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KNOT GROUPS WITH MANY KILLERS

DANIEL S. SILVER ˛, WILBUR WHITTEN and SUSAN G. WILLIAMS

(Received 24 September 2009)

Abstract

The group of any nontrivial torus knot, hyperbolic 2-bridge knot, or hyperbolic knot with unknotting
number one contains infinitely many elements, none of which is the automorphic image of another, such
that each normally generates the group.
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1. Introduction

Let k be a knot in S3 with group πk = π1(S3
\k, ∗). For convenience, we choose the

basepoint ∗ on the boundary of a regular neighborhood k × D2. A meridian is an
element µ ∈ πk represented by a curve freely homotopic to ∗ × ∂D2. We orient k and
insist that the curve have linking number +1 with the knot. Then µ is well defined up
to conjugation.

Following [13], we say that an element of a group is a killer if the group modulo the
element is trivial; in other words, the element normally generates the group. Obviously
the image of a killer under any automorphism of the group is a killer. It is well known
that the meridian of a knot group is a killer. In [15], Tsau gave an example of a knot
group killer that is not the automorphic image of the meridian. He called such an
element a ‘nonalgebraic killer’. We prefer a less violent term, ‘pseudo-meridian’.

DEFINITION 1.1. A pseudo-meridian of a knot group is an element that normally
generates the group but is not an automorphic image of the meridian. Two pseudo-
meridians are equivalent if one is the automorphic image of the other.

THEOREM 1.2. Let k be a nontrivial 2-bridge knot or torus knot, or a hyperbolic knot
with unknotting number one. Then πk contains infinitely many pairwise nonconjugate
pseudo-meridians.
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It is well known that the group of automorphisms of πk modulo inner
automorphisms is finite. This is a consequence of Mostow rigidity when k is
hyperbolic (see [14, Ch. 5]). When k is a torus knot, the group has order two (see [6]).
Hence, we obtain the following.

COROLLARY 1.3. Let k be a nontrivial 2-bridge knot or torus knot, or a hyperbolic
knot with unknotting number one. Then πk contains infinitely many pairwise
nonequivalent pseudo-meridians.

Our interest in pseudo-meridians is motivated largely by a conjecture of Jonathan
Simon (see, for example, [7]): a sequence πk1 → πk2 → · · · → πkn → · · · of knot
group epimorphisms must be isomorphisms, for sufficiently large n. Much has been
written about Simon’s conjecture (see [1] for numerous references). It was recently
proven for all 2-bridge knots [1].

The image of a meridian under a knot group epimorphism is either a meridian
or a pseudo-meridian. Examples for which the image is a pseudo-meridian are
known [5, 12]. It is an open question whether in this case there is always another
epimorphism between the groups that does map a meridian to a meridian.

2. Proof of Theorem 1.2

Assume that k is a nontrivial 2-bridge knot. From a 2-bridge diagram for k,
we obtain a group presentation for πk having the form 〈x, y | r〉, where x and y
are meridians corresponding to arcs of a 2-bridge diagram for k. Without loss of
generality, we can assume that the exponent sum of y in r is +1 (and, consequently,
that of x is−1). We introduce a new generator a and defining relation y = ax , and use
the relation to eliminate y from the presentation. We obtain a presentation of the form
πk = 〈x, a |

∏
x−ki aεi xki 〉, where

∑
εi = 1.

Consider the elements µn = x(yx−1)n = xan, where n ≥ 0. Killing µn introduces
the relation x = a−n . The relator above becomes

∏
anki aεi a−nki , which is simply a.

Since x = a−n , killing µn also kills x . Hence, µn is a killer, for any n ≥ 0. We will
show that the elements µn are pairwise nonconjugate, for sufficiently large n.

The group π admits nonabelian parabolic representations ρ : πk→ SL2 C:

x 7→ X =

(
1 1
0 1

)
, y 7→ Y =

(
1 0
ω 1

)
, (2.1)

where ω is any root of a nontrivial polynomial8(w) defined in [10]. Every nonabelian
parabolic representation is conjugate to one of this form. Denote the trace of ρ(µn)=

X (Y X−1)n by τn . Some values of τn are given below.

n tn
0 2
1 2
2 2(1− ω)
3 2(1− 3ω + ω2)

4 2(−1+ 6ω − 5ω2
+ ω3)
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(The values τ0 and τ1 are both 2 for an obvious reason: µ0 = x while µ1 = xyx−1

is conjugate to x .)
One can check that τn satisfies a linear recurrence relation:

τn = (2− ω)τn−1 − τn−2, τ0 = τ1 = 2.

The characteristic equation of the recurrence is x2
+ (ω − 2)x + 1= 0. The roots of

the equation are `, `−1 such that `+ `−1
= 2− ω. It is a straightforward matter to

solve:

τn = 2 ·
`n− 1

2 + `
1
2−n

`
1
2 + `−

1
2

.

If |`| 6= 1, then the absolute value of τn grows exponentially, and hence the elements
µn are pairwise nonconjugate, for n sufficiently large. The claim is established in this
case.

Suppose that `= eiθ , for some θ . The expression for τn simplifies:

τn = 2 ·
cos((n − 1

2 )θ)

cos( 1
2 )θ

.

Either τn is nonrepeating, and the claim is proved, or otherwise θ is rationally related
to π .

Suppose that θ is rationally related to π ; that is, suppose that `= eiθ , where
θ ∈Qπ . We can use the relation `+ `−1

= 2− ω to solve for ω:

ω = 2(1− cos θ)= 4 sin2
(
θ

2

)
> 0.

If k is a torus knot, then the coefficients of 8(w) are all positive (an easy
consequence of the form of the 2-bridge knot group presentation). Since not all of
the roots of such a polynomial can be positive, we can choose a root ω away from the
positive real axis. Then the traces τn, n ≥ 1, are nonrepeating. (In fact, all roots of
8(w) are real and negative. We do not need this here.)

If k is hyperbolic, then for some choice ofω, ρ projects to the PSL2 C representation
corresponding to the hyperbolic structure. This ω cannot be real since πk is a Kleinian
group of finite covolume (see [9, Exercise 1.3, No. 1], for example). Again the traces
τn, n ≥ 1, are nonrepeating. A 2-bridge knot cannot be a satellite, so Theorem 1.2 is
proved for 2-bridge knots.

Next suppose that k is a hyperbolic knot with unknotting number one. There exists
a crossing in some diagram of k such that changing the crossing results in a diagram
of the trivial knot. We regard this crossing as a 4-valent vertex with meridianal
generators x, y, z, w, as in Figure 1. Suppose that k has a left-hand crossing here.
(The right-hand case is similar.) Then πk has a presentation with relations xy = zw
and x = w, together with Wirtinger generators and relations for the other arcs and
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FIGURE 1. Crossing and generators.

crossings. Replacing x = w with y = z gives a presentation of Z, the group of the
trivial knot.

Letµn = xa−n , where a = yx−1 and n is an arbitrary integer. A presentation for the
quotient of πk obtained by killingµn can be obtained as follows: add the new generator
a and new relators x = an and y = an+1. The relations at the crossing in Figure 1 force
z = an+1 and w = an . Applying the same procedure in the given presentation of the
unknot has the same result, so the two quotient groups are equal. However, the quotient
of Z obtained by setting one generator equal to an and another equal to an+1 is trivial.
Hence, µn is a killer, for any n.

The elements x, y do not commute in πk . (Otherwise, y = z in πk . As above,
changing the crossing would not affect the group. However, the group would be
trivial.) By [10], the discrete faithful PSL2 C representation of πk corresponding to
the hyperbolic structure lifts to a parabolic representation ρ : πk→ SL2 C such that
ρ(x), ρ(y) have the form in (2.1). The same argument as in the case of 2-bridge knots
shows that the µn are pairwise nonconjugate.

Finally, assume that k is a nontrivial (p, q)-torus knot. Its group has a presentation
of the form

πk = 〈u, v | u
p
= vq
〉.

We can assume without any loss of generality that p, q are relatively prime integers
with p > q > 0.

There is an epimorphism χ : πk→ Z with χ(u)= q and χ(v)= p. We can find
integers r, s with

r p + sq = 1, |r |< q, |s|< p. (2.2)

Then χ(usvr )= 1. Note that by replacing r and s with r − q and s + p, if necessary,
we can assume that s is positive in condition (2.2). Clearly, s = 1 is impossible. Hence,
s > 1.

Introduce new generators x, a and define relations x = usvr and a = ux−q . Then

πk = 〈x, u, v, a | u p
= vq , x = usvr , u = axq

〉.

Using the relations above, eliminate u. We have

πk = 〈x, v, a | (axq)p
= vq , (axq)−s x = vr

〉. (2.3)
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We claim that the element µn = xa−n is a killer, for any integer n. Setting x = an

in the relations in presentation (2.3) gives

a p(nq+1)
= vq , a−s(nq+1)+n

= vr ,

and so
vr q = ar p(nq+1)

= a−sq(nq+1)+nq .

Since r p + sq = 1, we have anq+1
= anq . Thus, a = 1 and so x = 1. It follows

immediately that v = 1.
To show that the µn are pairwise nonconjugate, it suffices to show their images are

pairwise nonconjugate in the quotient

〈u, v | u p
= vq

= 1〉 = Z/(p) ∗ Z/(q).

Rewriting xa−n in terms of u and v yields

µn = usvr
[u(usvr )−q

]
−n
= usvr

[(usvr )qu−1
]
n.

Since s > 1, cyclic reduction of this word will not reduce the number of occurrences
of v±1, which is a monotone function of n. Hence, the killers µn are pairwise
nonconjugate.

The proof of Theorem 1.2 is complete.

REMARK 2.1. Consider a knot diagram with a crossing, described by Figure 1, with
the property that the elements µn = x(yx−1)n are pairwise nonequivalent killers for
arbitrarily large n. Introducing any number of full twists in the two arcs corresponding
to z, w preserves this property, provided that the resulting knot is hyperbolic. Letting
x = an and y = an+1, as in the proof of Theorem 1.2, results in the same trivial
quotient group. The above argument for hyperbolic knots applies. Hence, twisting in
this manner produces many new examples of knot groups with infinitely many pairwise
nonequivalent killers.

3. Examples and conjecture

EXAMPLE 3.1. Consider the diagram for the hyperbolic knot k = 820 in Figure 2,
with certain Wirtinger generators indicated. Changing the crossing involving x and y
produces a diagram of the unknot. Hence, by the proof of Theorem 1.2, the elements
µn = x(yx−1)n are nonequivalent pseudo-meridians, for sufficiently large n (in fact,
for all n > 1).

From the proof of Theorem 1.2, one might wonder whether the elements x(yx−1)n

are killers of any knot group whenever x and y are noncommuting meridians. (If so,
then the conclusion of Theorem 1.2 would follow for any hyperbolic knot.) However,
this is not the case for this example. If we choose meridians x ′ and y′, then this word,
according to GAP [11], is not a killer for n = 2.

EXAMPLE 3.2. Let k̃ be a hyperbolic knot embedded in a standard solid torus V
in such a way that V \k̃ is a hyperbolic manifold. The pair (V, k̃) is represented
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FIGURE 2. The knot 820.

by a link diagram, one component representing k̃ and the other a meridian of V .
Assume that changing some crossing unknots k̃ in V (equivalently, it produces a trivial
2-component link diagram). Twist knots other than the trivial and trefoil knots provide
simple examples.

Let k̂ be any knot. Form the satellite knot k with companion k̂ and pattern
(V, k̃) (see [2], for example). Changing a crossing of k̃ that unknots it in V also
unknots the satellite knot k. As in the proof of Theorem 1.2, we produce a sequence
µn = x(yx−1)n of elements that are killers for πk̃ . They are also killers for πk . This
can be seen from the link diagram for the pattern. As in the proof of Theorem 1.2, the
quotient group of π1(V \k̃) we obtain by setting x = an and y = an+1 is unaffected if
first we change the crossing and then make the substitution. However, changing the
crossing produces a trivial 2-component link, and then the substitution kills x . Since
π1(V \k̃) is a subgroup of πk and since x normally generates πk , the elements µn are
killers of πk .

Since k̃ is hyperbolic, the argument in the proof of Theorem 1.2 shows that, for n
sufficiently large, no µn is the image of another under an automorphism of πk̃ .

Since V \k̃ is a hyperbolic manifold, and since the characteristic submanifold of the
exterior of k is unique up to ambient isotopy [3, 4], it follows that any autormorphism
of πk can be realized by a homeomorphism that leaves ∂V invariant, mapping the
longitude λ ∈ π1(∂V ) to itself. The restriction to V \k̃ induces an automorphism of
π1(V \k̃)which induces an automorphism of πk̃

∼= π1(V \k̃)/〈〈λ〉〉. Hence, the pseudo-
meridians µn for πk̃ that are pairwise nonequivalent are also pairwise nonequivalent
pseudo-meridians for πk .

CONJECTURE 3.3. Every nontrivial knot group has infinitely many nonequivalent
pseudo-meridians.
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