
JFP 35, e7, 27 pages, 2025. c© The Author(s), 2025. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796825000012

F U N C T I O N A L P E A R L

How much is in a square? Calculating functional
programs with squares

J O S E N U N O O L I V E I R A
HASLab - INESC TEC, University of Minho,

Gualtar Campus, Building E7, Braga, Portugal
(e-mail: jno@di.uminho.pt)

Abstract

Experience in teaching functional programming (FP) on a relational basis has led the author to
focus on a graphical style of expression and reasoning in which a geometric construct shines: the
(semi) commutative square. In the classroom this is termed the “magic square” (MS), since vir-
tually everything that we do in logic, FP, database modeling, formal semantics and so on fits in
some MS geometry. The sides of each magic square are binary relations and the square itself is
a comparison of two paths, each involving two sides. MSs compose and have a number of useful
properties. Among several examples given in the paper ranging over different application domains,
free-theorem MSs are shown to be particularly elegant and productive. Helped by a little bit of Galois
connections, a generic, induction-free theory for foldr and foldl is given, showing in particular that
foldl s= foldr (flip_ s) holds under conditions milder than usually advocated.

1 Introduction

(...) A special feature of our approach is a general calculus of rela-
tions presented in part two. This calculus offers another, often more
amenable framework for concepts and methods discussed in part
one.

— Freyd & Ščedrov, Categories, Allegories, 1990.

Functions are mathematical objects, and functional programming (FP) has benefitted
much from its strong mathematical foundations over the years. This began with LISP, a
programming language born in the late 1950s that implemented Church’s λ-calculus and
included higher-order functions, that is, functions that manipulate other functions. This
soon proved to be a strong competitive advantage.

Another significant advantage, originally also identified by Church, is paramet-
ric polymorphism, a powerful device of great practical and theoretical relevance

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796825000012
https://orcid.org/0000-0002-0196-4229
mailto:jno@di.uminho.pt
https://crossmark.crossref.org/dialog?doi=10.1017/S0956796825000012&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

2 J. N. Oliveira

(Damas & Milner, 1982). Pragmatically, it leads to a programming style in which pro-
grams are generic and can be better statically checked, adding to programming productivity
since one writes less and better code — “programs for cheap!” in the words of Hackett &
Hutton (2015). This comes hand in hand with another advantage, evident when one needs
to reason about programs: parametricity theory ensures structural properties of functional
code that need not be proved case by case — cf. the “theorem for free” motto coined by
Wadler (1989). Thus correctness-proving becomes more productive as well.

Curiously enough, parametricity theory found an effective formulation in terms of rela-
tions and not just functions (Reynolds, 1983). As Janis Voigtländer (2019) puts it, the key
to deriving free theorems is to interpret types as relations. Indeed, it often happens in
mathematics that, to better address a concept, it is convenient to invest into another one
of wider scope. For example, the laws of basic trigonometry are best formulated if the
domain of discourse is extended from real to complex numbers — recall Euler’s formula
eix = cos x+ i sin x and all that follows from it. The same happens between functions and
relations, the latter extending the former. The quote by Freyd & Scedrov (1990) that opens
this paper reveals exactly this, at the categorial level.

Building on this perspective, Bird & de Moor (1997) developed an algebra of program-
ming in which specifications (relations) lead to implementations (functions) by calculation.
However, the application of relational techniques to FP is actually wider, see e.g. the work
by Backhouse & Backhouse (2004) among much other research reported in the literature.
This paper will follow the same path of using relations to reason about functional programs,
taking a rather pragmatic view inspired by experience in the classroom.

Teaching FP is not an easy task, all the more so when it comes late in the syllabus, after
imperative and object-oriented programming. FP calls for a plan of the overall architecture
before starting writing code, with particular emphasis on designing a suitable information
flow.1 It is therefore important to help programmers in identifying “big picture” design
patterns.

It can be claimed that the higher-order combinators so much used in FP enable design
patterns for free by inter-combination — see e.g. map-filter, MapReduce (Lämmel, 2008)
and so on. In this paper we propose what we call “magic squares” (MS) to expand that
view by expressing and composing quite common relational (and functional) patterns that
arise in problem analysis and modeling.

Among several examples given in the paper, free-theorem MS prove to be elegant and
productive. As observed by Voigtländer (2009), free theorems promise a lot but deriving
them is not immediate. It is error-prone and can be tedious and result in intricate logical
formulæ hard to simplify into something short and effective, even when using a mecha-
nised generator. We claim that relational reasoning can be of great help in this respect. In
this paper, free theorems are expressed in terms of magic squares, whose graphical nature
makes it easier to perceive what is going on in the reasoning.

As an example of application, a generic, induction-free theory for foldr and foldl is
given — understood in a class wider than just finite lists2 — showing in particular that
foldl s= foldr (flip_ s) holds under conditions milder than usually advocated.

1 In this respect, FP points to future programming paradigms, namely quantum programming (Neri et al., 2022).
2 Recall the Foldable class in Haskell.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

Calculating functional programs with squares 3

2 “Magic” squares

Experience in teaching FP using a relational approach has led the author to a graphical
style of expression and reasoning in which a very simple, geometric construct shines: the
(semi) commutative square.

In the classroom this is termed the “magic square” (MS), because much of what we do
in logic, FP, database modeling, formal semantics, etc fits in some MS geometry. Each
magic square has four sides, say R, P, S, Q, which are binary relations, and each square is
a comparison between two paths, of two relations each:

A

P

��

B

Q

��

R��

⊆
C D

S
��

P · R⊆ S ·Q (2.1)

In more detail, each side is an arrow, say A BR�� , declaring a binary relation R that
relates objects of types A and B. Its meaning is as usual: given objects a ∈ A and b ∈ B,
the proposition a R b tells whether or not a and b are related by R. Take for instance relation

N0 N0
(�)�� . Clearly, 0 � 1 holds (it is a true proposition) while 1 � 0 does not.

Next, we need to say what a path means, say P · R in (2.1): given some c ∈ C and some
b ∈ B, c (P · R) b holds whenever there is some mediator a ∈ A such that both c P a and
a R b hold. We say that relation P · R is the composition of relations P and R. Relational
composition is associative.

Finally, let us say what the comparison R ⊆ S of two relations B A
R,S�� means, in

general. (R ⊆ S should be read: “R is at most S” or “R is included in S”.) It means that,
for all b ∈ B and a ∈ A, if b R a holds then b S a holds too. In summary, relation inclusion
“hides” a universal quantifier, while relation composition hides an existential quantifier.
In symbols, the logic interpretation of (2.1) is:

〈∀ c, b :: 〈∃ a :: c P a∧ a R b〉⇒ 〈∃ d :: c S d ∧ d Q b〉〉 (2.2)

The following version of (2.2) makes its connection with (2.1) more explicit:

∃ a d

P · R ⇒ S · Q

∀ c b c b

Comparisons R ⊆ S form a partial order, and therefore are reflexive, transitive, and
antisymmetric.

As will be shown shortly, one can express “a lot” using the “magic” square pattern (2.1),
rendered pointwise in (2.2). Some terminology before giving examples: we shall refer to
R ⊆ S as a relational inequality in which R is the pre (or lower) side and S is the post (or
upper) side. In a composition R · S, relation S (resp. R) will be referred to as the producer

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

4 J. N. Oliveira

(resp. consumer) relation. This terminology bears some relationship to the way information
flows in a magic square, cf.

Relation Role
R pre-producer
P pre-consumer
Q post-producer
S post-consumer

Magic squares compose, not only horizontally

A

P

��

C

Q

��

R�� C′R′��

Q′

��
⊆ ⊆

B D
S

�� D′
S′

��

=⇒
A

P

��

C′R·R′��

Q′

��
⊆

B′ D′
S·S′

��

(2.3)

but also vertically:

A

P

��

C

Q

��

R��

⊆
B

P′
��

D
S

��

Q′
��

⊆
B′ D′

S′
��

=⇒
A

P′·P
��

C

Q′·Q
��

R��

⊆
B′ D′

S′
��

(2.4)

Every type X has its own identity relation X Xid�� , which is such that
x′ id x ⇔ x′ = x. Therefore, R · id = R= id · R holds for any R and thus squares involving
id degenerate into triangles or even “sides”. So, squares in which both pre-consumer and
post-producer are identities behave like units of square composition, cf.:

A

id

��

C

id

��

R��

⊆
A

P

��

C

Q

��

R��

⊆
B

id

��

D
S

��

id

��
⊆

B D
S

��

≡
A

P

��

C

Q

��

R��

⊆
B D

S
��

(2.5)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

Calculating functional programs with squares 5

3 Functions

Statements like John loves Mary can be written as Mary is loved by John without changing
meaning. The latter version is known as the passive voice of the former. Generalizing,
any proposition b R a can be converted to passive voice, written a R◦ b. (In the example,
loves◦ = is loved by.) The ()◦ operator, known as relational converse, will play a major
role in our setting.

Converse is involutive ((R◦)◦ = R) and contravariant: (R · S)◦ = S◦ · R◦. So one can take
the converse of a square, obtaining an equivalent square where producer and consumer
relations swap roles, once conversed:

A

P

��

C

Q

��

R��

⊆
B D

S
��

⇔
A

R◦
��

BP◦��

S◦

��
⊆

C D
Q◦

��

Some relations, termed functions and denoted in lowercase — see e.g. f in (3.1) below
— are special in the sense of fitting in two particular squares involving them and their
converses:

A

id

��

A

f

��

id�� B
f ◦��

id

��
⊆ ⊆

A B
f ◦

�� B
id

��

(3.1)

By (2.2), the square on the left (id ⊆ f ◦ · f) converts to:

〈∀ a :: 〈∃ b :: b f a〉〉

In words, f reacts to every possible input (it is “total”). Similarly, the square on the right
(f · f ◦ ⊆ id) converts to:

〈∀ b, b′ :: 〈∃ a :: b f a∧ b′ f a〉⇒ (b= b′)〉

In words: f is univocal. Because f in (3.1) always yields some output for any possible
input, and such an output is unique, one can interpret the proposition b f a as b= f a, that
is, b is unequivocally the output of f once a is passed as input. This saves one from the
two existential quantifiers of a very frequent and useful pattern involving functions and
function converses:3

b (f ◦ · R · g) a ⇔ (f b) R (g a) B
f �� C DR�� A

g��

f ◦·R·g

�� (3.2)

3 To improve readership in pointwise formulæ, we follow the convention of assuming ∀ by default wherever no
quantifier is specified.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

6 J. N. Oliveira

We shall refer to (3.2) as the “nice” rule, where f and g are functions and R is not
constrained.4

It can be shown that functions — i.e. relations f fitting in (3.1) — are precisely those
that satisfy the following square equivalences,

f · R⊆Q ≡ R⊆ f ◦ ·Q (3.3)

R · f ◦ ⊆Q ≡ R⊆Q · f (3.4)

cf.

A

f

��

C

Q

��

R��

⊆
B B

id
��

⇔
A

id

��

CR��

Q

��
⊆

A B
f ◦

��

— similarly for (3.4). These equivalences, known as “shunting rules,” are very useful for
reasoning about functions. One particular follow-up is that comparing functions amounts
to equating them,

f ⊆ g ⇔ f = g (3.5)

as can be easily shown:

f = g

≡ { ⊆-antisymmetry }
f ⊆ g ∧ g ⊆ f

≡ { (3.3) (resp. (3.4)) for function g (resp. f) }
f ⊆ g ∧ f ◦ ⊆ g◦

≡ { converse is an isomorphism }
f ⊆ g ∧ f ⊆ g

≡ { trivial }
f ⊆ g

4 Reynolds squares

In the sequel, we shall be particularly interested in squares (2.1) in which both pre-
consumers and post-producers are functions, say f and g in (4.1) given next:

4 As already mentioned, for easy reference functions will be written in lowercase (e.g. f , g, h, ...). Arbitrary
relations will be written uppercase, as e.g. R, S, ... above.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

Calculating functional programs with squares 7

A

f

��

B

g

��

R��

⊆
C D

S
��

f · R⊆ S · g (4.1)

By (3.3) followed by the “nice rule” (3.2), square (4.1) captures the situation in which, for
R-related inputs, the two functions f and g always yield S-related outputs: if a R b holds
then (f a) S (g b) holds, for any a and b.

We shall refer to squares of pattern (4.1) as Reynolds squares because of the role they
will play in expressing free theorems of parametric polymorphic functions, due to John
Reynolds (1983) and made popular by Philip Wadler (1989). Note however that pattern
(4.1) can be found in far more mundane settings, for instance relational database modeling.

Take for instance the very simple data model below of a small grocery in which
customers can use coupons to obtain discounts when purchasing goods:

Customer Sale Sold ��customer��

date

����
���

���
���

���
� Goods

Coupon

owner

�����������������
Used

��

expiry
�� Date

(�)

��

The “polygons” of the data model can be regarded as “opportunities” to dig up business
rules, i.e. data invariants. Indeed, the triangle on the right can be oriented as the square

Sale

date

��

CouponUsed��

expiry

��
⊆

Date Date
(�)

��

(4.2)

which is indeed meaningful: coupons cannot be used beyond their expiry date. And the
lefthand triangle can be oriented as

Sale

customer

��

CouponUsed��

owner

��
⊆

Customer Customer
id

��

(4.3)

bearing in it another relevant business rule: coupons can only be used by the customers
who own them.5

5 Note that (4.2,4.3) are Reynolds squares because (mandatory) attributes date, expiry, and so on can be regarded
as functions.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

8 J. N. Oliveira

Squares in general (2.1) arise naturally in formal modeling in various guises, involving
data relations (e.g. key-value maps), object attributes etc, and capturing not only domain-
specific invariants such as those illustrated above but also structural ones. Particularly
frequent squares are those that capture referential integrity,

A

f

��

KR��

�
��

⊆
K ′ B

S◦
��

a R k⇒〈∃ b :: b S (f a)〉 (4.4)

where � is the largest relation of its type, that is, b� k = TRUE for all b and k. Think of
R and S as key-value stores with keys K and K ′, respectively, the latter playing the role of
foreign key referred to by attribute f of A (a function).6

Reynolds arrow. Back to the genericity of Reynolds squares, fix the pre-producer R and
the post-consumer S of (4.1). Then (4.1) expresses a (higher-order) relation on functions
f (R→ S) g defined by:

f (R→ S) g ≡ f · R⊆ S · g (4.5)

Using the exponential notation Y X to denote the type of all functions from type X to type
Y , and extending it to relations, SR = (R→ S), one has:

A BR��

C DS��

CA DBSR��

Thus we obtain the Reynolds arrow, a higher-order relational operator that builds, from
relations R and S, the (higher-order) relation SR on functions identified by Backhouse
(1990) and defined above by (4.5). We will use the notations SR, R→ S and S← R
interchangeably, depending on how convenient they are. (E.g. we avoid (SR)

Q
and write

Q→ SR instead.)
For instance, the Used→ (�) higher-order relation relates attributes date and expiry in

(4.2), expressing the semantic constraint that the use of a coupon can only occur on a date
prior (�) to its expiry date.

Reynolds arrows are central to the inference of free theorems, as will be shown later, in
particular in the following situation, in which R is the converse of a function (R := h◦) and
S is a function (S := k):

A

f

��

B

g

��

h◦��

⊆
C D

k
��

f (h◦ → k) g ⇔ f · h◦ ⊆ k · g (4.6)

6 See e.g. Oliveira (2009) and Oliveira & Ferreira (2013) for concrete examples arising in modeling a flash file
system. Note that (4.4) is not a Reynolds square because � is not a function.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

Calculating functional programs with squares 9

By shunting h◦ in (4.6) via (3.4), h◦ → k becomes the higher-order function

(h◦ → k) g = k · g · h (4.7)

as can be easily checked:

f (h◦ → k) g

≡ { Reynolds (4.1) }
f · h◦ ⊆ k · g

≡ { nice rule (3.2) }
f ⊆ k · g · h

≡ { equality of functions (3.5) }
f = k · g · h

The special cases of (4.7),

(id→ k) g= k · g (4.8)

(for A= B) and

(h◦ → id) g= g · h (4.9)

(for C=D) capture post-and pre-composition, that is:

(id→ k)= (k·) — cf. covariant exponentials (4.10)

(h◦ → id)= (·h) — cf. contravariant exponentials (4.11)

By taking converses of both sides of (4.5) and swapping f and g via shunting rules
(3.3,3.4), one gets

(SR)◦ = (S◦)(R◦) (4.12)

Thus:

idh = (·h)◦ (4.13)

idid = id (4.14)

Higher-order Reynolds squares. Exponential relations SR can involve other exponentials,
for instance (SQ)

R
i.e. R→ SQ. This happens frequently with functional programmers, who

tend to use functions curried rather than uncurried. Such is the case in

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

10 J. N. Oliveira

A

f

��

B

g

��

R��

⊆
X C Y D

SQ
��

f (R→ SQ) g

Let us unfold this, assuming all fresh variables universally quantified:

f (R→ SQ) g (4.15)

≡ { (4.5) }
f · R ⊆ SQ · g

≡ { (3.3) followed by (3.2) }
a R b⇒ (f a) SQ (g b)

≡ { (4.5) again }
a R b⇒ ((f a) ·Q ⊆ S · (g b))

≡ { again (3.3) followed by (3.2) }
a R b⇒ c Q d⇒ (f a c) S (g b d) (4.16)

Perfect squares. All relations in square (4.6) but the pre-producer are functions. Suppose
now that all relations are functions in a magic square (2.1). Then, by (3.5) path comparison
becomes path equality and producer/consumer paths become interchangeable. In this case,
we drop the ⊆ symbol from the square:

A

f
��

B

g

��

h��

C D
k

��

f · h= k · g

Clearly:

f kh g ≡ f · h= k · g (4.17)

5 More on Reynolds square expressiveness

Let the pre-producer R of a Reynolds square (4.1) be the identity:

A

f

��

A

g

��

id��

⊆
C D

S
��

f ⊆ S · g (5.1)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

Calculating functional programs with squares 11

In this case, f and g have the same input type and are said to be pointwise S-related.
Using the dotted notation

.
S for Sid , one may write f

.
S g to mean square (5.1), that is:

〈∀ a :: (f a) S (g a)〉. Thus, the following (useful) “lifting” rule:

f Sid g ⇔ f
.
S g ⇔ (f x) S (g x) (5.2)

A typical situation arises in (5.1) when the post-consumer S is an ordering (�). Then
f

.
� g (i.e. f ⊆ (�) · g) means that f a � g a for every input a, i.e. f is pointwise-smaller

than g with respect to (�).

Relational types. The intersection of SR and (higher-order) id captures all Reynolds
squares (4.1) in which f = g:

A

f

��

A

f

��

R��

⊆
C C

S
��

f · R⊆ S · f (5.3)

In this case, we often abbreviate f (R→ S) f to f : R→ S, meaning that f has relational
type R→ S.7 As seen before, this means that f maps R-related inputs to S-related outputs.

We can also write R
f �� S to express (5.3), stressing the fact that f can be regarded

as a morphism of a category in which relations are the objects, mapped by functions that
preserve them in the sense of (5.3). Indeed, by vertical composition (2.4) such morphisms
compose and composition has identities (2.5).8

For R and S instantiated to preorders, say R, S := (�), (�), the square f : (�)→ (�) is a
concise way of saying that f is a monotonic function: 〈∀ a, a′ :: a� a′ ⇒ (f a) � (f a′)〉.
Predicates as types. A special case of square (5.3) pops up wherever R and S are par-
tial identities, also called coreflexive relations (R ⊆ id and S ⊆ id). These relations are
one-to-one correspondent to predicates: given a predicate p : A→B, its associated core-
flexive is the relation p? : A→ A defined by

a′ (p?) a ⇔ p a∧ a′ = a

Let f have relational type p?→ q?, as shown next:

A

f

��

A

f

��

p?��

⊆
C C

q?
��

f · p?⊆ q? · f (5.4)

7 Note how type variables A and C in f : A→C are straightforwardly replaced by relations R and S in f : R→ S,
respectively. Thus types are easily interpreted as relations (Voigtländer, 2019) in our relational setting.

8 This category is named Rel2 in Plotkin et al. (2000). Hence, what is termed relational type R→ S in this
paper corresponds to the homset Rel2 (R, S). Rel2 is cartesian closed, meaning that homset R→QS is, by
currying, isomorphic to R× S→Q, where the “tensor” product of two relations is defined in the expected
way: (y, x) (R× S) (b, a) ⇔ y R b∧ x S a.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

12 J. N. Oliveira

It is easy to see that (5.4) converts to the pointwise 〈∀ a :: p a⇒ q (f a)〉, meaning that p
is a sufficient condition on the input of f (pre-condition) for q to hold on the output (post-
condition). By a not so dangerous abuse of notation one might abbreviate f : p?→ q? to
f : p→ q and regard predicates p and q as types.9

Another perspective is to look at (5.4) as a Hoare-triple p { f } q where f is a functional
program that satisfies such pre/post conditions.10

Algebraic squares. A quite interesting situation arises in a Reynolds square (4.1) when
f , g := α, β, where α and β are algebras of a relator F:11

F A

α

��

F BF R��

β

��
⊆

A B
R

��

α · F R⊆ R · β
(5.5)

The pointwise equivalent of (5.5) is x (F R) y⇒ (α x) R (β y), for all x and y. For α = β and
endo-relation R, α : F R→ R says that R is compatible with algebra α. For R an equivalence
relation, it further says that R is a congruence relation with respect to α.12 In case R is a
function, say R := h in (5.5), the square becomes perfect

F A

α

��

F B

β

��

F h��

A B
h

��

α · F h= h · β

meaning that h is an F-homomorphism (Bird & de Moor, 1997).

Coalgebraic squares. Let f , g := γ , φ in a Reynolds square, where γ and φ are F-
coalgebras:

A

γ

��

BR��

φ

��
⊆

F A F B
F R

��

γ · R ⊆ F R · φ (5.6)

9 Such arrows f : p→ q form a sub-category of Rel2 (mentioned in footnote 8) whose objects are coreflexives
(i.e. predicates). Thus one gets Curry-Howard (Wadler, 2015) in a relational setting.

10 See e.g. Oliveira (2009) for a treatment of Hoare logic in this way, an approach that has long been known
to extend to relations (non-deterministic programs), see e.g. the pioneering work of de Bakker & de Roever
(1972).

11 Recall that a functor is a structural map F : (A→ B)→ (F A→ F B) respecting the identity (F id = id) and
composition, F (f · g)= F f · F g. Relators extend functors to relations, y (F R) x meaning that every b in F-
structure y is related to the corresponding a in F-structure x via R, that is, b R a holds. Furthermore, relators are
monotonic and preserve converses: F (R◦)= (F R)◦ (Backhouse & Backhouse, 2004).

12 Note also that, in a rather succinct way, the square also says that R is a logical relation between α and β

(Plotkin et al., 2000).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

Calculating functional programs with squares 13

Then R is said to be a bisimulation (Sangiorgi, 2004) between the two coalgebras, meaning:

〈∀ a, b :: a R b⇒ (γ a) F R (φ b)〉

In case R is coreflexive, it is known as a coalgebraic invariant (Barbosa et al., 2008).
Squares (5.5) and (5.6) show that, in a sense, a bisimulation is a kind of co-logical-relation.

Galois connections. To complete this review of concepts that magic squares are able to
easily capture, let R and S in (4.1) be two preorders, (�) and (�) respectively. Moreover,
reverse the direction of f and let the square be perfect:

A

f ◦
��

A

g

��

(�)��

B B
(�)

��

f ◦ · (�)= (�) · g (5.7)

This very special kind of square is known as a Galois connection (GC) between two so-
called adjoint functions, f (the lower or left adjoint) and g (the upper or right adjoint).
Going pointwise in (5.7) via (2.2,3.2) etc one gets:

f b� a ⇔ b � g a (5.8)

Two cancellation laws are easily obtained from (5.8):

{
f (g a)� a
b � g (f b)

These inequalities tell that f and g are inverses of each other in an imperfect way: the
round-trip f · g loses information while g · f yields an over-approximation of its input.
This is captured by the diagram

(A,�)

g
��� (B, �)

f

��

and often abbreviated by simply writing f � g.
Examples of the usefulness of GCs in both mathematics and computing are abundant,

see e.g. von Karger (1998), Backhouse & Backhouse (2004), Mu & Oliveira (2011). The
following GC between multiplication and whole division in the natural numbers

a× y � x ⇔ a � x÷ y (5.9)

— (×y)� (÷y) in short, for y �= 0 — will be of interest in the sequel.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

14 J. N. Oliveira

6 Free theorem squares

In his landmark paper Theorems for free!, Philip Wadler (1989) wrote: “From the type
of a polymorphic function we can derive a theorem that it satisfies. (...) How useful are
the theorems so generated? Only time and experience will tell (...)”. Under this “theorems
for free” catchy phrase, Wadler made popular an important result on parametric polymor-
phism due to John Reynolds (1983). Four decades later there is ample evidence that such
free theorems are indeed very useful, see for instance the work by Backhouse & Backhouse
(2004), Voigtländer (2009) and Hackett & Hutton (2015).

The rest of this paper will be devoted to one particular application of such free theorems.
Before that, the question arises: what is a free theorem and how does one derive it (for
free)? It turns out that free theorems are magic squares. To put it simply, let a parametric
function f : F X→G X be given. Then its free theorem states that f has relational type

f : F R→G R (6.1)

for any R relating its parameters, as shown in the corresponding square:

F A

f

��

F BF R��

f

��
⊆

G A G B
G R

��

This extends to multiparametric functions, as shown next with a simple example: consider
the Haskell constant function const : a→ b→ a. In exponential notation (and following
our uppercase notation for type parameters), we may write const : A→ AB. Then, by (6.1),
const has relational type R→ RS , that is,

const · R ⊆ RS · const (6.2)

holds, cf.

A

const
��

C

const
��

R��

⊆
AB CD

RS
��

As already mentioned, this square is the free theorem of const. Recalling (4.15,4.16), its
pointwise version is, for all a, b, c, d:

a R c⇒ b S d⇒ (const a b) R (const c d)

As a foretaste of what is to come, let us see how productive (6.2) is. Select, for instance,
R, S := id, k. Then (6.2) becomes const ⊆ idk · const that, by (4.13,3.3) and (3.5) becomes
(·k) · const= const, which is equivalent to const a · k = const a — a well-known fusion

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

Calculating functional programs with squares 15

law for constant functions. Swapping the roles of R and S to R, S := k, id, one gets
const · k ⊆ kid · const which, by (4.8) etc, rewrites to const · k = (k·) · const yielding
another well-known law: k · const a= const (k a).

Flipping. As another example, consider the well-known function in Haskell that swaps the
arguments of a curried function:

flip_ :: (a→ b→ c)→ b→ a→ c (6.3)

Its free theorem states that flip_ has relational type QSR→QRS
meaning

g (R→QS) f ⇒ (flip_ g) (S→QR) (flip_ f)

that is,

A

g

��

X

f

��

R��

⊆
CB ZY

QS
��

⇒
B

g̃

��

Y

f̃
��

S��

⊆
CA ZX

QR
��

(6.4)

where (as in the sequel) we use the tilde notation f̃ to abbreviate flip_ f , as in the right hand
square above. For Q := id, S := id and R := r (a function), one gets:

g (r→ id) f ⇒ g̃ (id→ idr) f̃

≡ { (4.17) ; (5.1) }
g · r= f ⇒ g̃ ⊆ idr · f̃

≡ { idr = (·r)◦ (4.13) ; substitution of f ; shunting (3.3) }
(·r) · g̃ =̃ g · r

This is known as the fusion-law of flipping (Oliveira, 2020).
Flipping will be relevant in the rest of the paper, in which we shall investigate the theory

that stems from the free theorems of two very popular functional programming combina-
tors, foldl and foldr, heading toward discussing under what conditions they have the same
behaviour.

7 foldl and foldr

In Haskell, there is a class Foldable that, according to the standard documentation, “repre-
sents data structures that can be reduced to a summary value one element at a time”.13 The
class offers, in particular, two standard ways of accessing foldable data structures:

foldl :: Foldable t⇒ (b→ a→ b)→ b→ t a→ b
foldr :: Foldable t⇒ (a→ b→ b)→ b→ t a→ b

(7.1)

13 Quoted from Hackage’s Data.Foldable, consulted December 1, 2023.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Foldable.html
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

16 J. N. Oliveira

Lists are a prominent instance of the class — and, indeed, its main inspiration — whose
standard definitions are:

foldl f z [] = z
foldl f z (x : xs)= foldl f (f z x) xs
foldr f z []= z
foldr f z (x : xs)= f x (foldr f z xs)

The free theorems of foldl and foldr — valid for any instance T of class Foldable — can
be written in the form of relational types:14

foldl : (S→ SR)→ (S→ ST R) (7.2)

foldr : (R→ SS)→ (S→ ST R) (7.3)

There are two squares involved in each type. The one on the left will play the role of a
side-condition for the one on the right to hold.

foldl. Let us see (7.2) first:

B

g

��

Y

f

��

S��

⊆
BA Y X

SR
��

⇒
B

foldl g

��

Y

foldl f

��

S��

⊆
BT A YT X

ST R
��

(7.4)

For R, S := id, h (hence A := X), both ST R and SR reduce to (h·) by T id = id15 and (4.8).
So the squares become perfect and one has:

B

g
��

Y

f
��

h��

BX Y X
(h·)

��

⇒
B

foldl g
��

Y

foldl f
��

h��

BT X YT X
(h·)

��

(7.5)

Going pointwise via the usual laws, from (7.5) one gets:

h (f y x)= g (h y) x ⇒ h (foldl f y xs)= foldl g (h y) xs

This is the fusion law of foldl given by Bird & Gibbons (2020), who prove it (for lists)
by finite-list induction. Note however that, as a corollary of a free theorem, it needs no
dedicated proof and it holds for all instances of class Foldable, not just for lists. Moreover,
the scope of (7.4) is far wider than perfect squares involving only functions, as shown next.

To give a simple example, let S be an ordering (�) and keep R := id. Since T id = id
both squares will feature the relational type (�)→ (�)id . Then, if the left square holds, i.e.
for all b, y

14 Mentally associate relation R (resp. S) to type a (resp. b) and use exponentials where convenient.
15 Recall footnote 11.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

Calculating functional programs with squares 17

b � y⇒ (g b)
.
� (f y)

then the right square

b � y⇒ foldl g b
.
� foldl f y

will hold too.
Perhaps more interesting is to observe that, if types a and b are replaced by predicates p

and q, under the interpretation given by (5.4), then

foldl :: Foldable t⇒ (q→ p→ q)→ q→ t p→ q

is a corollary of the free theorem, saying:

〈∀ a, b :: (q b∧ p a⇒ q (f a b))⇒〈∀ b, x :: q b∧ all p x⇒ q (foldl f b x)〉〉

NB: all p, available for all instances of class Foldable, is the predicate associated to the
coreflexive T (p?) that relates a T-structure to itself if and only if all data in it satisfy
predicate p.

foldr. Repeating the above exercise for (7.3), on the right we get the same square as in
(7.4), but the side condition on the left is different:

A

g

��

X

f

��

R��

⊆
BB Y Y

SS
��

⇒
B

foldr g

��

Y

foldr f

��

S��

⊆
BT A YT X

ST R
��

(7.6)

For R, S := id, h, such a side-condition square unfolds to:

g (id→ hh) f

≡ { (5.2) }
(g x) hh (f x)

≡ { (4.17) }
(g x) · h= h · (f x)

Altogether, one gets:

(g x) · h= h · (f x) =⇒ foldr g · h= (h·) · foldr f (7.7)

Going fully pointwise,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

18 J. N. Oliveira

g x (h y)= h (f x y) ⇒ h (foldr f e xs)= foldr g (h e) xs (7.8)

one obtains the fusion law of foldr proved for finite lists (by induction) by Bird & Gibbons
(2020). Again we stress that (7.7) is a corollary of a free theorem and needs no proof,
holding for all instances of class Foldable.

Furthermore, by swapping the roles of R and S and making S, R := id, h, the side-
condition square of (7.6) becomes g (idh) f which, by (4.17) is f = g · h. Replacing f in
the right square we get

foldr g ⊆ idT h · foldr (g · h)

≡ { (4.13) }
foldr g ⊆ (·T h)◦ · foldr (g · h)

≡ { shunting (3.3); (3.5) }
(·T h) · foldr g= foldr (g · h)

≡ { go pointwise on e }
foldr g e ·T h= foldr (g · h) e (7.9)

Law (7.9) is often referred to as the absorption law of “fmap” (T h) by foldr. It is
another corollary of free theorem (7.6) and therefore none of its instances in the Foldable
class needs a proof. The default implementation of foldMap in Data.Foldable arises
from (7.9).

Maybe. Just to give an example of (7.8) holding for instances of class Foldable other than
lists, let us check the Maybe instance defined in Data.Foldable, with respect to (7.7):

instance Foldable Maybe where
foldMap=maybe mempty
foldr f z Nothing= z
foldr f z (Just x)= f x z
foldl f z Nothing= z
foldl f z (Just x)= f z x

We have two cases: for xs :=Nothing, the right square trivially reduces to h e= h e and
we are done. In the case xs := Just x, we have foldr f e (Just x) = f x e in (7.8) and
foldr g (h e) (Just x)= g x (h e). Then: g x (h y)= h (f x y) ⇒ h (f x e)= g x (h e) trivially
holds too.

Permutativity. Let f and g be the same function in (7.7), say s, and h := s a:

(s x) · (s a)= (s a) · (s x) ⇒ foldr s · (s a)= (s a·) · foldr s (7.10)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Foldable.html
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

Calculating functional programs with squares 19

Property (s x) · (s a)= (s a) · (s x) — i.e. the fully pointwise s x (s a y)= s a (s x y) — is
called (left) permutativity by Danvy (2023).16 It can be easily shown that if s is associative
and commutative then it is permutative:

s a (s x y)

= { associative }
s (s a x) y

= { commutative }
s (s x a) y

= { associative }
s x (s a y)

That is:

s a (s x y)= s x (s a y) ⇐ s is associative and commutative (7.11)

On the other hand, if s is permutative and has unit e, then s is commutative: s x (s a e)=
s a (s x e) and thus s x a= s a x.

8 Universal properties

Suppose a particular instance T of Foldable such that

foldr α γ = id (8.1)

holds, for some α and γ . By (7.6) the types are α : A→T A→T A and γ : T A. That is, α

and γ are constructors of type T A. Such is the case of lists, in which foldr (:) []= id, that
is, α = (:) and γ = [] in (8.1). Then one has the following corollary of (7.8):

g x (h y)= h (α x y) ⇒ h xs= foldr g (h γ) xs

which, by introducing z= h γ and dropping xs, becomes:{
h γ = z
h (α x y)= g x (h y)

⇒ h= foldr g z (8.2)

This means that, if γ and α exist such that (8.1) holds, by the free-theorem of foldr the
system of equations (in h){

h γ = z
h (α x y)= g x (h y)

16 Left permutativity is also called left-commutativity in the literature, see e.g. Schropp & Popescu (2013).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

20 J. N. Oliveira

has a unique solution, h= foldr g z. Since foldr g z satisfies the equations for which it is a
solution, then{

foldr g z γ = z
foldr g z (α x y)= g x (foldr g z y)

(8.3)

hold, unveiling the definition of foldr itself. Moreover, this definition is mathematically
equivalent to (just replace h by foldr g z and simplify):

h= foldr g z ⇒
{

h γ = z
h (α x y)= g x (h y)

(8.4)

Putting (8.2,8.4) together, we get the universal property of foldr,

h= foldr g z ≡
{

h γ = z
h (α x xs)= g x (h xs)

(8.5)

which, for lists, is

h= foldr g z ≡
{

h []= z
h (x : xs)= g x (h xs)

(8.6)

cf. e.g. Hutton (1999).

9 Is foldl equal to foldr?

Looking at (7.1), the type-wise distance between foldr and foldl is the flip (6.3) of the first
parameter.17 So the “best fit” one can aim at here is

foldl f
?= foldr f̃ (9.1)

possibly valid for (as wide as possible) a class of functions f and instances of class
Foldable.

Our first step is to conjecture a definition for foldl that is type-wise consistent (over the
Foldable class) with (8.3) which — recall — was derived from the free-theorem of foldr.
A possibility is to involve foldr itself in the definition. Looking at the flipped f in (9.1),

which is of type A→ BB, one can think of expressing̃ foldl f : T A→ BB by a higher-order
fold:

f̃oldl f = foldr (θ f) id (9.2)

where (θ f) a g= g · (̃f a)

Note the type θ f : A→ (BB)
(BB)

for f : B→ BA.

17 Danvy (2023), who gives a brief history of folding left and right over lists, is somewhat critical about this
mismatch of types between the two fold-combinators.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

Calculating functional programs with squares 21

Next, we unfold (9.2) via universal property (8.5). For easier reference, we instantiate
(with no loss of generality) γ and α for lists, as these are very well known to functional
programmers:

f̃oldl f = foldr (θ f) id

≡ { (8.5) }{̃
foldl f []= id

f̃oldl f (x : xs)= (θ f) x (̃foldl f xs)

≡ { (9.2) }{̃
foldl f []= id

f̃oldl f (x : xs)= (̃foldl f xs) · (̃f x)

≡ { go pointwise on z and unfold the flips }{
foldl f z []= z
foldl f z (x : xs)= foldl f (f z x) xs

This confirms the standard definition of foldl for lists.

Universal-foldl. An advantage of defining foldl “as a foldr” (9.2) is that the universal
property of the latter induces the universal property of the former:18

k = foldl f

≡ { (9.2) ; isomorphism flip_ }
k̃ = foldr (θ f) id

≡ { universal-foldr (8.6) }{
k̃ []= id
k̃ (h : t)= (θ f) h (̃k t)

≡ { introduce z and flip }{
k z []= z
k z (h : t)= (θ f) h (̃k t) z

≡ { (θ f) x g= g · (̃f x) (9.2) }{
k z []= z
k z (h : t)= k̃ t (f z h)

≡ { flipping }{
k z []= z
k z (h : t)= k (f z h) t

18 Again we stay with lists for easier reference.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

22 J. N. Oliveira

Thus we get the universal-property of foldl:

k = foldl f ≡
{

k z []= z
k z (h : t)= k (f z h) t

(9.3)

Equating foldl and foldr. Next we address the question (9.1) that opened this section:

under what conditions does foldl f = foldr f̃ hold? We can use foldl-universal (9.3) to find
an answer:

foldl f = foldr f̃

≡ { (9.3) }{
foldr f̃ z []= z

foldr f̃ z (h : t)= foldr f̃ (f z h) t

≡ { flipping f z h }{
foldr f̃ z []= z

foldr f̃ z (h : t)= foldr f̃ (̃f h z) t

≡ { resort to (7.10) by assuming permutativity: (̃f x) · (̃f a)= (̃f a) · (̃f x) }{
foldr f̃ z []= z

foldr f̃ z (h : t)= f̃ h (foldr f̃ z t)

≡ { (8.3) }
TRUE

We conclude that foldl f = foldr f̃ holds for the instances of class Foldable such that

(8.1) holds, provided that f̃ is a permutative operation (recall Section 7).

The usual assumption that foldl f e and foldr f̃ e are the same for f associative and e
its unit19 is therefore too strong. By (7.11) we know that associativity and commutativity
ensure permutativity.20 However, the converse implication does not hold, take e.g. f = (÷)
(5.9) as counter-example: neither (÷) nor (̃÷) are associative or commutative, and yet (̃÷)
is permutative. Why? Let us check it by indirect equality (Dijkstra, 2001):

y � f̃ a (̃f b x)

≡ { f x y= x÷ y in this case }
y � (x÷ b)÷ a

≡ { Galois connection (5.9) twice }

19 See e.g. exercise 1.10 of Bird & Gibbons (2020).
20 Also easy to show is that flipping preserves commutativity and associativity.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

Calculating functional programs with squares 23

(y× a)× b � x

≡ { (×) is associative and commutative }
(y× b)× a � x

≡ { Galois connection (5.9) twice in the opposite direction }
y � (x÷ a)÷ b

≡ { f x y= x÷ y in this case }
y � f̃ b (̃f a x)

:: { by indirect equality (Dijkstra, 2001) }
f̃ a (̃f b x)= f̃ b (̃f a x)

Also to be noted, the second parameter e remains unconstrained in both folds. For example:

foldl (÷) 100, 000 [99, 2, 7]= 72= foldr (̃÷) 100, 000 [99, 2, 7]

foldl (÷) 10, 000 [99, 2, 7]= 7= foldr (̃÷) 10, 000 [99, 2, 7]

Of course, the previous calculation can generalize to any Galois connection f � g.
Altogether, we have that foldr g̃= foldl g is granted for those g that, being neither
associative nor commutative, participate in an adjunction f � g whose other adjoint is so.

10 Summary and discussion

This article addresses the use of relational, pointfree techniques in reasoning about func-
tional programs. In particular, it shows the role of relational semi-commutative squares
(suggestively referred to as “magic” squares) in expressing (and reasoning about) formal
concepts relevant to computing and, in particular, to FP. By switching to relational types
one gets a quite rich setting in which programming and expressing properties of programs
blend naturally.21 The calculation of “theorems-for-free” is given as an application of this,
in particular used to infer conditions for the combinators foldl f e and foldr f̃ e to compute
the same output for any e.

This research shares much with the work of Backhouse & Backhouse (2004), who give
perhaps the most impressive account of the power of free-theorems of all literature on the
subject, contributing with sharp results on the role of Galois connections in (higher-order)
abstract interpretation. Such a paper is, however, not an easy read for the average func-
tional programmer. The (less ambitious) approach proposed in the current paper bears in
mind the need to make such fantastic results more and more accessible to the programming
community.

There is a sharp contrast between the effectiveness of relational reasoning in the style of
e.g. Bird & de Moor (1997) and Backhouse & Backhouse (2004) and the low popularity of

21 More examples could have been given of such squares and relational types, for instance order-preserving
multifunctions (Smithson, 1971), i.e. isotone relations (Walker, 1984), and metamorphic relations, which are
at the core of metamorphic testing (Zhou et al., 2020).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

24 J. N. Oliveira

the methodology. This is rather unfortunate. Having decided to teach such relational meth-
ods to computer science students two decades ago, the author has invested into widening
scope and applying such a reasoning style to areas such as database programming, formal
modeling and, of course, functional programming (Oliveira, 2024). In this process, dia-
grams have proved very effective as a device enhancing the perception of the information
flow and of how the overall reasoning is conducted. Thus magic squares (MS) emerged
as a simple, yet very powerful design unit of a pointfree, relational approach to formal
reasoning.

Relational exponentiation SR plays a major role in the way higher-order functions are
handled. By MS vertical composition (2.4), one immediately infers that, as expected, it is
monotone on the base and anti-monotonic on the exponent:

{
R′ ⊆ R
S ⊆ S′

=⇒ SR ⊆ S′R
′

We also know that idid = id (4.14). By horizontal composition (2.3), we get

SR · S′R′ ⊆ (S · S′)(R·R′) (10.1)

However, the converse inclusion does not hold and so relational exponentiation is not in
general a (bi)relator.22 Backhouse & Backhouse (2004) give conditions for strengthening
(10.1) to an equality that include the cases involving functions and converses of functions
used in this paper.

Functional programmers have realized that many abstract concepts they love have a
categorical nature. This has led to a strong focus on explaining the whole paradigm in cat-
egorial terms, see e.g. Hinze et al. (2015) — a trend that of course includes the today so
important concept of a monad (Wadler, 1990; Moggi, 1991; Gibbons & Hinze, 2011). It
all happened as if, in a sense, FP eventually came to rescue category theory from being
considered by the programming community as mere abstract nonsense, with no practi-
cal application. In this setting, theorems-for-free have been formalized via (lax) dinatural
transformations (Hackett & Hutton, 2015; Voigtländer, 2019) in order-enriched categories.
We believe that the category of relations, which is “naturally” ordered by relation inclu-
sion, provides an overall simpler approach, much in the spirit of the quote by Freyd &
Scedrov (1990) that opens this paper.

Framed in this trend, the foldl / foldr case study could have been given as a pointfree
calculation carried out via the adjoint-fold theorem (Hinze, 2013; Oliveira, 2023) and
enabled by the self-adjunction witnessed by flip23 — as in a similar calculation con-
cerning left and right-iteration (Oliveira, 2020). It should be noted that knowing that
permutativity is enough for foldr/foldl “equality” is not new — see e.g. Danvy (2023).
Danvy’s reasoning is, however, quite different: he postulates permutativity as a side con-
dition and then proves it in Coq by induction on lists. In this paper, permutativity arises

22 In a sense, relational exponentiation can be regarded as a “lax (bi)relator”.
23 It must be said that this is where (9.2) comes from.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

Calculating functional programs with squares 25

by free-theorem calculation. Moreover, it shows that Danvy’s result can be extended via
Galois connections.24

The generic approach to this case study given in the current paper throws attention to the
Foldable class of the Haskell standard library system. The permutativity of f that grants

the foldl f = foldr f̃ outcome “for-free” is not alone: a reflection constraint (8.1) is also
needed. This constraint is quite strong in the sense of identifying the type constructors γ

and α of the particular Foldable instance in hands. The types of α and γ in (8.1) clearly
point to lists as being the prototypical instance of the class.

It is not difficult to find instances of class Foldable that do not meet reflection con-
straint (8.1) and for which the foldl / foldr result cannot be obtained as in the current
paper. Interestingly enough, foldl f e= foldr f̃ e seems to be granted across the class as

an axiom, that is, foldl f e= foldr f̃ e is the default definition of foldl, assuming foldr
defined. Studying this better and applying the same kind of reasoning to other classes of
the Haskell standard libraries is a topic for future research.

Acknowledgments

This work was supported by National Funds through the FCT – Fundação para a Ciência
e a Tecnologia, I.P. (Portuguese Foundation for Science and Technology) within the IBEX
project, with reference PTDC/CCI-COM/4280/2021.

Competing interests

The author reports no conflict of interest.

References

Backhouse, K. & Backhouse, R. C. (2004) Safety of abstract interpretations for free, via logical
relations and Galois connections. SCP 15(1–2), 153–196.

Backhouse, R. C. (1990) On a relation on functions. In Beauty is our Business: A Birthday Salute to
Edsger W. Dijkstra. New York, NY, USA: Springer-Verlag, pp. 7–18.

Baquero, C., Almeida, P. S. & Shoker, A. (2014) Making operation-based CRDTs operation-based.
In Distributed Applications and Interoperable Systems, Magoutis, K. & Pietzuch, P. (eds), Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 126–140.

Barbosa, L. S., Oliveira, J. N. & Silva, A. M. (2008) Calculating invariants as coreflexive
bisimulations. In AMAST’08, LNCS, vol. 5140. Springer-Verlag, pp. 83–99.

Bird, R. & de Moor, O. (1997) Algebra of Programming. Prentice-Hall. ISBN: 978-0-13-507245-5.
Bird, R. & Gibbons, J. (2020) Algorithm Design with Haskell. Cambridge University.
Damas, L. & Milner, R. (1982) Principal type-schemes for functional programs. In Proceedings

of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’82. New York, NY, USA: ACM, pp. 207–212. ISBN 0-89791-065-6.

Danvy, O. (2023) Folding left and right matters: Direct style, accumulators, and continuations.
J. Funct. Program. 33, e2.

24 It is worth studying permutativity in its own right, as it seems to play a role also in other research areas, for
instance replicated datatypes (CRDTs) (Baquero et al., 2014) and protocols such as the Diffie-Hellman key
exchange (Merkle, 1978).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

26 J. N. Oliveira

de Bakker, J. & de Roever, W. P. A Calculus for Recursive Program Schemes. Stichting
Mathematisch Centrum Tec. Report 131/72, Amsterdam. https://ir.cwi.nl/pub/9145,
January 1972.

Dijkstra, E. W. (2001) Indirect Equality Enriched. Technical note EWD 1315-0.
Freyd, P. J. & Scedrov, A. (1990) Categories, Allegories, Mathematical Library, vol. 39. North-

Holland. ISBN: 9780444703682.
Gibbons, J. & Hinze, R. (2011) Just do it: Simple monadic equational reasoning. In Proceedings

of the 16th ACM SIGPLAN International Conference on Functional Programming, ICFP’11.
New York, NY, USA: ACM, pp. 2–14.

Hackett, J. & Hutton, G. (2015) Programs for cheap! In LICS 2015. IEEE Computer Society, pp.
115–126.

Hinze, R. (2013) Adjoint folds and unfolds — an extended study. SCP 78(11), 2108–2159.
Hinze, R., Wu, N. & Gibbons, J. (2015) Conjugate hylomorphisms – or: The mother of all structured

recursion schemes. In POPL’15. New York, NY, USA: ACM, pp. 527–538.
Hutton, G. (1999) A tutorial on the universality and expressiveness of fold. J. Funct. Program. 9(4),

355–372.
Lämmel, R. (2008) Google’s MapReduce programming model - Revisited. Sci. Comput. Program.

70(1), 1–30.
Merkle, R. C. (1978) Secure communications over insecure channels. Commun. ACM 21(4),

294–299.
Moggi, E. (1991) Notions of computation and monads. Inf. Comput. 93(1), 55–92.
Mu, S.-C. & Oliveira, J. N. (2011) Programming from Galois connections. In RAMiCS, de Swart,

H. (ed.), LNCS, vol. 6663, pp. 294–313.
Neri, A., Barbosa, R. S. & Oliveira, J. N. (2022) Compiling quantamorphisms for the IBM Q

experience. IEEE Trans. Software Eng. 48(11), 4339–4356.
Oliveira, J. N. (2009) Extended static checking by calculation using the pointfree transform. LNCS,

vol. 5520. Springer-Verlag, pp. 195–251.
Oliveira, J. N. (2020) A Note on the Under-Appreciated for-Loop. Technical Report TR-

HASLab:01:2020 (PDF), HASLab/U.Minho and INESC TEC.
Oliveira, J. N. (2023) Why adjunctions matter—a functional programmer perspective. In WADT’22,

Madeira, A. & Martins, M. A. (eds), LNCS, pp. 25–59.
Oliveira, J. N. (2024) Program Design by Calculation. Unpublished book draft, Sep. 2024.

Informatics Dept., U.Minho (PDF).
Oliveira, J. N. and Ferreira, M. A. (2013) Alloy meets the algebra of programming: A case study.

IEEE Trans. Soft. Eng. 39(3), 305–326.
Plotkin, G., Power, J., Sannella, D. & Tennent, R. (2000) Lax logical relations. In Automata,

Languages and Programming, Montanari, U., Rolim, J. D. P. & Welzl, E. (eds). Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 85–102.

Reynolds, J. C. (1983) Types, abstraction and parametric polymorphism. Inf. Process., 83, 513–523.
Sangiorgi, D. (2004) Bisimulation: From the origins to today. In LICS. IEEE Computer Society,

pp. 298–302.
Schropp, A. & Popescu, A. (2013) Nonfree datatypes in Isabelle/HOL. In Certified Programs and

Proofs, Gonthier, G. & Norrish, M. (eds). Springer International Publishing, pp. 114–130. ISBN
978-3-319-03545-1.

Smithson, R. E. (1971) Fixed points of order preserving multifunctions. Proc. Am. Math. Soc. 28
(1), 304–310.

Voigtländer, J. (2009) Bidirectionalization for free! (Pearl). In POPL 2009, Shao, Z. & Pierce, B. C.
(eds). ACM, pp. 165–176.

Voigtländer, J. (2019) Free theorems simply, via dinaturality. arXiv cs.PL 1908.07776.
von Karger, B. (1998) Temporal algebra. Math. Struct. Comput. Sci. 8(3), 277–320.
Wadler, P. L. (1989) Theorems for free! In 4th International Symposium on Functional Programming

Languages and Computer Architecture, London. ACM, pp. 347–359.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://ir.cwi.nl/pub/9145
https://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1315.PDF
https://www.di.uminho.pt/~jno/ps/haslabtr202010.pdf
http://www.di.uminho.pt/~jno/ps/pdbc.pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

Calculating functional programs with squares 27

Wadler, P. L. (1990) Comprehending monads. In Proceedings of the 1990 ACM Conference on Lisp
and Functional Programming, Nice, France.

Wadler, P. L. (2015) Propositions as types. Commun. ACM 58(12), 75–84.
Walker, J. W. (1984) Isotone relations and the fixed point property for posets. Discrete Math. 48(2),

275–288. ISSN 0012-365X.
Zhou, Z. Q., Sun, L., Chen, T. Y. & Towey, D. (2020) Metamorphic relations for enhancing system

understanding and use. IEEE Trans. Softw. Eng. 46(10), 1120–1154.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825000012
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 13 Jul 2025 at 19:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825000012
https://www.cambridge.org/core

	Functional Pearl
	Introduction
	``Magic'' squares
	Functions
	Reynolds squares
	More on Reynolds square expressiveness
	Free theorem squares
	foldl and foldr
	Universal properties
	Is foldl equal to foldr?
	Summary and discussion

