from the BLUE model are shown in Figure A1a. To compute the corresponding values in the model, first
note that crops have a significantly lower carbon density than vegetation (this effect can be seen e.g. in Figure 2, where conversion to
crop from anything else results in a high ELUC). Thus, converting all land to crop would be similar to releasing all the carbon from
the land, and the resulting ELUC can thus be seen as an estimate of its carbon density. To obtain this estimate, all land types were
converted to crops globally across all data points in the year 2020, and the resulting ELUC predicted for this change using the
NeuralNet. The result is plotted on a map in Figure A1b.

Similar qualitative trends arise in both plots, with core primary forest regions like the Amazon and the Congo Basin having high
carbon densities and predicted ELUCs. Secondary forest regions such as the eastern US, southern Canada, and southern China were
picked up by the predictor as having a more moderate carbon density/ELUC. Additionally, drier regions like Central Asia tended
towards lower carbon densities and ELUC values. The scales do not perfectly align, however it is more important to view overall
trends rather than numeric similarities.

However, qualitatively higher ELUC values than carbon densities appeared in the Great Victoria Desert, northeastern Siberia,
and northern Africa. This result was due to the fact that LUH2 classifies these regions as almost entirely primary nonforest
vegetation, which the NeuralNet erroneously predicted to release a large amount of carbon. LUH2 uses country-level Food and
Agriculture Organization (FAO) statistics when there is not enough data, and therefore defaults to a uniform distribution. While the
predictor was able to pick up on trends in the other types of vegetation, it overestimated the ELUC for such regions.

To conclude, similar trends arise overall in carbon density estimates in BLUE and the model, indicating that the model captures
climate information even when it is not explicitly given to it as features. Further alignment could be performed in the future using
more specific data, however for the purposes of this proof-of-concept study, the amount of information encoded in the current
features is sufficient.
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