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Abstract

Let g be a nontrivial odd prime power, and let n > 2 be a natural number with (n, g) # (2, 3). We characterize the
groups PSL,(q) and PSU,(q) by their 2-fusion systems. This contributes to a programme of Aschbacher aiming
at a simplified proof of the classification of finite simple groups.
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1. Introduction

The classification of finite simple groups (CFSG) is one of the greatest achievements in the history
of mathematics. Its proof required around 15,000 pages and spreads out over many hundred articles
in various journals. Many mathematicians from all over the world were involved in the proof, whose
final steps were published in 2004 by Aschbacher and Smith, after it was prematurely announced as
finished already in 1983. Because of its extreme length, a simplified and shortened proof of the CFSG
would be very valuable. There are three programmes working towards this goal: the Gorenstein—Lyons—
Solomon programme (see [26]), the Meierfrankenfeld—Stellmacher—Stroth programme (see [43]) and
Aschbacher’s programme.

The goal of Aschbacher’s programme is to obtain a new proof of the CFSG by using fusion systems.
The standard examples of fusion systems are the fusion categories of finite groups over p-subgroups (p
a prime). If G is a finite group and S is a p-subgroup of G for some prime p, then the fusion category of
G over S is defined to be the category Fs(G) given as follows: The objects of Fs(G) are precisely the
subgroups of S, the morphisms in F5(G) are precisely the group homomorphisms between subgroups
of S induced by conjugation in G and the composition of morphisms in Fg(G) is the usual composition
of group homomorphisms. Abstract fusion systems are a generalization of this concept. A fusion system
over a finite p-group S, where p is a prime, is a category whose objects are the subgroups of S and
whose morphisms behave as if they are induced by conjugation inside a finite group containing S as a
p-subgroup. For the precise definition, we refer to [10, Part I, Definition 2.1]. A fusion system is called
saturated if it satisfies certain axioms motivated by properties of fusion categories of finite groups
over Sylow subgroups (see [10, Part I, Definition 2.2]). If G is a finite group and Sy, S» € Syl ,(G) for
some prime p, then Fs, (G) and Fs, (G) are easily seen to be isomorphic (in the sense of [11, p. 560]).
Given a finite group G, a prime p and a Sylow p-subgroup S of G, we refer to Fs(G) as the p-fusion
system of G.

Originally considered by the representation theorist Puig, fusion systems have become an object of
active research in finite group theory, representation theory and algebraic topology. It has always been
a problem of great interest in the theory of fusion systems to translate group-theoretic concepts into
suitable concepts for fusion systems. For example, there is a notion of normalizers and centralizers of p-
subgroups in fusion systems, a notion of the center of a fusion system, a notion of factor systems, a notion
of normal subsystems of saturated fusion systems and a notion of simple saturated fusion systems (see
[10, Parts I and II]). Roughly speaking, Aschbacher’s programme consists of the following two steps.

1. Classify the simple saturated fusion systems on finite 2-groups. Use the original proof of the CFSG
as a ‘template’.
2. Use the first step to give a new and simplified proof of the CFSG.

There is the hope that several steps of the original proof of the CFSG become easier when working
with fusion systems. For example, in the original proof of the CFSG, the study of centralizers of
involutions plays an important role. The 2’-cores of the involution centralizers, i.e., their largest normal
odd order subgroups, cause serious difficulties and are obstructions to many arguments. Such difficulties
are not present in fusion systems since cores do not exist in fusion systems. This is suggested by the
well-known fact that the 2-fusion system of a finite group G is isomorphic to the 2-fusion system of
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G/0(G), where O(G) denotes the 2’-core of G. For an outline of and recent progress on Aschbacher’s
programme, we refer to [7].

So far, Aschbacher’s programme has focused mainly on Step 1, while not much has been done on
Step 2. An important part of Step 2 is to identify finite simple groups from their 2-fusion systems.
The present paper contributes to Step 2 of Aschbacher’s programme by characterizing the finite simple
groups PSL,(g) and PSU,(g) in terms of their 2-fusion systems, where n > 2 and where ¢ is a
nontrivial odd prime power with (n, ¢) # (2, 3).

In order to state our results, we introduce some notation and recall some definitions. Let G be a
finite group. A component of G is a quasisimple subnormal subgroup of G, and a 2-component of G
is a perfect subnormal subgroup L of G such that L/O(L) is quasisimple. The natural homomorphism
G — G/O(G) induces a one-to-one correspondence between the set of 2-components of G and the set
of components of G/O(G) (see [27, Proposition 4.7]). We use Z*(G) to denote the full preimage of the
center Z(G/O(G)) in G. In Step 2 of Aschbacher’s programme, one may assume that a finite group G
is a minimal counterexample to the CFSG. Such a group G has the following property.

Whenever x € G is an involution and Jis a 2-component of Cg (x), CK)
then J/Z*(J) is a known finite simple group.

By a known finite simple group, we mean a finite simple group appearing in the statement of the
CFSG.

For each integer n # 0, we use ny to denote the 2-part of n, i.e., the largest power of 2 dividing
n. Given odd integers a, b with |a|, |b| > 1, we write a ~ b provided that (a — 1), = (b — 1), and
(a+ 1), = (b+1),.If g is a nontrivial prime power and if n is a positive integer, then we write PSL} (g)
for PSL,(q) and PSL; (g) for PSU,(q). With this notation, we can now state our main results.

Theorem A. Let g be a nontrivial odd prime power, and let n > 2 be a natural number. Let G be a finite
simple group. Suppose that G satisfies (CIC) if n > 6. Then the 2-fusion system of G is isomorphic to the
2-fusion system of PSL;(q) if and only if one of the following holds:

(1) G = PSLZ(q") for some nontrivial odd prime power q* and some € € {+, -} with eq* ~ q;
(i) n=2, |PSLy(q)p =8, and G = A7;
(i) n=3,(g+ 1), =4, and G = M.

Our second main result is an extension of Theorem A. In order to state it, we briefly mention some
concepts from the local theory of fusion systems. Let F be a saturated fusion system on a finite p-
group S for some prime p, and let £ be a normal subsystem of F. In [6, Chapter 6], Aschbacher
introduced a subgroup Cs(&) of S, which plays the role of the centralizer of £ in S. In [6, Chapter 9],
he defined a normal subsystem F*(F) of F, called the generalized Fitting subsystem of F, and proved
that Cs(F*(F)) = Z(F*(F)), where the latter denotes the center of F*(F).

Theorem B. Let g be a nontrivial odd prime power, and let n > 2 be a natural number. If n = 2,
suppose that g = 1 or 7 mod 8. Let G be a finite simple group, and let S be a Sylow 2-subgroup of G.
Suppose that Fs(G) has a normal subsystem € on a subgroup T of S such that £ is isomorphic to the 2-
fusion system of PSL,,(q) and such that Cs(E) = 1. Then Fs(G) is isomorphic to the 2-fusion system of
PSL,,(q). In particular, ifn < 5 orif G satisfies (CKC), then one of the properties (i)—(iii) from Theorem A
holds.

Corollary C. Let g be a nontrivial odd prime power, and let n > 2 be a natural number. If n = 2,

suppose that ¢ = 1 or 7 mod 8. Let G be a finite simple group, and let S be a Sylow 2-subgroup of G.
Suppose that F*(Fs(G)) is isomorphic to the 2-fusion system of PSL,,(q). Then Fs(G) is isomorphic
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to the 2-fusion system of PSL, (q). In particular, ifn < 5 or if G satisfies (CIC), then one of the properties
(i)—(iii) from Theorem A holds.

Plan of the Paper

In Sections 2 and 3, we collect several results needed for the proofs of our main results. Preliminary
results on abstract finite groups and abstract fusion systems are proved in Section 2. Section 3 presents
some results on linear and unitary groups over finite fields, mainly focusing on 2-local properties and
on the automorphisms of these groups.

In Section 4, we will verify Theorem A for the case n < 5. Our proofs strongly depend on work of
Gorenstein and Walter [30] (for n = 2), on work of Alperin, Brauer and Gorenstein [1], [2] (for n = 3)
and on work of Mason [40], [41], [42] (forn =4 and n = 5).

For n > 6, we will prove Theorem A by induction over n. In order to do so, we will consider a finite
group G realizing the 2-fusion system of PSL,,(g), where g is a nontrivial odd prime power and where
n > 6is a natural number such that Theorem A is true with m instead of n for any natural number m with
6 < m < n. We will also assume that O(G) = 1 and that G satisfies (C/C). To prove that Theorem A is
satisfied for the natural number n, we will prove the existence of a normal subgroup Gg of G such that
Gy is isomorphic to a nontrivial quotient of SLZ (¢*) for some nontrivial odd prime power ¢* and some
& € {+, -} with eg* ~ ¢. This will happen in Sections 5-8.

In Section 5, we will introduce some notation and prove some preliminary lemmas. Section 6
describes the 2-components of the centralizers of involutions of G. In Section 7, we will use signalizer
functor methods to describe the components of the centralizers of certain involutions of G. This will be
used in Section 8 to construct the subgroup G of G. One of the main tools here will be a version of the
Curtis—Tits theorem [29, Chapter 13, Theorem 1.4] and a related theorem of Phan reproved by Bennett
and Shpectorov in [13].

Finally, in Section 9, we will give a full proof of Theorem A (basically summarizing Sections 4-8),
and we will prove Theorem B and Corollary C.

Notation and Terminology

Our notation and terminology are fairly standard. The reader is referred to [23], [27], [37] for unfamiliar
definitions on groups and to [10], [18] for unfamiliar definitions on fusion systems.

However, we shall now explain some particularly important notation and definitions (before stating
our main results, we already introduced some other important definitions).

Given amap @ : A — B and an element or a subset X of A, we write X for the image of X under a.
Also, if C € Aand D € B such that C* C D, we use a|c,p to denote the map C — D, c — ¢®. Given
twomaps @ : A — Band 8 : B — C, we write @8 for the map A — C,a — (a®)P.

Sometimes, we will interpret the symbols + and — as the integers 1 and —1, respectively. For example,
if n is an integer and if £ is assumed to be an element of {+, —}, then n = £ mod 4 shall express that
n=1mod4ife=+andthatn = -1 mod4ife=-.

Let G be a finite group. We write G* for the set of nonidentity elements of G. Given an element g of G
and an element or a subset X of G, we write X& for g~! Xg. The inner automorphism G — G, x > x8 is
denoted by ¢, . For subgroups Q and H of G, we write Auty (Q) for the subgroup of Aut(Q) consisting
of all automorphisms of Q of the form cj|p,0, Where h € Ny (Q).

We write E (G) for the subgroup of G generated by the components of G and Ly (G) for the subgroup
of G generated by the 2-components of G. We say that G is core-free if O(G) = 1. If G is core-free and
if L is a subnormal subgroup of G, then L is said to be a solvable 2-component of G if L = SL,(3) or
PSL>(3).

Let n be a natural number. Then we use E»» to denote an elementary abelian 2-group of order 2",
and we say that n is the rank of E»». The maximal rank of an elementary abelian 2-subgroup of a finite
2-group S is said to be the rank of S. It is denoted by m(S).
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Now let p be a prime, and let F be a fusion system on a finite p-group S. Then S is said to be the
Sylow group of F, and F is said to be nilpotent if F = Fg(S). Given a fusion system JF; on a finite
p-group S, we say that F and JF; are isomorphic if there is a group isomorphism ¢ : § — S| such that

Homz, (0%, R?) = {(¢ ' |o¢,0)¥ (¢lr,r¢) | ¥ € Homz(Q,R)}

for all Q,R < S. In this case, we say that ¢ induces an isomorphism from F to F;. Let T be a
strongly F-closed subgroup of S, i.e., for any subgroup P of T and any @ € Homx (P, S), we have
P® < T.If Q and R are subgroups of S containing 7 and if @ : Q — R is a morphism in F, we write
a/T for the group homomorphism Q/T — R/T induced by «@. The fusion system F/T on S/T with
Homyg /7 (Q/T,R/T) = {e/T | @« € Homz(Q, R)} for all @, R < § containing T is said to be the factor
system of F modulo 7.

Suppose now that F is saturated. We write foc(F) for the focal subgroup of F and hnp(F) for
the hyperfocal subgroup of F. We say that F is quasisimple if F/Z(F) is simple and foc(F) = S.
A component of F is a subnormal quasisimple subsystem of F. Given a normal subsystem £ of S and
a subgroup R of S, we write ER for the product of £ and R, as defined in [6, Chapter 8].

2. Preliminaries on finite groups and fusion systems

In this section, we present some general results on finite groups and fusion systems.

2.1. Preliminaries on finite groups

Lemma 2.1 [37,3.2.8]. Let G be a finite group, and let N be a normal p’-subgroup of G for some prime
p. Set G := G/N. If R is a p-subgroup of G, then we have N(R) = NG (R) and Cgz(R) = Cg(R).

Corollary 2.2. Let G be a finite group, and let N be a normal p’-subgroup of G for some prime p. Set
G := G/N. Ifx € G has order p, then we have C(x) = Cg(x).

Lemma 2.3. Let G be a finite group, and let Z be a cyclic central subgroup of G. Then each Eg-subgroup
of G/Z has an involution which is the image of an involution of G.

Proof. Let Z < E < G such that E/Z = Eg. Let R be a Sylow 2-subgroup of E. Then E = RZ. It
suffices to show that R has an involution not lying in RN Z. Assume that any involution of R is an element
of RN Z. Then R has a unique involution since Z is cyclic. We have R/(RNZ) = RZ/Z = E|Z = Eg,
and so R is not cyclic. Applying [37, 5.3.7], we conclude that R is generalized quaternion. In particular,
Z(R) has order 2, and so we have R N Z = Z(R). Since R is a generalized quaternion group, R/Z(R)
is dihedral. In particular, E/Z = R/(R N Z) = R/Z(R) # Eg. This contradiction shows that R has an
involution not lying in R N Z, as required. O

The following proposition is well-known. We include a proof since we could not find a reference in
which it appears in the form given here.

Proposition 2.4. Let G be a finite group, and let N be a normal subgroup of G with odd order. If L is a
2-component of G, then LN /N is a 2-component of G /N. The map from the set of 2-components of G
to the set of 2-components of G | N sending each 2-component L of G to LN /N is a bijection. Moreover,
if N < K <G and KN is a 2-component of G /N, then O% (K) is the associated 2-component of G.

Proof. Let L be a 2-component of G. Hence, L is a perfect subnormal subgroup of G such that L/O(L)
is quasisimple. Clearly, LN /N is perfect and subnormal in G/N. Also, we have (LN/N)/O(LN/N) =
L/O(L),and so (LN/N)/O(LN/N) is quasisimple. It follows that LN /N is a 2-component of G/N.

Let N < K < G such that K/N is a 2-component of G/N. In order to prove the second statement
of the proposition, it is enough to show that there is precisely one 2-component L of G such that
LN/N =K/N.
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Since K/N is subnormal in G/N, we have that K is subnormal in G. Therefore, L := 0% (K) is
subnormal in G. Since O% (K/N) = K/N, we have that K/N = LN/N. Clearly, 0¥ (L) = L. We have
L/O(L) = (LN/N)/O(LN/N) = (K/N)/O(K/N), and so L/O(L) is quasisimple. Applying [27,
Lemma 4.8], we conclude that L is a 2-component of G.

Now let Ly be a 2-component of G such that K/N = LgN/N. Then K = LoN. In particular, Lg is
a subgroup of K with odd index in K. Since L is subnormal in G, we have that Ly is subnormal in
K. Applying [12, Lemma 1.1.11], we conclude that Ly = 0% (Ly) = O% (K) = L. The proof of the
second statement of the proposition is now complete. The third statement also follows from the above
arguments. m]

Lemma 2.5. Let G be a finite group, and let n be a positive integer. Assume that Ly, ..., L, are the
distinct 2-components of G, and assume that L; 4 G for all 1 <i < n. Let x be a 2-element of G, and
let L be a 2-component of Cg(x). Then L is a 2-component of Cyr,,(x) for some 1 < i < n.

Proof. Foreach 1 <i < n,let £; denote the set of 2-components of Cr,(x),andlet & :== 8, U... &,. It
suffices to show that L € L.

By [31, Corollary 3.2], we have Ly (Cg(x)) = L2 (Cp, (G)(x)), and by [31, Lemma 2.18 (iii)], we
have Ly (CLy (6)(x)) = 17, L (CL, (x)). Thus Ly (Co(x)) = (). Set €5 (x) = C6(x0)/0(Ca (x).

Assume that L ¢ £. Let J be an element of £. Since L # J and since L and J are 2-components
of Cs(x), we have L+J by Proposition 2.4. Also, since L and J are components of CG—(x), we have
[L,J] = 1by[37,6.5.3].Since L € E(Cg(x)) = Lo (Cg(x)) = (8) = (J | J € ), it follows that L lies
in the center of E(Cg (x)). This is impossible since L is nontrivial and perfect. So we have L € £. O

The concepts introduced by the following two definitions will play a crucial role in the proof of
Theorem A (see [31] for a detailed study of these concepts).

Definition 2.6. Let G be a finite group, & be a positive integer and A be an elementary abelian 2-subgroup
of G.

(i) For each nontrivial elementary abelian 2-subgroup E of G, we define

AG(E) = (] 0(Cs(a)),

acE*

(i) We say that G is k-balanced with respect to A if, whenever E is a subgroup of A of rank k and a is
a nontrivial element of A, we have

AG(E) N Cg(a) < O(Cg(a)).

(iii) We say that G is k-balanced if, whenever E is an elementary abelian 2-subgroup of G of rank k and
a is an involution of G centralizing E, we have

AG(E) N Cg(a) < O(Cg(a)).

(iv) By saying that G is balanced (respectively, balanced with respect to A), we mean that G is 1-
balanced (respectively, 1-balanced with respect to A).

Definition 2.7. Let G be a finite quasisimple group, and let k be a positive integer. Then G is said to be
locally k-balanced if whenever H is a subgroup of Aut(G) containing Inn(G), we have

Ap(E)=1

for any elementary abelian 2-subgroup E of H of rank k. We say that G is locally balanced if G is locally
1-balanced.
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We need the following proposition for the proof of Theorem A. It includes [31, Theorem 6.10] and
some additional statements, which should be also known. We include a proof for the convenience of the
reader.

Proposition 2.8. Let k be a positive integer, and let G be a finite group. For each elementary abelian
2-subgroup A of G of rank at least k + 1, let

Wa = (AG(E) | E < A,m(E) = k).

Then, for any elementary abelian 2-subgroup A of G of rank at least k + 1, the following hold:

(1) (Wa)8 =Wye forallg € G.

(ii) Suppose that A has rank at least k + 2 and that G is k-balanced with respect to A. Then W has
odd order. Moreover, if A is a subgroup of A of rank at least k + 1, then we have Wy = Wy, and
NG (Ap) £ Ng(Wa).

In order to prove Proposition 2.8, we need the following theorem.

Theorem 2.9 [31, Theorem 6.9]. Let k be a positive integer, G be a finite group and A be an elementary
abelian 2-subgroup of G of rank at least k + 2. Suppose that G is k-balanced with respect to A. Then we
obtain an A-signalizer functor on G (in the sense of [24, Definition 4.37]) by defining

0(Cg(a)) ={(Ag(E)NCg(a): E<A,m(E)=k)

for each a € A*.
We also need the following lemma.

Lemma 2.10. Let the hypothesis and notation be as in Theorem 2.9. Suppose that Ay is subgroup of A
of rank k + 1. Then we have

0(G,A) = (0(Cg(a)) | a € A*) = (AG(E) | E < Ag,m(E) = k) = Wa,.

Proof. To prove this, we follow arguments found on pp. 40—41 of [40].

Since 6 is an A-signalizer functor on G, 8(Cg(a)) is A-invariant and in particular Ag-invariant for
each a € A*. Consequently, (G, A) is Ap-invariant. By the solvable signalizer functor theorem [37,
11.3.2], 0 is complete (in the sense of [24, Definition 4.37]). In particular, 6(G, A) has odd order.
Applying [27, Proposition 11.23], we conclude that

0(G,A) =(Co(G,a)(E) | E < Ap,m(E) = k).

Since 6 is complete, we have Cy (G, a)(a) = 0(Cg(a)) for each a € A*. By definition of @ and since G
is k-balanced with respect to A, we have 8(Cg (a)) < O(Cg(a)) for each a € A*. So, if E is a subgroup
of Ag of rank k, then

Co.a(E) = () Coc.m(@) = (] 0(Ca(@) < )] 0(Cg(a)) = Ag(E).

acE* acE* acE*

It follows that 6(G, A) < Wy,
Let E < A with m(E) = k. Clearly, Ag(E) is A-invariant. As a consequence of [27, Proposition
11.23], we have

AG(E) = (AG(E) N Cg(a) | a € A%).

By definition of 6, we have Ag(E) N Cg(a) < 0(Cg(a)) for each a € A*. It follows that Ag(E) <
0(G, A). Consequently, W4, < 6(G, A). O
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Proof of Proposition 2.8. 1t is straightforward to verify (i).

To verify (ii), let A be an elementary abelian 2-subgroup of G of rank at least k + 2 such that G is
k-balanced with respect to A. Let 8 be the A-signalizer functor on G given by Theorem 2.9, and let
0(G, A) = (6(Cg(a)) | a € A*). As a consequence of Lemma 2.10, we have 6(G, A) = W4. By the
proof of Lemma 2.10, W4 = 6(G, A) has odd order.

Now let Ag be a subgroup of A of rank at least k + 1. By Lemma 2.10, W4 = 8(G, A) < Wa, < Wy,
and so Wy = Wy,. Finally, if g¢ € Ng(Ap), then (W4)8 = (Wa,)8 = W(ays = Wa, = Wy, and hence,
NG(Ag) < Ng(Wa). o

2.2. Preliminaries on fusion systems

Lemma 2.11. Let p be a prime, G be a finite group, N be a normal subgroup of G and S € Syl (G). Then
the canonical group isomorphism S/(S N N) — SN/N induces an isomorphism from Fs(G)/(SNN)
to ]:SN/N (G/N)

Proof. Let ¢ denote the canonical group isomorphism S/(S N N) — SN/N. Let P and Q be two
subgroups of S such that S N N is contained in both P and Q. Set P = P/(SNN),Q =Q/(SNN),
P:=PN/N and Q := ON/N. For any g € G, let g := gN. Moreover, define F := Fg(G)/(S N N) and
F = Fsn/n(G/N). Itis enough to show that

Homz(P, Q) = {(¢”' 5 p)a(¢l5.5) | @ € Homz(P,0)}.

Leta € Homf(f, Q). Then there exists g € G with P8 < Q and a = (cq|p,0)/(S N N). By a direct
calculation, (go‘l|§’ﬁ)a(<p|é’é) = C§|f>,é € Homz(P, Q).

Now leta € Homf(f_’, Q). Then there exists g € G with P* < Qanda = czlp o Clearly, P$ < ON.
Since S NN < Q, we have that Q is a Sylow p-subgroup of ON. Since P is a p-subgroup of QN, it
follows that there exists an element n € N with P8" < Q. Set a := (cgnlp,0)/(S N N). Then a direct
calculation shows that @ = (¢! Ip.3)a(¢l5.5) O
Corollary 2.12 [10, Part II, Exercise 2.1]. Let p be a prime, G be a finite group and S € Syl ,(G). Then
the canonical group isomorphism S — S = SO ' (G)/0 p(G) induces an isomorphism from Fs(G)
to F5(G/0p (G)).

Lemma 2.13. Let G be a finite group and S € Syl,(G). Then Z(Fs(G)) = S N Z*(G). In particular, if
Z*(G) is 2-closed, then Z(Fs(G)) =S N Z(G).

Proof. By Glauberman’s Z*-Theorem, more precisely by [22, Corollary 1], we have Z(Fs(G)) =
SN Z*(G). Assume now that Z*(G) is 2-closed, and let Sy := S N Z*(G). Then Sy < G and hence
[So,G] < So N [Z*(G),G] < So N O(G) = 1. Thus, Z(Fs(G)) = So = S N Z(G). O

Lemma 2.14. Let K| and K, be two quasisimple finite groups. If the 2-fusion systems of K and K, are
isomorphic, then the 2-fusion systems of K| /Z(K) and K, /Z(K3) are isomorphic.

Proof. Suppose that the 2-fusion systems of K| and K> are isomorphic. Let S; be a Sylow 2-subgroup
of K; and F; := Fs,(K;) fori € {1,2}. Since K and K, are quasisimple, we have Z*(K;) = Z(K;) for
i € {1,2}.So,by Lemma 2.13, we have Z(F;) = S;NZ(K;) fori € {1,2}. Since F| = F>, it follows that

Fi/(S1NZ(Ky)) = Fi/Z(F1) = F2/ Z(F2) = F2/(S2 N Z(K3)).

Applying Lemma 2.11, we may conclude that the 2-fusion system of K;/Z(K;) is isomorphic to the
2-fusion system of K /Z(K3). O

Lemma 2.15. Let S be a finite 2-group, and let A and B be normal subgroups of S such that S is the
internal direct product of A and B. Suppose that A = Qg. Let F be a (not necessarily saturated) fusion
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system on S. Assume that A and B are strongly F-closed and that there is an automorphism « € Autz(S)
such that a|a_a has order 3, while a|p.g = idp. Then each strongly F-closed subgroup of S contains or
centralizes A.

Proof. Let C be a strongly F-closed subgroup of S not containing A. Our task is to show that C
centralizes A.

Since A and C are strongly F-closed, we have that A N C is strongly F-closed. In particular, «
normalizes A N C. An automorphism of A = Qg of order 3 is irreducible on A/®(A). So, as |4 4 has
order 3 and normalizes A N C, we have that A N C has order 1 or 2.

By [37, 8.2.7], we have

[C. ()] = [[C.{)]. ()]

By hypothesis [S,a] = A, s0 [C,a] < [S,e¢]NC =ANC.As|ANC| <2,[ANC,a] =1, s0
[C,a] =[C,a,a] =[ANC,a] =1.Hence, C < Cs(a) =Z(A)B =Cs(A). |

We need the following definition in order to state the next proposition.

Definition 2.16. A nonabelian finite simple group G is said to be a Goldschmidt group provided that
one of the following holds:

(1) G has an abelian Sylow 2-subgroup.
(2) G isisomorphic to a finite simple group of Lie type in characteristic 2 of Lie rank 1.

Proposition 2.17. Let G be a finite group, and let S be a Sylow 2-subgroup of G. Assume that, for each
2-component L of G, the factor group L|Z*(L) is a known finite simple group. Let &y denote the set of
2-components L of G such that L/Z* (L) is not a Goldschmidt group. Then the following hold:

(i) Let L be a 2-component of G. Then Fsnr,(L) is a component of Fs(G) if and only if L € £y.
(ii) The map from Ly to the set of components of Fs(G) sending each element L of 8y to Fsnr (L) is
a bijection.

Proof. Let L be a 2-component of G. Set G := Fgnr(L). Since L is subnormal in G, we have that G is
subnormal in Fg(G) (see [10, Part I, Proposition 6.2]). Therefore, G is a component of Fg(G) if and
only if G is quasisimple. We have foc(G) = SN L’ = SN L by the focal subgroup theorem [23, Chapter
7, Theorem 3.4], and so G is quasisimple if and only if G/Z(G) is simple. By Lemma 2.13, we have
Z(G) =8SNZ*(L). Lemma 2.11 implies that G/Z(G) is isomorphic to the 2-fusion system of L/Z*(L).
By [9, Theorem 5.6.18], the 2-fusion system of L/Z*(L) is simple if and only if L € £y. So G is a
component of Fs(G) if and only if L € £y, and (i) holds.

(ii) follows from [8, (1.8)]. ]

Lemma 2.18. Let G be a finite group with O(G) = 1, and let S be a Sylow 2-subgroup of G. Let n > 1
be a natural number, and let Ly, ..., L, be pairwise distinct subgroups of G such that L; is either a
component or a solvable 2-component of G for each 1 <i < n.SetQ :=(SNLy)---(SNLy,). Assume
that Q is strongly closed in S with respect to Fs(G) and that Fs(G)/Q is nilpotent. Then, if Ly is a
component or a solvable 2-component of G, we have Ly = L; for some 1 <1i < n.

Proof. Let L*(G) denote the subgroup of G generated by the components and the solvable 2-components
of G. By [37, 6.5.2] and [27, Proposition 13.5], L*(G) is the central product of the subgroups of G
which are components or solvable 2-components. Set L := Ly --- L, < L5(G).

LetG := Fsnrs(c)(L*(G)).Clearly, SNL = (SNLy)---(SNLy,) = Q. Lemma 2.11 implies that the
2-fusion system of L*(G)/L is isomorphic to G/Q. By hypothesis, Fs(G)/Q is nilpotent, and so G/Q
is nilpotent. So the 2-fusion system of L*(G)/L is nilpotent. Applying [39, Theorem 1.4], we conclude
that L*(G)/L is 2-nilpotent.

Suppose Ly # L; for any 1 < i < n. Then from paragraph one, L centralizes L, so LN Ly < Z(Lyg),
and hence, LoL/L = Lo/(LN Ly) is quasisimple, A4, or SL»(3). In particular, LoL/L is not 2-nilpotent,
a contradiction. O
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Corollary 2.19. Let G be a finite group, and let S be a Sylow 2-subgroup of G. Let n > 1 be a natural
number, and let Ly, . .., L, be pairwise distinct 2-components of G. Assume that Q := (SNLy)--- (SN
L,,) is strongly closed in S with respect to Fs(G) and that Fs(G)/Q is nilpotent. Then, if Ly is a
2-component of G, we have Ly = L; for some 1 <i < n.

Proposition 2.20. Let p be a prime, and let £ be a simple saturated fusion system on a finite p-group T.
Suppose that & is tamely realized (in the sense of [3, Section 2.2]) by a nonabelian known finite simple
group K such that Out(K) is p-nilpotent. Assume moreover that G is a nonabelian finite simple group
containing a Sylow p-subgroup S of G with T < S such that £ < Fs(G) and Cs(E) = 1. Then Fs(G)
is tamely realized by a subgroup L of Aut(K) containing Inn(K) such that the index of Inn(K) in L is
coprime to p.

Proof. Set F := Fs(G). By aresult of Bob Oliver, namely by [44, Corollary 2.4], F is tamely realized
by a subgroup L of Aut(K) containing Inn(K). We are going to show that the index of Inn(K) in L is
coprime to p.

Let Sy be a Sylow p-subgroup of L. Then F = Fg (L). We have O” (G) = G since G is nonabelian
simple, and so hnp(F) = S by the hyperfocal subgroup theorem [18, Theorem 1.33]. It follows that
hnp(Fs, (L)) = So.

By the hyperfocal subgroup theorem [18, Theorem 1.33], Sy = bnp(Fs,(L)) = OP(L) N Sp.
Consequently, OP (L) has p’-index in L, whence OP (L) = L. So we have O (L/Inn(K)) = L/Inn(K).
On the other hand, L/Inn(K) is p-nilpotent since Out(K) is p-nilpotent. It follows that L/Inn(K) is a
p’-group, as claimed. O

3. Auxiliary results on linear and unitary groups

In this section, we collect several results on linear and unitary groups needed for the proofs of our main
results. Some of the results stated here are known, while others seem to be new. For the convenience of
the reader, we also include proofs of known results when we could not find a reference in which they
appear in the form stated here.

3.1. Basic definitions

We begin with some basic definitions. Let g be a nontrivial prime power, and let n be a positive integer.
The general linear group GL,(q) is the group of all invertible n X n matrices over F, under matrix
multiplication. The special linear group SL,(q) is the subgroup of GL,(q) consisting of all n X n
matrices over F, with determinant 1. The center of GL,(g) consists of all scalar matrices 1/, with
A e (Fy)*. We have Z(SL,(q)) = SL.(q) N Z(GL,(q)). Set PGL,(q) := GL,(q)/Z(GL,(q)) and
PSL,(q) := SL,(q)/Z(SL,(g))- By [35, Kapitel II, Satz 6.10] and [35, Kapitel II, Hauptsatz 6.13],
SL,(q) is quasisimple if n > 2 and (n, q) # (2,2), (2, 3).

As in [35, Kapitel II, Bemerkung 10.5 (b)], we consider the general unitary group GU, (q) as the
subgroup of GL,(¢?) consisting of all (a;i;) € GL,(g?) satisfying the condition ((aij)?)(aij)" = I.
The special unitary group SU,(q) is the subgroup of GU, (q) consisting of all elements of GU,,(q)
with determinant 1. By [35, Kapitel II, Hilfssatz 8.8], we have SLy(q) = SU,(q). The center of
GU,(q) consists of all scalar matrices A1,, where 1 € (F,2)" and A9+ = 1. We have Z(SU,(q)) =
SUn(q) N Z(GUy,(q)). Set PGUn(q) = GUn(q)/Z(GUn(q)) and PSU,(q) := SUn(q)/Z(SUn(q)).
By [32, Theorems 11.22 and 11.26], SU,(q) is quasisimple if n > 2 and (n, q) # (2,2),(2,3), (3,2).

We write (P)GL}(q) and (P)SL}(q) for (P)GL,(g) and (P)SL,(q), respectively. Also, we write
(P)GL; (g) for (P)GUy(q) and (P)SL;, (q) for PSUyn(q).

3.2. Central extensions of PSL, (q) and PSU, (q)

In the proofs of the following two lemmas, we use the terminology of [5, Section 33].
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Lemma 3.1. Let n > 3 be a natural number, and let q be a nontrivial odd prime power. Let H be a perfect
central extension of PSL,,(q). Then there is a subgroup Z < Z(SL,,(q)) such that H = SL, (q)/Z.

Proof. By [28, pp. 312-313], the Schur multiplier of PSL,,(q) is isomorphic to C(,, 41y = Z(SL,(q)).
From [5, 33.6], we see that this is just another way to say that SL,(g) is the universal covering group of
PSL, (q). Applying [5, 33.6] again, we conclude that H = SL,(q)/Z for some Z < Z(SL,(q)). O

Lemma 3.2. Let n > 3 be a natural number, and let q be a nontrivial odd prime power. Let H be a
perfect central extension of PSU,(q). Assume that (n, q) # (4,3) or that Z(H) is a 2-group. Then there

is a subgroup Z < Z(SU, (q)) such that H = SU,(q)/Z.

Proof. Suppose that (n, q) # (4,3). By [28, pp. 312-313], the Schur multiplier of PSU,,(g) is isomor-
phic to C(,, 4+1) = Z(SU,(q)). As in the proof of Lemma 3.1, we conclude that H = SU,(q)/Z for
some Z < Z(SU,(q)). _
Suppose now that (n, q) = (4,3) and that Z(H) is a 2-group. Let G := PSU4(3), and let G be the
universal covering group of G. Then the Schur multiplier of G is isomorphic to Z(G). By [28, pp. 312-
313], the Schur multiplier of G is isomorphic to C4 X C3 X C3. Thus, Z(G) = C4 X C3 X C3. Since G is
quasisimple, we have Z(G/Z) = Z(G)/Z whenever Z < Z (G) Let Q be the unique Sylow 3-subgroup
of Z(G). By [5, 33.6], G is a central extension of SU4(3) and of H. Since SU4(3) has a center of order
4, we have SU4(3) = G/Q. Let Z < Z(G) with H = G/Z. As Z(H) is a 2-group, we have Q < Z,
whence H = G/Z = (G/Q)/(Z/Q) is isomorphic to a quotient of SU4(3) by a central subgroup. O

3.3. Involutions

In this subsection, we collect several results on the involutions of the groups (P)G L3 (¢q) and (P)SL3 (q),
where ¢ is a nontrivial odd prime power, n > 2 and ¢ € {+, —}.

Lemma 3.3. Let g be a nontrivial odd prime power, and let n > 2. Let T be an element of G L,,(q) such
that T? = AI, for some A € [F,. Then one of the following holds:

(i) There is some u € F such that A = u?, and T is GL,(q)-conjugate to a diagonal matrix with
diagonal entries in {u, —u}.
(ii) n is even, A is a nonsquare element of ¥, and T is G L,,(q)-conjugate to the matrix

1n/2
ALy '

Moreover, we have Cgr,,(q)(T) = GLz (g).

Proof. We identify the field F, with the subfield of F. consisting of all x € F > satisfying x7 = x. As
g+1=1(g>-1)/(g—1) is even, any element of [, is the square of an element of IFZZ. Letu e Fzz with
A=’

If u € F,, then the minimal polynomial of T divides (x — u)(x + u), so T is diagonalizable over F,,
and it follows that (i) holds.

Assume now that u ¢ Fy. Then A is a nonsquare element of F. Let V be an n-dimensional vector
space over Fy, and let B be an ordered basis of V. Let ¢ be the element of GL(V) such that ¢ is
represented by T with respect to B. Since p ¢ F,, we have that 1 and u are linearly independent; so
(1, w) is an F,-basis of F,.. Using that ¢ = didy, one can check that V becomes a vector space over
Fg2 by defining

(x+yu)v :=xv+yv?

forall x,y € F; and v € V. Let m be the dimension of V over Fp, and let (v,...,v,,) be an qu-basis
of V. Then By := (Vi,...,Vim, UV1, ..., HVy) is an Fy-basis of V. In particular, n = 2m is even. For
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1 <i <m,wehavev! = puv; and (uv;)% = (v,v)‘/’2 = Av;. So, with respect to By, ¢ is represented by
the matrix

Ly
M = .
(ﬂn/z )

It follows that 7" and M are G L, (q)-conjugate.
Let ¢ be an automorphism of V as an [F,-vector space centralizing ¢. Forx,y € F, andv € V, we have

((+y)? = v+ )Y =00 + 307 = (x + yup?,
whence y is F2-linear. Conversely, if ¢ is F > -linear, then

v/ = ! = (uvi)? =

and hence ¢ = @. It follows that the centralizer of ¢ in the general linear group of V as an FF,-vector
space is equal to the general linear group of V' as an F»-vector space. Thus, Cgr,, (g) (T) = GLx (q%).
So (ii) holds. O

Lemma 3.4. Let g be a nontrivial odd prime power, and let n > 2 be a natural number. Let T € GU, (q).

G) IfT?* = AL, for some A € ]FZZ, then A is a square in F(*{z.
(i) If T? = p?1, for some p € IF;Z with p4*! = 1, then T is GU, (q)-conjugate to a diagonal matrix

with diagonal entries in {p, —p}.
(iii) IfT* = p>I, for some p € F’;z with p9*! # 1, then n is even, and we have Ccu,(g)(T)

I3

GLxz(q%).

Proof. Suppose that T2 = A1, for some A € FZZ. Since T? € GU,(gq), we have that 19*! = 1,s0 1 is a
square in ]FZZ.
A proof of (ii) and (iii) can be extracted from [47, pp. 314-315]. m|

Proposition 3.5. Let g be a nontrivial odd prime power, and let n > 2 be a natural number. Let p be an
element of F, of order (n, q — 1). For each even natural number i with2 < i < n, let

In—i
t = ( _Ii) € SLn(Q)

and let t; be the image of t; in PSL,(q).

(i) Assume that n is odd. Then each involution of PSL, (q) is PSL, (q)-conjugate to t; for some even
2<i<n.
(ii) Assume that n is even and that there is some p € Fy with p = u?. For each odd natural number i
with 1 < i < n, the matrix
o pln—i
= ( —ﬂli)

lies in SL,(q). Let t; denote the image of t; in PSL,(q) for each odd 1 < i < n. Then each
involution of PSLy(q) is PSL,(q)-conjugate to t; for some (even or odd) 1 <i < 7.
(iii) Assume that n is even and that p is a nonsquare element of F,. Let

In/Z)

(pln/Z

https://doi.org/10.1017/fms.2022.53 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.53

Forum of Mathematics, Sigma 13

If w € SL,(q), then each involution of PSL,(q) is PSL,(q)-conjugate to t; for some even
<i<gzortow:=wZ(SLy(q)) € PSL,(q). If w ¢ SL,(q), then each involution of PSL,(q)

is PSLy(q)-conjugate to t; for some even2 < i < 7.

Proof. We follow arguments found in the proof of [46, Lemma 1.1].

Assume that n is odd. Then Z(SL, (g)) has odd order, and therefore, any involution of PSL,(g) is
the image of an involution of SL,(g). As a consequence of Lemma 3.3, each involution of SL,(g) is
SL,(g)-conjugate to #; for some even 2 < i < n. So (i) follows.

Assume now that 7 is even and that p = u? for some u € . Note that Z(SLn(q)) equals (p1y).
We claim that " = —1. Since u>" = p" = 1, we have that u" = 1 or —1. If u”* = 1, then u € (p), and
so p is a square in {p), which is impossible. So we have u" = —1. It follows that #; € SL,(g) for each
odd1 <i<n. NowletT € SL,(q) such that TZ(SL,(q)) € PSL,(q) is an involution. Then we have
T? = pll, = u*1, for some 1 < € < (n,q — 1). Using Lemma 3.3, we conclude that T is SL,(q)-
conjugate to a diagonal matrix D € SL,(g) with diagonal entries in {u, —u‘}. Let 1 < i < n such
that —u¢ occurs precisely i times as a diagonal entry of D. If i is odd, we may assume that D = u¢~'7;,
and if i is even, we may assume that D = u7;. In either case, the image of D in PSL,(q) is ;. Hence,
TZ(SL,(q)) is PSL,(q)-conjugate to t;. Noticing that ¢; is PSL,(q)-conjugate to t,_;, we conclude
that (ii) holds.

Now assume that 7 is even and that p is a nonsquare element of F,. Again, let T be an element of
SL,(q) such that TZ(SL,(gq)) € PSL,(q) is an involution. We have 72> = p‘I, for some 1 < £ <
(n,q —1). Assume that ¢ is even. Then Lemma 3.3 implies that T or -7 is SL, (g)-conjugate to p%?; for
some even 2 < i < 5. It follows that TZ(SL,(g)) is PSL,(q)-conjugate to ¢; for some even 2 < i < 7.
Assume now that £ is odd. As p is not a square in F,, but pt~1is a square in Fy, p! cannot be a square
in F,. Using Lemma 3.3, we may conclude that T is G L, (g)-conjugate to the matrix

0 pf
10

M = e SL,(q).
0 pf
10

It is rather easy to see that 7 and M are even conjugate in SL,(g). Let k := %. It is not hard to show

that the matrices
0 pf 0 pk+1
(1 0 ) and (pk 0
are SL>(g)-conjugate. So it follows that M, and hence, T is SL,(g)-conjugate to p* M, where
0p
10
M = € SLu(q).
0p
10

Consequently, the images of 7 and M, in PSL,(q) are conjugate. Furthermore, as det(M;) = det(w),
we see thatw € SL,,(q). Also, w is SL, (g)-conjugate to M, and so TZ(SL,(q)) is PSL, (q)-conjugate
tow. O
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Lemma 3.6. Let g be a nontrivial odd prime power, and let n > 4 be an even natural number. Let p be
an element of F, of order (n, q — 1). Suppose that p is a nonsquare element of F, and that

W= I"/z)
oln

lies in SLy,(q). Denote the image of w in PSL,(q) by w. Set C := Cpgy,,(q)(W). Let P be a Sylow
2-subgroup of C. Then the following hold:

(i) C has a unique 2-component J, and J is isomorphic to a nontrivial quotient of SLz (4.
(ii) P N J is strongly closed in P with respect to Fp(C), and the factor system Fp(C)/(P N J) is
nilpotent.
(iii) Ifn = 6, then P has rank at least 4.

Proof. Set Cy := Csp,,(q)(W)/Z(SL,(q)) < C.

Let y € C\ Cp, and let y be a preimage of y in SL,(q). Then w> = Aw for some 1 # A € (p). The
characteristic polynomial of w is (x> — p)Z, and Aw has the characteristic polynomial (x> — 12p)?.
Since WY = Aw, both polynomials are equal, and so we have 4> = 1. Thus, 1 = —1 and hence WY = —w.
If z is another element of C \ Cy and if 7 is a preimage of z in SL,(g), then we have w> = —iw = W=,
and so yz ! centralizes w. This implies that yz~' € Cy. It follows that |C : Cy| < 2 (and one can show
that in fact |C : Cy| = 2).

By the preceding paragraph, C/Cy is abelian, and so the 2-components of C are precisely the
2-components of Cy. One may deduce from Lemma 3.3 that Csy, (4) (W) has a normal subgroup J
isomorphic to SLx (¢*) such that the corresponding factor group is cyclic. Let J be the image of J in
PSLy(g). Then J is isomorphic to a nontrivial quotient of SLz (¢?). Moreover, J < Co and Cp/J is
cyclic. Therefore, J is the only 2-component of Cy and hence the only 2-component of C. Thus, (i) holds.

Since J < C, we have that P N J is strongly closed in P with respect to Fp(C). By Lemma 2.11, the
factor system Fp(C)/(P NJ) is isomorphic to the 2-fusion system of C/J. Since Cy has index < 2 in C
and Cy/J is abelian, we have that C/J is 2-nilpotent. So C/J has a nilpotent 2-fusion system, and (ii)
follows.

We now prove (iii). Assume that n > 6. Let u denote the image of

0p
10

€ SL,(q)

- o
(=Je)

in PSL,(q).

We claim that there exist a,b € F, with a’p — b*p? = 1. The field F, has precisely q—;l square
elements. Therefore, each of the sets M; := {a?p | a € Fy,} and M := {1 + b*p* | b e F,} has
cardinality q—;l. It follows that M N M> # 0. So there exist a, b € F, with a2p =1+ bzpz, or in other
words a’p — b2p? = 1.

Let s be the image of

-bp ap
-a bp
€ SLu(q)

-bp ap
—-a bp
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in PSL,(q). By a direct calculation, s € Cpsy,, () (#). Another direct calculation shows that s is an
involution. Let z; denote the image of

-1
( ? ,n_z) € SLu(q)

in PSL,(g), and let z» denote the image of

I
_12 € SLn(q)
) )

in PSL, (q). Then one can easily verify that (s,u, z1,22) < Cpsy,,(q)(#) is isomorphic to E1¢. So a
Sylow 2-subgroup of Cpsy,, (4) (1) has rank at least 4. This is also true for P as w and u are conjugate
(see Proposition 3.5). O

Lemma 3.7. Let n > 2 be a natural number, and let € € {+,—}. Also, let T € GL5(3) \ Z(GL?(3))
such that T> € Z(GLZ (3)). Then Cirz3)(T) is core-free.

Proof. By Lemmas 3.3 and 3.4, we either have Cgre3)(T) = GLF(3) XGL;;_(3) forsome 1 <i <n,
orniseven and Cgres3)(T) = GL,/2(9). So we have that Cg g3y (T) is core-free. O

Noticing that GLZ (3)/SLZ(3) and Z(GL}(3)) are 2-groups for any n > 2 and € € {+, —}, one can
deduce the following two corollaries from Lemma 3.7.

Corollary 3.8. Let n > 2 be a natural number, and let € € {+,—}. Then any involution centralizer in
SLZ(3) is core-free.

Corollary 3.9. Let n > 2 be a natural number, and let € € {+,—}. Then any involution centralizer in
PGLZ(3) is core-free.

3.4. Sylow 2-subgroups and 2-fusion systems

In this subsection, we consider several properties of Sylow 2-subgroups and 2-fusion systems of linear
and unitary groups.

Lemma 3.10 [17, p. 142]. Let g be a nontrivial odd prime power. Let k, s € N such that 2% is the 2-part
of ¢ — 1 and that 2° is the 2-part of q + 1. Then:

(1) Assume that g = 1 mod 4. Then

:(/l ,U) A, u are 2-elements ofIF’Z} . <((1) (1))>

is a Sylow 2-subgroup of G L (q). In particular, the Sylow 2-subgroups of G L,(q) are isomorphic
to the wreath product Cyx 1 Cy.
(ii) If g = 3 mod 4, then the Sylow 2-subgroups of GL,(q) are semidihedral of order 25*2.

Lemma 3.11 [17, p. 143]. Let q be a nontrivial odd prime power. Let k, s € N such that 2¥ is the 2-part
of g — 1 and that 2° is the 2-part of q + 1. Then:

() If ¢ = 1 mod 4, then the Sylow 2-subgroups of GU,(q) are semidihedral of order 2%+2.
(ii) If g = 3 mod 4, then the Sylow 2-subgroups of GU,(q) are isomorphic to the wreath product
Cs 1 Gy Ife € Fjﬂ has order 2°, then a Sylow 2-subgroup of GU,(q) is concretely given by

X )
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Lemma 3.12 [35, Kapitel 11, Satz 8.10 a)]. If q is a nontrivial odd prime power, then a Sylow 2-subgroup
of SLy(q) is generalized quaternion of order (q> — 1);.

Lemma 3.13 [35, Kapitel II, Satz 8.10 b)]. If q is a nontrivial odd prime power, then PSLy(q) has
dihedral Sylow 2-subgroups of order %(q2 = 1).

Lemma 3.14 [17, Lemma 1]. Let g be a nontrivial odd prime power, and let € € {+,—}. Let r be a
positive integer. Let W, be a Sylow 2-subgroup of GL5,.(q). Then W, ¥ Cy is isomorphic to a Sylow
2-subgroup of GLZ.,, (q). A Sylow 2-subgroup of GLZ ., (q) is concretely given by

or+l or+l

(o) - amem ) {f, )

Lemma 3.15 [17, Theorem 1]. Let g be a nontrivial odd prime power, and let n be a positive integer.
Lete € {+,~}. Let0 < ry < --- <r;suchthatn =2" +---+2". Let W; € Syl,(GL?,, (q)) for all
1 <i<t Then Wi X ---x W, is isomorphic to a Sylow 2-subgroup of GL}(q). A Sylow 2-subgroup of
GLZ(q) is concretely given by

Aj
. A e Wip.
Ay
Lemma 3.16. Let g be a prime power with g = 3 mod 4. Let W be a Sylow 2-subgroup of GL,(q), and
let m € N such that |W| = 2. Then:

(i) W is semidihedral. In particular, there are elements a,b € W with ord(a) = 2! and ord(b) = 2
such that a® = a®" -1,
(ii) We have W N SLy(q) = (a®){ab).
(iii) Let 1 < € < 2™ ' IfCis odd, then a’ has determinant —1, and a®b has determinant 1. If € is even,
then a® has determinant 1, and a®b has determinant —1.
(iv) The involutions of W are precisely the elements a®"” and a’b, where 2 < £ < 2" is even.

Proof. By Lemma 3.10 (ii), we have (i).

Let Wy := W N SLy(g). By Lemma 3.12, Wy is generalized quaternion. Also, W is a maximal
subgroup of W since SL;(g) has index ¢ — 1 in GL,(g) and ¢ = 3 mod 4. By [23, Chapter 5, Theorem
4.3 (ii) (b)], we have ®(W) = (a?). So the maximal subgroups of W are precisely the groups M| := {(a),
M, := (a®)(b) and M3 := (a*){ab). One can check that M| = Cyu-1, My = Dyn-i and M3 = Q,u-1.
Consequently, Wy = (a?){ab), and (ii) holds.

(iii) follows from (ii) since any element of W \ Wy has determinant —1.

The proof of (iv) is an easy exercise. O

Lemma 3.17. Let g be a nontrivial odd prime power, n a positive integer and € € {+,-}. Let 0 < ry <
- <1y suchthatn = 2" +- - -+2". Then there is a Sylow 2-subgroup W of G := GL% (q) containing all
diagonal matrices in G with 2-power order such that Cywy (WNSLZ (q)) consists precisely of the matrices

A1

/ltlzrt

where Ay, ..., A, are 2-elements of F, if G = GL,(q) and 2-elements OfJFZ2 with /ll.qJrl =1 (for each
1<i<t)ifG=GU,(g).

Proof. Using Lemmas 3.10 and 3.11, one can check that the centralizer of a Sylow 2-subgroup of
SL5(q) inside a Sylow 2-subgroup of GL5(q) is the Sylow 2-subgroup of Z(GL5(q)). Applying
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Lemma 3.14 and arguing by induction, one can see that a similar statement holds for the centralizer of a
Sylow 2-subgroup of SL, (¢) inside a Sylow 2-subgroup of GL5, (¢) for all » > 0. Now we may apply
Lemma 3.15 to obtain a Sylow 2-subgroup of G with the desired properties. O

Lemma 3.18. Let g be a nontrivial odd prime power, n a positive integer and € € {+,—}. Let G :
SLZ(q), and let S be a Sylow 2-subgroup of G. Then we have Z(Fs(G)) = SN Z(G).

Proof. This follows from Lemma 2.13. m

Proposition 3.19. Let n be a positive integer. Let q, q* be nontrivial odd prime powers, and let €, " €
{+,=}. Ifeq ~ &"q*, then the 2-fusion systems of SLZ (q) and SLZ (q*) are isomorphic.

Proof. Assume that ¢ # &*. From ggq ~ &*q", it is easy to deduce that eg = £*¢" mod 8 and
(¢*> = 1), = ((¢g%)® = 1),. So, in view of the remarks at the bottom of p. 11 of [14], we may apply [14,
Proposition 3.3 (a)] to conclude that the 2-fusion system of SLZ (g) is isomorphic to the 2-fusion system
of SLZ (g*).

Assume now that ¢ = ¢*. Using Dirichlet’s theorem [20, Theorem 3.3.1], one can easily see that
there is an odd prime go with eq ~ €¢* ~ —£q¢. By the preceding paragraph, both the 2-fusion system
of SLZ(q) and the 2-fusion system of SLZ(g*) are isomorphic to the 2-fusion system of SL; ?(qo).
Consequently, the 2-fusion systems of SLZ(g) and SLZ (g*) are isomorphic. O

Proposition 3.20. Let n be a positive integer. Let q, q* be nontrivial odd prime powers, and let €, " €
{+,-}. Ifeq ~ &"q*, then the 2-fusion systems of PSLZ(q) and PSLE (q*) are isomorphic.

Proof. Let S and S* be Sylow 2-subgroups of G := SLZ(q) and G* := SLZ (¢*), respectively. By
Proposition 3.19, F := Fs(G) and F* := Fs«(G*) are isomorphic. Therefore, F/Z(F) and F*/Z(F™)
are isomorphic. Lemma 3.18 implies that /(S N Z(G)) and F*/(S* N Z(G*)) are isomorphic. Now
the proposition follows from Lemma 2.11. O

The following lemma shows together with [9, Theorem 5.6.18] that the 2-fusion system of PSL,,(q)
is simple whenever ¢ is odd and n > 3.

Lemma 3.21. Let g be a nontrivial odd prime power and n > 2 a natural number such that (n, q) #
(2,3). Moreover, let € be an element of {+,—}. Then PSLZ(q) is a Goldschmidt group if and only if
n=2andq =3 or5mod8.

Proof. Set G := PSL% (q).

Assume that n = 2. Then G = PSL;(q). By Lemma 3.13, G has dihedral Sylow 2-subgroups of
order %(q — 1)2(g + 1)2. So, if ¢ = 3 or 5 mod 8, then G has abelian Sylow 2-subgroups and is thus
a Goldschmidt group. If ¢ = 1 or 7 mod 8, then the Sylow 2-subgroups of G are dihedral of order at
least 8 and hence nonabelian. Moreover, if ¢ = 1 or 7 mod 8, then [49, Theorem 37] shows that G
is not isomorphic to a finite simple group of Lie type in characteristic 2 of Lie rank 1. So G is not a
Goldschmidt group if ¢ = 1 or 7 mod 8.

Assume now that n > 3. Again, we see from [49, Theorem 37] that there is no finite simple group of
Lie type in characteristic 2 of Lie rank 1 which is isomorphic to G. Also, G has a subgroup isomorphic
to SL5(q) = SLy(q), and therefore, the Sylow 2-subgroups of G are nonabelian. Consequently, G is
not a Goldschmidt group. O

Lemma 3.22. Let n be a positive integer, q a nontrivial odd prime power and € € {+,—}. Let E be the
subgroup of SLZ (q) consisting of the diagonal matrices in SLZ(q) with diagonal entries in {1,—-1}.
Then |E| = 2"~'. Moreover, any elementary abelian 2-subgroup of SLZ(q) is conjugate to a subgroup
of E.

Proof. Tt is straightforward to check that |E| = 2",
Let Ey be an elementary abelian 2-subgroup of SLZ (g). We show that E is conjugate to a subgroup
of E. Using Dirichlet’s theorem [20, Theorem 3.3.1], one can see that there is an odd prime number
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q* with —g ~ ¢*, and Proposition 3.19 shows that the 2-fusion systems of SU,(g) and SL,(g*) are
isomorphic. Therefore, it is enough to consider the case € = +.

Since Ej is an elementary abelian 2-group, any two elements of £y commute, and any element of Eg
is diagonalizable (see Lemma 3.3). It follows that Ey is simultaneously diagonalizable, and this implies
that Ey is conjugate to a subgroup of E. O

Lemma 3.23. Let the notation be as in Lemma 3.22, and set Y = SL5(q). Moreover, for any A C
{1,...,n}, lett5 be the matrix diag(d,, . .., d,), where d; = -1 ifi € Aand d; = 1 ifi € {1,...,n}\ A.
Then the following hold:

(i) Foreach m € S, there is a unique ¢, € Auty (E) such that

(tA)¥™ = tax
forany A C {1,...,n} of even order.
(i) Auty(E) ={¢n | 7€ Sy}
Proof. Let V be the defining module for Y. Let B = (vy,...,v,) be a basis for V with B orthonormal if
V is unitary. For any A C {1,...,n}, let e4 be the linear map V — V represented by 74 with respect to

B. Then ey € GLE(V).

Let 7 € S,. To prove (i), it suffices to find some @, € SL®(V) such that (e4)** = e~ for any
A C {l,...,n} of even order. Let @, be the linear map V — V sending v; to v;= foreach 1 <i < n.
Then det(a ;) = sgn(n) € {-1,1}. Set @ = a, if det(a;) = | and ;= ey, if det(a,) = 1.
Then @, € SL(V). Also, if A C {1,...,n}and 1 <i < n, then

(vp)(@n) teaan _ (@0 eadn _ Vi iTE€ AT
! Vi ifi g A™

and hence (e4)?** = ea=. The proof of (i) is now complete.

We now prove (ii). If n € {1,2}, then Auty (E) = {idg} = {¢, | ®# € S,}. Assume now that
n>3.Lety € Auty (E), and let y € Y with ¢ = ¢ | g. We are going to show that y is a generalized
permutation matrix, which implies the desired conclusion that ¢ = ¢, for some 7 € S,,. Let yi, ..., y,
denote the columns of y, and let 1 < j < n. To prove that y is a generalized permutation matrix, it
suffices to show that y; has precisely one nonzero entry. Let 1 < k # £ < n with k # j # (. Let
A :={j,k} and C := {j, {}. As y normalizes E, there exist distinct subsets Ay, Cy C {1,...,n} with
|Ao|l =2 = |Col| and (t4,)” = ta, (tc,)” =tc.Hence, to, -y =y-taandtc,-y =y -tc,and soy;
is an eigenvector of 74, and of 7¢, with eigenvalue —1. Together with the fact that |Ag| = 2 = |Cp| and
Ag # Cy, it follows that y; has only one nonzero entry, as required. O

Lemma 3.24. Let g be a nontrivial odd prime power, n > 3 a natural number and S a Sylow 2-subgroup
of PSL,(q). Then Autpgy,, (4)(S) = Inn(S).

Proof. Let R € Syl,(SL,(g)) such that S is the image of R in PSL,(g). Let T be a Sylow 2-subgroup
of GL,(q) with R < T. By [36, Theorem 1], we have Ngp, (q)(R) = TCgr, (q)(T). So we have
that Autgy, (4)(R) is a 2-group. Since the image of Ngr,(4)(R) in PSL,(q) equals Npgy, (4)(S)
(see [35, Kapitel I, Hilfssatz 7.7 c)]), it follows that Autpg;, (4)(S) is a 2-group, and this implies
AutpSLn(q)(S) = Inn(S). O

3.5. k-connectivity

In this subsection, we prove some connectivity properties of the Sylow 2-subgroups of SL,(g) and
PSL,(q), where ¢q is a nontrivial odd prime power and n > 6. We will work with the following
definition (see [31, Section 8]):
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Definition 3.25. Let S be a finite 2-group, and let k be a positive integer. If A and B are elementary
abelian subgroups of S of rank at least k, then A and B are said to be k-connected if there is a sequence

A=A, A,...,Ay=B (n=1)
of elementary abelian subgroups A;, 1 <i < n, of § with rank at least k such that
A; CAjpporAyg CA;

forall 1 <i < n—1.The group S is said to be k-connected if any two elementary abelian subgroups of
S of rank at least k are k-connected.

Lemma 3.26 [31, Lemma 8.4]. Let S be a finite 2-group, and let k be a positive integer. If S has a normal
elementary abelian subgroup of rank at least 2~ + 1, then S is k-connected.

Lemma 3.27. Let q be a nontrivial odd prime power with ¢ = 1 mod 4, and let n > 6 be a natural
number. Then the Sylow 2-subgroups of PSL,,(q) and those of SL,,(q) are 3-connected.

Proof. Let W,y be the unique Sylow 2-subgroup of GL;(q), and let W; be the Sylow 2-subgroup of
GL,(g) given in Lemma 3.10 (i). For each r > 2, let W, be the Sylow 2-subgroup of G L,r (g) obtained
from W,._; by the construction given in the last statement of Lemma 3.14. Let 0 < r; < --- < r; such
that n = 2" +--- 4+ 2", and let W be the Sylow 2-subgroup of GL,,(q) obtained from W,,, ..., W,, by
using the last statement of Lemma 3.15.

For any k > 1, let Rx(q) denote the subgroup of GLy(q) consisting of all diagonal matrices
D € GLi(q), where D> € Z(GLy(g)) and any diagonal element of D is a 2-element of F,. Also,
let R := R¢(q). By Lemma 3.14 and induction on r, Ry-(g) < W,, using Lemma 3.10 (i) to anchor
the induction. Then R = Ryri(g) X --- X Ry (q) 9 W. Let Ry := RN SL,(q) and E := Q(Ry).
By Lemma 3.22, m(E) = n—1 > 5, so by Lemma 3.26, Wy := W N SL,(q) is 3-connected. Set
W*:=W/(WNZ(SLu(q))); then m(E*) > m(E) — 1 =n -2, so by Lemma 3.26, W[ is 3-connected,
unless possibly n = 6. Butif n = 6, then F* = R is of rank 5, where F' = (E, il - r) for some reflection
r € R and some i € F,, of order 4. m

Lemma 3.26 and the proof of Lemma 3.27 show that we also have the following:

Lemma 3.28. Let g be a nontrivial odd prime power with ¢ = 1 mod 4, and let n > 6 be a natural
number. Then the Sylow 2-subgroups of PSL,,(q) and those of SL,(q) are 2-connected.

We now study the case g = 3 mod 4.

Lemma 3.29. Let q be a nontrivial odd prime power with ¢ = 3 mod 4, and let n > 6 be a natural

number. Then the Sylow 2-subgroups of PSL,,(q) and those of SL,(q) are 2-connected. If n > 10, then
we even have that the Sylow 2-subgroups of PSL,,(q) and those of SL,,(q) are 3-connected.

Proof. Let Wy denote the unique Sylow 2-subgroup of GL|(g), and let W be a Sylow 2-subgroup of
GLy(q). By Lemma 3.10 (ii), W is semidihedral. Let m € N with |W;| = 2. Also, let h,a € W; such
that ord(h) = 21, ord(a) = 2 and h® = h*" 1. Set z := =, = h2"". For each r > 2, let W, be the
Sylow 2-subgroup of G Ly (g) obtained from W,_; by the construction given in the last statement of
Lemma3.14. Let0 <ry <--- <rysuchthatn =2" +...+2" and let W be the Sylow 2-subgroup of
GL,(q) obtained from W,,, ..., W,, by using the last statement of Lemma 3.15.
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Given a natural number ¢ > 1 and elements x1,...,x, € GLy(q), we write diag(x, ..., x) for the
block diagonal matrix

X1

Xe

diag(xy, ..., x,r-1), where either x; € (z) forall 1 <i < 2! or x; is an element of (k) with order 4 for
alll <i<2L, By i@uction over r, one can see that A, < W, for all r > 1. Also, let A, := Q;(A4,)
for all » > 1. Clearly, A, < W, forallr > 1.

We now consider two cases.

For each natural number r > 1, let A, denote the subgroup of GL;-(q) consisting of the matrices

Case 1: n is even.

Let E be the subgroup of GL,,(q) consisting of the matrices diag(x1, ..., x%), where either x; € (z)
forall 1 <i < 5 orux; is an element of () with order 4 for all 1 <i < 7. Let E := Q(E). Since

Ay, S W,, forall 1 <i < t, we have that E and E are normal subgroups of W. Lemma 3.16 (iii) shows
that E < WNSL,(q).

As E is elementary abelian of order 2%, Lemma 3.26 implies that W N SL,,(¢) is 2-connected and
even 3-connected if n > 10. Since EZ(SL,(q))/Z(SL,(q)) is anormal elementary abelian subgroup of
(WNSLu(9))Z(SLn(q))/Z(SLy(q)) with order 27, Lemma 3.26 also shows that a Sylow 2-subgroup
is 2-connected, and even 3-connected if n > 10.

Case 2: n is odd.
Now let E denote the subgroup of GL,(q) consisting of the matrices

Xn-1
2

where x; € (z) forall 1 < i < "T_l Since ;\: a4 W,, forall 2 < i < ¢, we have that E is a normal

subgroup of W N SL, (q). Moreover, E is elementary abelian of order 2" . Lemma 3.26 implies that
W N SL,(q) is 2-connected and even 3-connected if n > 11. There is nothing else to show since the
Sylow 2-subgroups of PSL,(q) are isomorphic to those of SL, (¢) (as n is odd). O

We show next that the groups SL, (q), where 6 < n < 9 and g = 3 mod 4, and the groups PSL,(q),
where 7 < n < 9 and g = 3 mod 4, also have 3-connected Sylow 2-subgroups.

Lemma 3.30. Let q be a nontrivial odd prime power with g = 3 mod 4. Then the Sylow 2-subgroups of
SL¢(q) and those of SL7(q) are 3-connected.

Proof. Let W| be a Sylow 2-subgroup of GL;(q), let W, be the Sylow 2-subgroup of G L4(q) obtained
from W; by the construction given in the last statement of Lemma 3.14 and let W be the Sylow 2-
subgroup of G Lg(q) obtained from W, and W, by using the last statement of Lemma 3.15.

From Lemma 3.15, we see that the Sylow 2-subgroups of SL7(q) are isomorphic to those of G Lg(q).
So it is enough to show that W and W N SL¢(g) are 3-connected. Given elements x1, xp, x3 € GL2(g),
we write diag(xy, x,x3) for the block diagonal matrix

X1

X2
X3
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Let A be the subgroup of W N SLg(q) consisting of the matrices diag(xy, x, x3), where x; € (—1I) for
1 <i <3.Then A = Eg. We prove the following:

(1) If Eis anelementary abelian subgroup of W of rank at least 3, then E is 3-connected to an elementary
abelian subgroup of W N SL¢(q) of rank at least 3.

(2) If E is an elementary abelian subgroup of W N SLe(q) of rank at least 3, then E is 3-connected to
AinWnNSLe(q).

By (1) and (2), any elementary abelian subgroup of W of rank at least 3 is 3-connected to A, and so W
is 3-connected. Similarly, (2) implies that W N SL¢(g) is 3-connected.

Let Z := (diag(—1, Iz, I5), diag(l, —1I,—1>)). Since Z < Z(W), we have that any elementary
abelian subgroup of W of rank at least 3 is 3-connected to an Eg-subgroup of W containing Z. Also, any
elementary abelian subgroup of W N SLe(gq) of rank at least 3 is 3-connected (in W N SLg(q)) to an
Eg-subgroup of WN SLe(q) containing Z. Therefore, we only need to consider Eg-subgroups containing
Z in order to prove (1) and (2).

So let E be an Eg-subgroup of W with Z < E, and let s € E \ Z. Suppose that s = diag(sy, 52, 53),
where s1, 52,53 € Wi. Then [E, A] = 1, and it is easy to deduce that E is 3-connected to A so that E
satisfies (1). Also, if E < W N SLg(q), it is easy to deduce that E satisfies (2).

Suppose now that

S3

for some s1, 57, 53 € Wj. Since §2 = I, we have s, = s;l. Let a be an involution of Wy with a # —1I.
Set s* := diag(l», a,a®?) and E* := (Z, s*) = Eg. Clearly, E* < W N SL¢(q). It is easy to check that
[E,E*] = 1, which implies that E is 3-connected to E*. So E satisfies (1). If E < W N SLg(q), then
E is 3-connected to E* in W N SLg(g), and E* is 3-connected to A in W N SL¢(q) since [E*, A] = 1.
Therefore, E satisfies (2) when E < W N SLg(q). ]

Let ¢ be a nontrivial odd prime power with ¢ = 3 mod 4. A Sylow 2-subgroup of PSL;(g) is
isomorphic to a Sylow 2-subgroup of SL7(g). So, by Lemma 3.30, the Sylow 2-subgroups of PSL7(q)
are 3-connected.

We need the following lemma in order to prove that the Sylow 2-subgroups of SL, (g) and PSL,(q)
are 3-connected when n € {8, 9}.

Lemma 3.31. Let g be a nontrivial odd prime power with g = 3 mod 4, and let V be a Sylow 2-subgroup
of GL4(q). Let u € V with u* = I or u> = —I. Then there is an involution v € V \ {u, —I4) which
commutes with u.

Proof. Fix a Sylow 2-subgroup W, of GL,(g), and let W, be the Sylow 2-subgroup of G L4(g) obtained
from W; by the construction given in the last statement of Lemma 3.14. By Sylow’s theorem, we may
assume that V = W,. Let a be an involution of W with a # —1.
First, we consider the case that
)
u =
y

with elements x,y € Wi. If x ¢ (—I) or y ¢ (—I»), then

-1
[ )em
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is an involution commuting with u and not lying in (u, —I4). If x, y € (—1I,), then we may choose

Assume now that

with elements x, y € W;. Let

)

As a is an involution of Wy, we have that v is an involution of W,. By a direct calculation (using that
xy € (—I)), v has the desired properties. O

Lemma 3.32. Let q be a nontrivial odd prime power with g = 3 mod 4. Then the Sylow 2-subgroups of
SLg(q) and those of SLo(q) are 3-connected.

Proof. Fix a Sylow 2-subgroup W, of GL;(q), let W, be the Sylow 2-subgroup of G L4(g) obtained
from W; by the construction given in the last statement of Lemma 3.14 and let W be the Sylow 2-
subgroup of G Lg(g) obtained from W, by the construction given in the last statement of Lemma 3.14.
Set S :=WnNSLg(q).

From Lemma 3.15, we see that the Sylow 2-subgroups of SLg(g) are isomorphic to those of GLg(q).
So it is enough to show that W and § are 3-connected.

Given a natural number € > 1 and xy, ...,x¢, € GLy(q) U GL4(q), we write diag(xy, . ..,x¢) for the
block diagonal matrix

X1

xe
Set
A = {diag(x1,x0,x3,x4) |x; €(-)V1<i<4}<§
and
Z:=(-Is) <S.

Then A = E¢. Since Z < Z(W), we have that any elementary abelian subgroup of W of rank at least
3 is 3-connected to an Eg-subgroup of W containing Z. Similarly, any elementary abelian subgroup of
S of rank at least 3 is 3-connected to an Eg-subgroup of S containing Z. So it suffices to prove that any
Es-subgroup E of W with Z < E is 3-connected to A, where E is even 3-connected in Sto A if E < S.
Thus, let E be an Eg-subgroup of W containing Z, and let x, y € E with E = (Z, x, y).

We consider a number of cases. Below, a will always denote an involution of Wy with a # —1.

Case 1: x = diag(—14, I4) and y = diag(by, by) for some by, by € Wj.

We determine an involution y; € Cw (E) \ (Z, x) such that (Z,x,y;) = Eg is 3-connected to A. In
the case that E < S, we determine y; such that y; € S and such that (Z, x, y;) is 3-connected to A in S.
The existence of such an involution y; easily implies that E is 3-connected to A and even 3-connected
to Ain S if E < §. The involution y; is given by the following table in dependence of y. In each row,

[T3R1]

r1,72, 13, rq are assumed to be elements of W such that y is equal to the matrix given in the column *“y
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and such that the conditions in the column ‘Conditions’ (if any) are satisfied. The column ‘y;’ gives the
involution y; with the desired properties. For each row, one can verify the stated properties of y; by a
direct calculation or by using the previous rows.

Case y Conditions i
ri
1.1 " y
3
4
1 y "
12 . (r.n) £ (-L) r
3 L
¥y 4
r , a
13 : ri,r < (-h) a
r3 Ji
T4 4
7, " L
14 - (r3.rs) £ (-1) rs
¥4 T4
r " L
L5 2 r3,ra < (-D) a
r3 a
Ty
T "
1.6 2 n
73 I
¥y 4

Case 2: x = diag(ay, ap) and y = diag(by, b,) for some ay,as, by, by € Ws.

Set x| := diag(—14, I4). Since E = (Z,x,y) = Ejg, the elements x and y cannot be both contained in
(Z,x1). Without loss of generality, we may assume that y ¢ (Z,x;). Then E| := (Z,x1,y) = Eg. The
group E| is 3-connected to A by Case 1, and it is 3-connected to E since E and E; commute. Hence, E
is 3-connected to A. Clearly, if E < S, then E is even 3-connected in S to A.

Case 3: There are a1, a>, b1, by € Wo with

=" o)

Without loss of generality, we assume that

_ (& _ by
x—( az)andy—(b2 )

Since x and y are commuting involutions, we have by = b, Vand ay = a;?. By Lemma 3.31, there is an
involution a; € W5 \ {ai, —14) which commutes with a;. Set

N
)’1 T &'1191 .

It is easy to see that y; € S, and y; is an involution since a; is an involution of W,. We have [x, y{] = 1
since a1 commutes with a1 and a; b1 commutes with a1?! = a,. A direct calculation using that by = bg'
shows that we also have [y,y;] = 1. Thus, E = (Z,x,y) commutes with E| := (Z,x,y;). Since
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a; ¢ {(ai,—1y), we have y; ¢ (Z,x) and hence E; = Eg. Applying Case 2, it follows that E is 3-
connected to A (and even 3-connected in S to A when E < S).
Case 4: There are ay,a>, b1, by € Wo with

_ ai _ b
x—(az )andy—(b2 )

This case can be reduced to Case 3 since E = (Z, x,y) = (Z, x,xy). O

Let g be a nontrivial odd prime power with ¢ = 3 mod 4. A Sylow 2-subgroup of PSLy(q) is
isomorphic to a Sylow 2-subgroup of SLo(g). So, by Lemma 3.32, the Sylow 2-subgroups of PSLy(q)
are 3-connected.

Lemma 3.33. Let q be a nontrivial odd prime power with g = 3 mod 4. Then the Sylow 2-subgroups of
PSLg(q) are 3-connected.

Proof. Let W be a Sylow 2-subgroup of G L,(g). Let W, be the Sylow 2-subgroup of G L4(q) obtained
from W; by the construction given in the last statement of Lemma 3.14, and let W3 be the Sylow 2-
subgroup of G Lg(g) obtained from W, by the construction given in the last statement of Lemma 3.14.
Set S := W3 N SLg(q). For each subgroup or element X of SLg(g), let X denote the image of X in
PSLg(g). We prove that S is 3-connected.

Given a natural number € > 1 and xy, ...,x¢, € GLy(q) U GLy4(q), we write diag(xy, . ..,x¢) for the
block diagonal matrix

X1

Xt
Set
A = {diag(x1,x2,x3,x4) | x; €{(-h) V1 <i <4} <S.

We have A = Eg.
Set

Z = (diag(—14, 14)).

We have Z < Z(S). Using this, it is easy to note that any elementary abelian subgroup of S of rank
at least 3 is 3 connected to an Eg-subgroup of S Y containing Z. Hence, it suffices to prove that any
Eg-subgroup of § containing Z is 3-connected to A.

Letx,y € S and B := (Z,X, 7). Suppose that B = Eg. Considering a number of cases, we will prove
that B is 3-connected to A. Below, a will always denote an involution of W with a # —1I5.

Case 1: x = diag(ry,r2,r3,r4) and y = diag(my, my) for some ry,ry,r3,r4 € Wy and my,my € W,.

We consider a number of subcases. These subcases are given by the rows of the table below. In each
row, we assume that sy, 52, 53, 54 are elements of W; such that y is equal to the matrix given in the
column “y”. We also assume that the conditions in the column ‘Conditions’ (if any) are satisfied. The
column * y1 gives an element of S such that y7 is an involution in Cg (E)\(Z,x) and such that (Z, X, y7)

is 3-connected to A. The existence of such an element y1 easily implies that B is 3-connected to A.
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Case y Conditions Vi
S1
S$2
11 53 Y
S4
S, . L
1.2 »2 x¢A -
s3 I
S4 2
S1 a
13 52 xeA a'
S3 I
S4 4
S1 I
S —12
1.4 5 x¢A A
S4 -1
S1 a
Sy
15 52 ) xeA “o
53
S4 ass

The subcase that y has the form

can be easily reduced to Cases 1.2 and 1.3.
Case 2: There are ri,ra,r3,1r4 € Wi and my,m, € W, with

r
r m
x=|"? andy:( ! )
r3 myp

r4
Case 2.1: There are 51, 52, 53, 54 € W1 with

S1 S1
52 52
= ory =
y 53 y 53

S4 S4

Noticing that (Z, %, y) = (Z, X, y), this case can be reduced to Case 1.

Case 2.2: There are 51, 52, 53, 54 € W1 with
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Since B = Eg, we have ex” = x, where € € {+, —}. By a direct calculation, we have

sflrlsz

-1
S, 128
=2 291

As x = ex¥, we have r| = ssl‘lrlsz, ry = esglrzsl, ry = er,' and ry = ery’. Note that &s]' = 55 and

es?? = §q.

2We now consider a number of subsubcases. These subsubcases are given by the rows of the table
below. The columns ‘Condition 1’ and ‘Condition 2’ describe the subsubcase under consideration. The
column ‘y;’ gives an element y; € S such that y7 is an involution in C§(1::) \ (Z,%) and such that
(Z, X,y1) is 3-connected to A. In each subsubcase, one can see from the above calculations and from
the previous cases that y; indeed has the stated properties. The existence of such an element y; easily

implies that B is 3-connected to A in all subsubcases.

Case Condition 1 Condition 2 Y1
£S5
s
221 x2=Iy =y (r3.ra) £ (D) L en
4
r
2 2 r
22 x*=k=y (r3,ra) < (D) ca
a3
ES]
2 2 52
223 xt=-Ig=y or
3
ry
Iy
224 x'=Ig,y*=-Iy (r3,ra) £ (-D) er3
4

Iy
225 xX2=IL,y’=-Iy (r3,r4) < (-D) ( ea )
ga®

The case that x2 = —Ig and y2 = Ig can be easily reduced to Cases 2.2.4 and 2.2.5.
Case 2.3: There are s, 5, 53, 54 € W with

Since (Z,X,y) = (Z,%,Xy), this case can be reduced to Case 2.2.
Case 3: There are ri,ra2,r3,1r4 € Wi and my,mo € W, with

X = 2 andy = (m1 )
r my

This case can be reduced to Case 2.
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Case 4: There are ri,ry,r3,r4 € Wi and my,mr € W, with

r
r m
x=|? andyz( ! )
r3 my
r4

In view of Cases 1-3, we may assume that

53
4

for some s, 52, 53, 54 € W. Since (Z, X, y) = (Z, X,XYy), we can now reduce the given case to Case 1.

Case 5: There are ay,a>, b1, by € Wo with

=" o)

Without loss of generality, we assume that

_ [a _ by
x—( az)andy—(b2 )

We have x? € (—Ig) since B = (Z,X,y) = Eg, and hence, a;% € (—I4). So, by Lemma 3.31, there is an
involution a; € W> \ {ai, —I4) which commutes with a;. Set

_ (&
y1 = C'Z'lbl .

Clearly, yj is an involution of S. As [x,y] € (~Ig), we have a,”' € {a,, —a,}. Since a| and @, commute,
it follows that ;”! and a, commute. So we have [x, y;] = 1 and hence [%, y1] = 1. Using that y? € (-1Ig),
one can easily verify that [y, y;] = 1 and hence [¥, 1] = 1. As @; € (ay,—I4), we have y| & (Z, ¥).

Now (Z, X, y1) is an Eg-subgroup of S which commutes with B and which is 3-connected to A by
Cases 1-4. Thus, B is 3-connected to A.

Case 6: There are ay,a», by, by € W) with

o, )

Noticing that (Z, ¥, y) = (Z, X, %y), we can reduce this case to Case 5. O

We summarize the above lemmas in the following corollary.
Corollary 3.34. Let g be a nontrivial odd prime power and n > 6. Then the following hold:

(1) The Sylow 2-subgroups of SL,,(q) and those of PSLy(q) are 2-connected.
(ii) The Sylow 2-subgroups of SL,,(q) are 3-connected.
(iii) If g = 1 mod 4 or n > 7, then the Sylow 2-subgroups of PSL,(q) are 3-connected.

Unfortunately, the Sylow 2-subgroups of PSL¢(q) are not 3-connected when ¢ = 3 mod 4 (this is
not terribly difficult to observe).
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Corollary 3.35. Let q be a nontrivial odd prime power and n > 6. Let G = SL,,(q), or G = PSL,(q)
and n > 7 if g = 3 mod 4. For any Sylow 2-subgroup S of G and any elementary abelian subgroup A of
S withm(A) < 3, there is some elementary abelian subgroup B of S with A < B and m(B) = 4.

Proof. By Corollary 3.34, § is 2-connected and 3-connected. Applying [31, Lemma 8.7], the claim
follows. ]

3.6. Generation

Next, we discuss some generational properties of (P)SL,(g) and (P)SU,(q), where n > 3 and ¢ is a
nontrivial odd prime power. We need the following definition (see [31, Section 8]).

Definition 3.36. Let G be a finite group, let S be a Sylow 2-subgroup of G and let k be a positive integer.
We say that G is k-generated if

G =Tsx(G) := (NG(T) | T < S,m(T) > k).

The following two lemmas will later prove to be useful.

Lemma 3.37 (see [4]). Let q be a nontrivial odd prime power. Then the groups SL3(q), PSL3(q),
SU3(q) and PSU3(q) are 2-generated.

Lemma 3.38. Let g be a nontrivial odd prime power, and let n > 4 be a natural number. Moreover, let
ee{+,—-}Yand Z < Z(SL:(q)). Assume that one of the following holds:

(i) n>5
(i) g = e mod §,
(ii) Zz=1.

Then SLE(q)/Z is 3-generated.
We need the following lemma in order to prove Lemma 3.38.

Lemma 3.39 (see [45], [13]). Let g > 2 be a prime power, and let n > 3 be a natural number. Let
¢ € {+, —}. Define

U, = {(A In—z) A€ SLf(q)}
and

Up_1 = {(1"‘2 A) cAe SL;(q)}.

Moreover, for each2 <i <n -2, let

Iy
U; = A :AeSLY(q) .
In—i—l
Then the following hold:
(i) We have SL5(q) =(U; : 1 <i<n-1).
(ii) Foreach 1 <i < n—2, there is a monomial matrix m; in SL5 (q) with Ul.mi = Uiyl

Proof of Lemma 3.38. Let g be a nontrivial odd prime power, n > 4 be a natural number, ¢ € {+, -},
L = SL5(g) and Z < Z(L). Suppose that one of the conditions n > 5, g = e¢mod 8or Z = 1 is
satisfied. We have to show that L/Z is 3-generated.
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Let Uy, ..., Uy denote the SL5(q)-subgroups of L corresponding to the 2 X 2 blocks along the
main diagonal (as in Lemma 3.39). Let E be the subgroup of L consisting of the diagonal matrices in L
with diagonal entries in {-1, 1}.

Assume that n > 5. We claim that there is an Eg-subgroup E; of E with E; N Z(L) = 1 and
[E;,U;] = 1foreachi € {1,...,n—1}.LetV be the module defining L. Let X = {xy, ..., x,} be a basis
for V, with X orthonormal if V is unitary, and let V; := (x;, x;41) for 1 < i < n. Then U; = SL®(V;).
We have m(E) =n—-1 > 4.For1 <i < nlete; € E invert V; and centralize x; for x; ¢ V;, and
set F; := Cg(V;){e;). Then F; is a hyperplane of E centralizing U;. If n is odd, then |Z(L)| is odd,
so we may choose E; < F;. Thus, we may take n even, so n > 6. Choose a hyperplane D; of F; with
D;NZ(L) =1, and take E; < D;.

For 1 <i < n,U;Z/Z centralizes E;Z/Z = Eg since [E;, U;] = 1. Now, if S is a Sylow 2-subgroup
of L/Z containing EZ/Z, we have U;Z/Z < I's3(L/Z) foreachi € {1,...,n — 1}, and Lemma 3.39
(i) implies that L/Z is 3-generated.

We now consider the case n = 4. By hypothesis, Z = 1 or ¢ = £ mod 8. Let

A 0
U= 0]:AeSL;(q) .
00|1

IfZ=1,sety:=-I4.If g = € mod 8§, let A be an element of Fzz of order 8 such that 197 = 1. Note
that 4 € F if &€ = +. Also, if ¢ = £ mod 8 and |Z| = 2, let y := A1y € L, and if ¢ = & mod 8 and
|Z| =4, let y := diag(2,1,4,-1) € L. _

Let Sp be a Sylow 2-subgroup of U containing £ N U. Let S be a Sylow 2-subgroup of L containing
So and y. Denote the image of Sin L/ZbyS.Wehave SNUZ/Z = SoZ|Z € Syl,(UZ/Z). By Lemma
337,UZ|Z = U = SL§(q) is 2-generated. So we have

UZ|Z =Ts,2/22(UZ|Z) ={Nyz;z(T) | T < SoZ/Z,m(T) = 2).

LetT < SoZ/Z with m(T) > 2 and T:= (T,yZ). Clearly, yZ is an involution of S not contained in
UZ/Z and centralizing UZ / Z. Therefore, we have that m(T) > 3and Ny /z(T) < Npjz (T). 1t follows
that UZ/Z < I's 3(L/Z). In particular, U;Z/Z < I's3(L/Z) fori € {1,2}.

From Lemma 3.39 (ii), we see that there is some m € L such that U, = Uj and such that m
normalizes (E, y). So mZ normalizes (EZ/Z,yZ). It is easy to note that (EZ/Z,yZ) = Eg, and so we
have mZ € I's 3(L/Z). It follows that UsZ/Z = (U,Z/Z)"% < T's3(L/Z).

So we have U;Z/Z < T's3(L/Z) for i € {1,2,3}, and Lemma 3.39 (i) implies that L/Z is 3-
generated. O

3.7. Automorphisms of (P)SL,(q)

Fix a prime number p, a positive integer f and a natural number n > 2. Set ¢ := p/ and T := SL,(q).
We now briefly describe the structure of Aut(7/Z), where Z < Z(T), referring to [19] and [16, Section
2.1] for further details.

Let Inndiag(T) := Autgy,, (4)(T). Note that

Inndiag(T) /Inn(T) = C(;,4-1)-
The map
¢:T > T, (a;) — (ai;”)
is an automorphism of 7 with order f. One can check that ¢ normalizes Inndiag(7’). Set

PT'L,,(q) := Inndiag(T){¢).
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It is easy to note that (¢) NInndiag(T’) = 1 so that PT"L,,(q) is the inner semidirect product of Inndiag(7’)

and (¢).
The map

(:T > T,ar (a")7!

is an automorphism of 7" with order 2. If n = 2, then ¢ turns out to be an inner automorphism of 7,
while we have ¢ ¢ PT'L, (¢) when n > 3. By a direct calculation,. normalizes Inndiag(7") and commutes
with ¢. In particular, A := PT'L, (g){¢) is a subgroup of Aut(T), and we have

A/Inndiag(T) = C¢ X Cq,

wherea =lifn=2anda =2ifn > 3.

Now let Z be a central subgroup of T. As Z(T) is cyclic, Z is characteristic in 7. Then as 7T is
perfect, SL(2) or SL,(3), the natural homomorphism Aut(7T) — Aut(7'/Z) is injective. The image
of Inndiag(7T’) under this homomorphism will be denoted by Inndiag(7'/Z). By abuse of notation, we
denote the image of PI'L, (q) in Aut(T/Z) again by PI'L, (q) and the images of « and ¢ again by ¢ and
¢, respectively.

With this notation, we have

Aut(T/Z) = PT'L,(q){v).

Note that the natural homomorphism Aut(7) — Aut(7’/Z) is an isomorphism and that it induces an
isomorphism Out(T) — Out(7T/Z).

The elements of Inndiag(7/Z) \ Inn(T /Z) are said to be the (nontrivial) diagonal automorphisms of
T/Z. An automorphism of T'/ Z is called a field automorphism if it is conjugate to ¢’ for some 1 < i < f.
The automorphisms of the form @, where a € Inndiag(7T/Z), are said to be the graph automorphisms
of T/Z. An automorphism of T/Z is said to be a graph-field automorphism if it is conjugate to an
automorphism of the form ¢’ for some 1 < i < f. We remark that these definitions are particular cases
of more general definitions; see [49, Chapter 10].

Proposition 3.40. Let g be a nontrivial prime power, and let n > 2. Then Out(PSL,,(q)) is 2-nilpotent.

Proof. By the above remarks, Out(PSL,(g)) has a chief series with cyclic factors. Consequently,
Out(PSL,(q)) is supersolvable. By [38, Lemma 2.4 (4)], any supersolvable finite group is 2-nilpotent,
and so the proposition follows. O

The following proposition also follows from the above remarks.

Proposition 3.41. Let n > 2 be a natural number. Then Out(SL,,(3)) is a 2-group.

3.8. Automorphisms of (P)SU, (q)

Let p be a prime number, f be a positive integer and n > 3 be a natural number. Set g := p/ and

T := SU,(q). We now briefly describe the structure of Aut(7T/Z), where Z < Z(T), referring to [19]
and [16, Section 2.3] for further details.
Let Inndiag(T) := Autgy, (q) (SUn(g)). It is rather easy to note that
Inndiag(T) /Inn(T) = C(, g+1)-
The map

¢:T —T,(a;j) — (a;")
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is an automorphism of 7 with order 2 f. One can check that ¢ normalizes Inndiag(7T’). Set
PT'U,(g) := Inndiag(T){¢).

It is rather easy to note that (¢) N Inndiag(7") = 1 so that PT'U, (q) is the inner semidirect product of
Inndiag(7’) and (¢). Note that

PTU,(q)/Inndiag(T) = Cyy.

Now let Z be a central subgroup of 7. As in the case T = SL,(q), the natural homomorphism
Aut(T) — Aut(T/Z) is injective. The image of Inndiag(7) under this homomorphism will be denoted
by Inndiag(7/Z). By abuse of notation, we denote the image of PT'U,(q) in Aut(T/Z) again by
PT'U, (g) and the image of ¢ again by ¢.

With this notation, we have

Aut(T/Z) = PTU,(q).

Note that the natural homomorphism Aut(7) — Aut(7'/Z) is an isomorphism and that it induces an
isomorphism Out(7") — Out(T/Z).

The elements of Inndiag(7/Z) \ Inn(7T'/Z) are said to be the (nontrivial) diagonal automorphisms
of T/Z. An automorphism of T/Z is called a field automorphism if it is conjugate to ¢' for some
1 <i < 2f such that ¢/ has odd order. The automorphisms of the form a¢’, where ¢ has even order
and « € Inndiag(T/Z), are said to be the graph automorphisms of T/Z. There are no graph-field
automorphisms of T/Z.

Proposition 3.42. Let g be a nontrivial prime power, and let n > 3. Then Out(PSU,,(q)) is 2-nilpotent.

Proof. We see from the above remarks that Out(PSU, (q)) is supersolvable. So Out(PSU,(q)) is 2-
nilpotent by [38, Lemma 2.4 (4)]. m]

The following proposition also follows from the above remarks.

Proposition 3.43. Let n > 3 be a natural number. Then Out(SU,,(3)) is a 2-group.

3.9. Some lemmas

We now prove several results on the automorphism groups of (P)SL, (q) and (P)SU, (q), where n > 2
and ¢ is a nontrivial odd prime power.

Lemma 3.44. Let q be a nontrivial odd prime power. Also, let T := SLy(q) and S € Syl,(T). Suppose
that a and B are 2-elements of Aut(T) such that S = S = SP and a|s.s = Bls.s- Then a = .

Proof. Lety = af! € Caut() (S). We have Crnndiag(r) (S) = 1 by [28, Lemma 4.10.10]. Therefore,
it suffices to show that y € Inndiag(T). Clearly, the images of a and 8~! in Aut(T)/Inndiag(T) are
2-elements of Aut(7")/Inndiag(7’). Since Aut(7')/Inndiag(T) is abelian,

v - Inndiag(7T’) = (« - Inndiag(T)) - (,8_1 - Inndiag(T))

is still a 2-element of Aut(7')/Inndiag(7’). By [28, Lemma 4.10.10], Caur)(S) is a 2’-group, and so y
has odd order. Therefore, y - Inndiag(7T’) has odd order. It follows that y € Inndiag(T), as required. O

Lemma 3.45. Let g = p/, where p is an odd prime and f is a positive integer. Let T := PSLy(q),
and let a be an involution of Aut(T). Suppose that Cr (@) has a 2-component K. Then we have 2 | f,

(fsp) #(2,3)and K = PSLz(pg). In particular, K is a component of Cr ().
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Proof. Note that Cr (@) = Crn(r) (@).

Assume that @ € Inndiag(T). Noticing that Inndiag(T) = PGL,(q), we see from Lemma 3.3 that
Crundiag(T) (@) is solvable. Thus, Cr (@) = Cin(r) (@) is solvable, and Cr (@) has no 2-components, a
contradiction to the choice of .

So we have a ¢ Inndiag(T'). By the structure of Aut(PSL;(q)) and since @ has order 2, we can write «
as a product of an inner-diagonal automorphism and a field automorphism of order 2. In particular, f must
be even. Consulting [28, Proposition 4.9.1 (d)], we see that « itself is a field automorphism. So we can

apply [28, Proposition 4.9.1 (b)] to conclude that Cryngiag(7) (@) = Inndiag(PSLz(pé)) = PGLz(pé).
Consequently, K is isomorphic to a 2-component of PGLz(pg). It follows that (f, p) # (2,3) and
K = PSLy(p%). O

Before we state the next lemma, we introduce some notational conventions for adjoint Chevalley
groups. Given a nontrivial prime power g, we denote A;(g) also by B;(q) and by C;(g). Moreover,
B;(q) will be also denoted by C»(q), and A3(g) will be also denoted by D3(g). We also set D(q) :=

A1(q) X A1(q) and 2D»(q) = A1(g?).

Lemma 3.46. Let g = p/, where p is an odd prime and f is a positive integer. Let n > 3 be a natural
number and € € {+,—}. Let T := PSL%(q), and let @ be an involution of Aut(T). Suppose that Cr (&)
has a 2-component K. Then K is in fact a component, and one of the following holds:

() K = SL{(q) for some2 <i <n, wherei >2ifq=3;
(ii) n is even, and K is isomorphic to a nontrivial quotient of SL 1 (@%);
(iil) & =+ fiseven, K = PSLn(pg) or K = PSUn(P%);
(iv) g#3, n=30r4, and K = PSL;(q);
(v) nisodd,n > 5and K = Ban(q),’
(vi) nis even and K = Cn(q);
(vii) nis even,n > 6 and K = Du(q);
(viii) nis even, n > 6 and K = *Du (q).

Here, the (twisted) Chevalley groups appearing in (v)—(viii) are adjoint.

Proof. Tt can be shown that any involution of Aut(7) is an inner-diagonal automorphism, a field
automorphism, a graph automorphism or a graph-field automorphism (see [16, Section 3.1.3] or [28,
Section 4.9]).

Case 1: a € Inndiag(T), or @ is a graph automorphism.

Set C* := Crandiag(T) (@) and L™ := OP'(C*). One can see from [28, Theorem 4.2.2 and Table 4.5.1]
that C*/L* is solvable and that one of the following holds:

(1) L* is the central product of two subgroups isomorphic to SLf(g) and SL?_.(g) for some natural
number i with 1 <i < %,

(2) niseven and L* is isomorphic to a nontrivial quotient of S Ln (q%),

(3) nisodd and L* = B%l (9),

(4) nisevenand L* = Cz(q),

(5) nisevenand L* = D%(q),

(6) nisevenand L* = 2Du(q),

where the (twisted) Chevalley groups appearing in the last four cases are adjoint. Since Cr(a) is
isomorphic to Ciyn(7y(@) & C*, we have that K is isomorphic to a 2-component of C* and thus
isomorphic to a 2-component of L*. Therefore, one of the conditions (i)-(viii) is satisfied.

Case 2: « is a field automorphism or a graph-field automorphism.

Again, let C* := Cpndiag(t) (@). Since the field automorphisms of PSU,(q) have odd order and
PSU,(q) has no graph-field automorphisms, we have € = +. Also, f is even since « is a field au-
tomorphism or a graph-field automorphism of order 2. From [28, Proposition 4.9.1 (a), (b)], we see
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that C* = PGL, (p%) if @ is a field automorphism and that C* = PGUn(pg) if a is a graph-field
automorphism. Since K is isomorphic to a 2-component of C*, it follows that (iii) is satisfied. O

Corollary 3.47. Let g = p/, where p is an odd prime and f is a positive integer. Let n > 2 be a natural
number and € € {+,—}. Let Z be a central subgroup of SL%(q), and let T := SL%(q)/Z. Let @ be an
involution of Aut(T), and let K be a 2-component of Cy (). Then the following hold:
(i) Kis a component of Cr (@), and K |Z(K) is a known finite simple group.
(i) K/Z(K) & My;.
(iii) Assume that K|/Z(K) = PSLIf*(q*) for some positive integer 2 < k < n, some nontrivial odd
prime power q* and some € € {+, —}. Then one of the following holds:
@ q"=gq;
(b) ¢* =q2,n > 4 is even, k:gands* =+ifn>6;
(c) fiseven, k =n, qg* = p%.

Proof. Set T:=T/Z(T) = PSLZ(q). Let @ be the automorphism of T induced by a.
As K is a 2-component of C7 (@) and Cr (@) < Cs (@), it follows that K is a 2-component of Cy(@).

Lemmas 3.45 and 3.46 imply that Kisa component of C(@) and that K/Z(K) is a known finite simple
group. Applying [37, 6.5.1], we conclude that K’ is a component of C7 («). We have K = K’ since K is
a 2-component of Cr (@), and so it follows that K is a component of C7 (a). Also, K/Z(K) = K/Z(K)
so that K/Z(K) is a known finite simple group. Hence, (i) holds.

If K/Z(K) = My, then K/Z(K) = M, which is not possible by Lemmas 3.45 and 3.46. So (ii)
holds.

Suppose that K/Z(K) = PSL ,f (g*) for some positive integer 2 < k < n, some nontrivial odd prime
power ¢* and some £* € {+, —}. By Lemmas 3.45 and 3.46, one of the following holds:

(1) K/Z(K) = PSL?(q) for some 2 < i < n;

(2) nis even, and K /Z(K) is isomorphic to PSLx (q%);
(3) fiseven, K = PSL,(p¥) or PSU,(p?);

@) q#3,n=30r4, K = PSLy(q);

(5) nisodd, n>5,K = Bui(q);

(6) niseven,n >4,K = Cx(q);

(7) niseven,n 2 6, K = Dx(q);

(8) niseven,n > 6,K = *Du(q).

Here, the (twisted) Chevalley groups appearing in (5)—(8) are adjoint. On the other hand, we have
K/Z(K) = PSL? (g"). Now, if (1) holds, then PSLE (¢*) = PSL#(q) for some 2 < i < n, and [49,
Theorem 37] shows that this is only possible when g* = g so that (a) holds. Similarly, if (2) holds, then
we have (b). Moreover, (3) implies (c) and (4) implies (a). As Theorem [49, Theorem 37] shows, the
cases (5) and (6) cannot occur, while (7) and (8) can only occur when n = 6. As above, one can see that
if n = 6 and (7) or (8) holds, then we have (a). ]

Lemma 3.48. Letn > 3 and e € {+,—}. Then SLZ (3) is locally balanced (in the sense of Definition 2.7).

Proof. SetT := SLZ(3). Let H be a subgroup of Aut(7") containing Inn(7), and let x be an involution
of H. It is enough to show that O(Cg (x)) = 1.

Assume that O(Cg (x)) # 1. Then x € Inndiag(7’) by [28, Theorem 7.7.1]. By Propositions 3.41
and 3.43, Out(T) is a 2-group. This implies O(Cp (x)) = O(Crun(r)(x)) = O(Crandiag(T)(*)). Since
x is an involution of Inndiag(T") = PGL{(3), we have O (Cinndiag(r)(x)) = 1 by Corollary 3.9. Thus,
O(Cpg (x)) = 1. This contradiction completes the proof. O

Lemma 3.49. Let n > 3 be a natural number, let q be a nontrivial odd power, and let € € {+,—}. Then
any nontrivial quotient of SLZ (q) is locally 2-balanced (in the sense of Definition 2.7).
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Proof. By [24, Theorem 4.61] or [28, Theorem 7.7.4], PSL5(q) is locally 2-balanced. Let K be a
nontrivial quotient of SLZ(g). As we have seen, there is an isomorphism Aut(K) — Aut(PSLZ(q))
mapping Inn(K) to Inn(PSLZ(g)). So the local 2-balance of K follows from the local 2-balance of
PSLZ(q). O

Lemma 3.50. Let g be a nontrivial odd prime power and n > 4 be a natural number. Let Z < Z(SL, (q))
and T := SL,(q)/Z. Let K, be the image of

:(A In—2) : AESLz(q)}

in T, and let K, be the image of

{(’2 3) : eASLn_z(q>}

in T. Let a be an automorphism of T with odd order such that @ normalizes K| and centralizes K,. Then
alk, k, is an inner automorphism.

Proof. By hypothesis, ¢ = p/ for some odd prime number p and some positive integer f. We have
a € PI'L, (q) since a has odd order and |Aut(T)/PT'L,,(gq)| = 2. So there are some m € GL,(g) and
some 1 < r < f such that, for each element (a;;) of SL,(g), @ maps (a;;)Z to ((a,-j)”r)mZ.

Let x be the image of diag(—1,-1,1,...,1) € SL,,(¢) in T. Then x is the unique involution of K,
and so we have x® = x. This easily implies that

)

for some m; € GL,(g) and some my € GL,_2(g).

Since @ centralizes K,, we have ((aij)”r)m2 = (a;j) for all (a;j) € SL,—»(q). Therefore, the
automorphism SL,_>(q) — SL,-2(q), (aij) — (al-j)f’r is an element of Inndiag(SL,,—»(g)). This
implies r = f.

Thus, under the isomorphism Aut(SL;(g)) — Aut(K;) induced by the canonical isomorphism
SLy(g) — K, the automorphism «a|g, k, of K| corresponds to the inner-diagonal automorphism
a : SLy(q) — SLa(q),a — a™, and this automorphism has odd order since « has odd order. The
index of Inn(SL»(g)) in Inndiag(SL(g)) is 2, and so it follows that @ € Inn(SL;(g)). Consequently,
a|K1,K| € IHH(KI). O

By using similar arguments as in the proof of Lemma 3.50, one can prove the following lemma.

Lemma 3.51. Let g be a nontrivial odd prime power and n > 4 be a natural number. Let Z < Z(SU,(q))
and T = SU,(q)/Z. Let K| be the image of

{(A ) A€ SUz(q)}
Iy >

“53):Bemuzmﬁ

in T. Let a be an automorphism of T with odd order such that a normalizes K| and centralizes K». Then
alk, .k, is an inner automorphism.

in T, and let K, be the image of

Our next goal is to prove the following lemma.
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Lemma 3.52. Let g and g* be nontrivial odd prime powers. Let L be a group isomorphic to SL,(q*). Let
Q be a Sylow 2-subgroup of L. Moreover, let V be a Sylow 2-subgroup of GL,(q) and Vy :=VNSLy(q).
Suppose that there is a group isomorphismy : Vo — Q. Let vy, v, v3 be elements of V such that vy = viv;
and such that the square of any element of {vi, v, v3} lies in Z(GL3(q)). For eachi € {1,2,3}, let «;
be a 2-element of Aut(L) normalizing Q such that

4
@ilo.0 =¥ (cv e v)¥-

Then we have
3
(oCria) =1.
i=1

To prove Lemma 3.52, we need to prove some other lemmas.

Lemma 3.53. Let g be a nontrivial odd prime power with ¢ = 1 mod 4, and let k € N with (g —1), = 2.
Let G be a group isomorphic to SLy(q) and Q € Syl,(G). Then the following hold:

(i) There are elements a, b generating Q such that ord(a) = 2%, ord(b) = 4, a® = a™" and b? = a7,
(ii) Let a and b be as in (i). Then there is a group isomorphism ¢ : G — SLy(q) such that

10
© _
¢ N (0 A_l)

for some A € F, with order 2% and

Proof. (i) follows from Lemma 3.12.
We now prove (ii). Assume that k£ > 3. By Lemma 3.10 (i),

e 0 . . 01
R = {(0 #_1) : ,ulsa2—elementof}Fq}<(_l O)>

is a Sylow 2-subgroup of SL,(g). Choose a group isomorphism ¢ : G — SL(q) such that Q¥ = R.
Since k > 3, Q has only one cyclic subgroup of order 2. This implies that

10
a’ = (0 /1‘)
for some 4 € F, with order 2k Since b ¢ (a), we have
0 wu
¥ o_
" (—ﬂ‘l 0)

for some 2-element u of F,. Composing ¢ with the automorphism

-1
SLa(q) > SLa(g), A = ("0 ?)A(g ?)

we get a group isomorphism ¢ : G — SL;(q) with the desired properties. This completes the proof of
(ii) for the case k > 3.
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Assume now that k = 2. Let ¢y : G — SL>(g) be a group isomorphism. We have (a¥)* = —I, since
—1I, is the only involution of SL,(g) and ord(a?) = 2. So, by Lemma 3.3, we may assume that

v_(1 0
0!

a~!, we have

A0\ (o
o'/ ~lo a)

for some A € IF’; with order 4. Since a” =

This implies that

0 u
l/I =
’ (-ﬂ" 0)
for some p € Fj,. Again, we may compose ¢ with a suitable diagonal automorphism of SL>(g) to obtain
a group isomorphism ¢ : G — SL,(g) with the desired properties. O

By using similar arguments as in the proof of Lemma 3.53, one can prove the following lemma.

Lemma 3.54. Let g be a nontrivial odd prime power with g = 3 mod 4, and let s € Nwith (q+ 1), = 2°.
Let G be a group isomorphic to SU,(q) and Q € Syl,(G). Then the following hold:

(i) There are elements a, b € Q such that ord(a) = 2°, ord(b) = 4, a® = a™" and b* = a? ™.

(ii) Let a and b be as in (i). Then there is a group isomorphism ¢ : G — SU,(q) such that

10
¢ _
(o]

for some A € F*, with order 2° and
q

01
¢ —
v =5 o)
Lemma 3.55. Let g be a nontrivial odd prime power with g = 1 mod 4. Let p be a generating element
of the Sylow 2-subgroup of F, and let

(P (01
a = ( p]), b= (_1 0)
Let V be the Sylow 2-subgroup of GLy(q) given by Lemma 3.10 (i), and let v,w € V such that

v2, w2, (vw)? € Z(GLy(q)). Then one of the following holds:

1) {v,w,vw}NZ(GLy(q)) # 0.
(ii) There existr,s € {v,w,vw} witha" = a, b" = Panda® =al.

Proof. Tt is easy to note that (i) holds if v and w are diagonal matrices.
Suppose now that v or w is not a diagonal matrix. If neither v nor w is a diagonal matrix, then vw is
a diagonal matrix. So there exist r, s € {v, w, vw} such that

_ [l _ M1
r‘( lz)’ S'(#z )

where A1, A2, (1 and p; are 2-elements of F;.

https://doi.org/10.1017/fms.2022.53 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.53

Forum of Mathematics, Sigma 37

If A; = Ay, then (i) holds. Assume now that 1; # A>. Then 1> = —A; since 7> € Z(GLy(q)), and a
direct calculation shows that a” = a, b" = b3 and a® = a” . O

Lemma 3.56. Let g be a nontrivial odd prime power with ¢ = 3 mod 4, and let k € N with (q+1), = 2*.
Let V be a Sylow 2-subgroup of GL3(q).

(i) There exist x,y € V with ord(x) = 2*! ord(y) = 2 and x¥ = x %2 We have V N SLy(q) =
() (xy).
(ii) Let x and y be as above, and let a := x> and b := xy. Let v,w € V withv?, w?, (vw)* € Z(GL(q)).
Then one of the following holds:
@) {v,w,vw}NZ(GLy(q)) # 0.
(b) There existr,s € {v,w,vw} such that a” = a, b" = b3 and a* = a™".

Proof. (i) follows from Lemma 3.16 (i), (ii).

We now prove (ii). We have Z(V) = (xzk) by Lemma [23, Chapter 5, Theorem 4.3]. Thus,
Z(GLy(q)) NV = (x2°). Clearly, {v, w,vw} N {x) € (x27).

Ifv,w € (x), thenv,w € (xzk_l ), and it easily follows that (a) holds.

Assume now that v ¢ (x) or w ¢ {x). If neither v nor w lies in (x), then vw € (x). Consequently,
{v,w, vw} has an element r of the form x?2"™" for some 1 < £ < 4 and an element s of the form x/ y for
some 1 < i < 251 If £ = 2 or 4, then (a) holds. Assume now that £ = 1 or 3. It is clear that " = a.
Furthermore, we have

k-1

s
b" = (xy)*

k-1
x/’2

— _xy

- xx—fzk*‘yxfzk*'yz

— - (xy)ezkfly

— 10! (x—1+2k)£2k*1y
_ x1—€2k+[22k‘1y

_ xl—fzky
todd x”zky.

On the other hand, we have
b= (xy)3 — xzkxy — x”zky.
Consequently, b” = b3, Finally, we also have
a* = (xz)xiy _ (xZ)y _ (xy)Z _ (x—1+2k)2 2o g1

Thus, (b) holds. m]

Proof of Lemma 3.52. If aj|p,o = idp for some j € {1,2,3}, then «; = id; by Lemma 3.44, which
implies that

3
(0(CLla) < O(Crla)) =0(L) = 1.
i=1
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Suppose now that «@; acts nontrivially on Q for all i € {1,2,3}. Let m € N with |Q| = 2™. Using
Lemma 3.55 (together with Sylow’s theorem) and Lemma 3.56, we see that there exist a,b € Q and
i,j € {1,2,3} such that the following hold:

(i) ord(a) = 2™, ord(b) = 4,ab =a”!, b* = a®";
(i) a% =a, b% =b3 a% =a'.

Clearly, b% = alb forsome 1 < ¢ < 2m1,
Assume that ¢g* = 1 mod 4. By Lemma 3.53, there is group isomorphism ¢ : L — SL;(g*) with

o_[1 0
0!
for some generator A of the Sylow 2-subgroup of (F,+)* and
01
¢ _
b = (_1 0).

Set Bx := ¢ laygp for k € {1,2,3}. Let i and j be as in (ii). Also, let

()

Then B; and c,,, normalize Q¥, and we have Bilos 0 = Cm;lo¢,0¢. Applying Lemma 3.44, we
conclude that 5; = ¢,
Clearly,

(o) = ()

0 u
mj = (_1 0)

Then B; and c,,; normalize 0¥, and we have Bjlg¢ 0¢ = Cm,|o¢.0¢. Applying Lemma 3.44, we
conclude that B = ¢, -

It follows that CSLz(q*) (Bi) N CSLz(q*)(ﬁj) = Z(SLy(q")). So we have Cr(a;) N CL(O’]') =Z(L),
and this implies that

for some 2-element p of (F,«)*. Set

3
(oCriaw) =1
k=1

since |Z(L)| = 2.
If g* = 3 mod 4, then a very similar argumentation shows that the same conclusion holds. Here, one
has to use Lemma 3.54 instead of Lemma 3.53, together with the fact that SL,(g*) = SU»(g*). mi

We bring this section to a close with a proof of the following lemma, which will play an important
role in the proof of Theorem B.

Lemma 3.57. Let g be a nontrivial odd prime power, € € {+,—} and n > 2 a natural number. Set
T :=Inn(PSLZ(q)). Let A be a subgroup of Aut(PSLZ(q)) such that T < A and such that the index of
Tin A is odd. Let S be a Sylow 2-subgroup of T. Then we have Fs(T) = Fs(A).

To prove Lemma 3.57, we need to prove some other lemmas first.
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Lemma 3.58. Let g be a nontrivial odd prime power, & € {+, -}, and let r be positive integer. Also, let
W be a Sylow 2-subgroup of GL5,(q). Then Aut(W) is a 2-group.

Proof. We proceed by induction over r.

Suppose that r = 1. If ¢ = — mod 4, then W is semidihedral by Lemmas 3.10 and 3.11, and so
Aut(W) is a 2-group by [18, Proposition 4.53]. If ¢ = & mod 4, then W = C,« 2 C, for some positive
integer k by Lemmas 3.10 and 3.11, and so Aut(W) is a 2-group as a consequence of [21, Theorem 2].

Assume now that » > 1 and that the lemma is true with » — 1 instead of r. Let Wy be a Sylow 2-
subgroup of GL?._, (g). Hence, Aut(W)) is a 2-group. By Lemma 3.14, we have W = Wy C,. Applying

or-1
[21, Theorem 2], we conclude that Aut(W) is a 2-group. o

Lemma 3.59. Let g be a nontrivial odd prime power, € € {+,—}, and let n > 3 be a natural number.
LetT := SL(q), and let S be a Sylow 2-subgroup of Inndiag(T). Then Autprrs(4)(S) is a 2-group.

Proof. Leta € Nprrg(q)(S). It suffices to show that ¢, [s s is a 2-automorphism of S.
LetO <ry <---<rysuchthatn =2" +---+2". Let W; € Syl,(GL5,,(¢q)) forall 1 <i <t By
Lemma 3.15,

Ay
W = :AiGWi
A,

is a Sylow 2-subgroup of GLZ(g).

We have that {c,,|r.7 | w € W} is a Sylow 2-subgroup of Inndiag(7’) since it is the image of W
under the canonical group epimorphism G L5 (g) — Inndiag(7). Without loss of generality, we assume
that S = {cw|r.T | w € W}

Let p be the odd prime number and f be the positive integer with ¢ = p/ . Since @ € PT'LZ(gq), there
exist some m € GLZ(g) and some natural number ¢, where 1 < £ < fife=+and 1 < ¢ < 2f if
& = —, such that

t
(aij)® = (af} )"
forall (a;;) € T.
Let
@:GL;(q) = GL{(q), (aij) — (af.} )™

Observe that @ is the product of a field automorphism with an inner automorphism of GLZ(g). Using
this fact, one can see that @' (¢, lrr)a=c,alrr forallw e W.

Let w € W. Since o normalizes S, there is some w € W with c¢,,a|r 1 = alewlrr)a=cglrr. It
follows that w® € wZ(GLZ(q)) € WZ(GLE(q)). This implies w® € W since W is the unique Sylow
2-subgroup of WZ(GLZ(g)). In particular, @ induces an automorphism of W.

Let

Lo
d,' = —Izri

DIrt

foreach 1 <i < 1. Then d; is a central involution of W for each 1 <7 < 7 and centralized by the field
automorphism (a;;) (ag.). So we have that (d;)® = (d;)™ is a central involution of W for each
1 <i <t. As we see from Lemma 3.17, this already implies that (d;)™ = d; for each 1 < i < t. For
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d; is the unique member d of (dy, ..., d,) with m([V,d]) = 2", where V is the defining module for
GL;;(q). So there is some m; € GL5,, (q) for each 1 <i < t such that

mj

my
Now
[ .
W, — W,, (aij) = (05 )m,

is an automorphism of W, for each 1 < r < t. Applying Lemma 3.58, we conclude that a|w w is
a 2-automorphism of W. Since @ (c\ |7 7)a = ¢, alr.r for all w € W, it follows that c.|s,s is a
2-automorphism of S, as required. O

Corollary 3.60. Let g be a nontrivial odd prime power, € € {+, -}, and let n > 3 be a natural number.
Let T := PSL}(q), and let S be a Sylow 2-subgroup of Inndiag(T). Then Autprye(4)(S) is a 2-group.

Lemma 3.61. Let g be a nontrivial odd prime power, € € {+, -}, and n > 3 be a natural number. Let S
be a Sylow 2-subgroup of PSL%(q), and let S| be a Sylow 2-subgroup of PGL?F (q) containing S. Then

NpGrz(q)(S) = NpGrgq)(S1).

Proof. Let T1 be a Sylow 2-subgroup of GLZ(g)) such that Sy = T1Z(GL3(q))/Z(GL:(q)). Let
T :=TinSL;(q). Then S = TZ(GLj(q))/Z(GL;(q)). It is rather easy to show Npgre(4)(S) =
NGz ) (TVZ(GLj(q))/Z(GL;(q)). By [36, Theorem 1], Ngreq)(T) = TiCgrgq)(T1) <
NGrs(g)(T1). Tt follows that Npgrs(q)(S) < Npgrs(q)(S1). It is clear that we also have
NpGLs(q)(S1) £ Npgre(g)(S). m

Corollary 3.62. Let g be a nontrivial odd prime power, € € {+,—}, and let n > 3 be a natural number.
LetT := PSLZ (q), let S be a Sylow 2-subgroup of Inn(T) and let S| be a Sylow 2-subgroup of Inndiag(T')
containing S. Then Niyndiag(T)(S) = Ninndiag(T) (S1)-

We are now ready to prove Lemma 3.57.

Proof of Lemma 3.57. Assume that n = 2 and ¢ = 3 or 5 mod 8. Then § = C; X C; by Lemma 3.13.
There is only one nonnilpotent fusion system on S. Since 7" and A are not 2-nilpotent, we have that
Fs(T) and Fg(A) are not nilpotent (see [39, Theorem 1.4]). It follows that Fs(T) = Fs(A).

From now on, we assume that eithern > 3,orn=2andg=1or7mod8.Let P,Q < Sanda € A
such that P¢ < Q. We are going to show that c,|p ¢ is a morphism in Fs(7'). By the Frattini argument,
we have a = wu for some w € N4 (S) and some u € T. We prove that ¢, |s,s € Inn(S) so that c,|p,o is
a morphism in Fg (7).

Suppose that n = 2. Then S is dihedral of order at least 8 by Lemma 3.13, and so Aut(S) is a 2-group
by [18, Proposition 4.53]. This implies that Aut4(S) = Inn(S), whence ¢, |s.s € Inn(S).

Suppose now that n > 3. Let S| be a Sylow 2-subgroup of Inndiag(PSL} (¢)) containing S. Since
T has odd index in A, we have that A < PI'L?(q). By the Frattini argument, w = w;w, for some
w1 € Nprrs(q)(S1) and some wy € Inndiag(PSL;;(q)). Since wi normalizes both S; and T, we have
that w; normalizes S. And since w = w{w, normalizes S, we also have that w, normalizes S. So
wy normalizes Sy by Corollary 3.62. Consequently, w = wiwz € Nprrs(q) (S1). By Corollary 3.60,
Cwls,.s, is a2-automorphism of S;. So ¢y, s s is a 2-automorphism of S. Since S € Syl,(A) and w € A,
this implies that ¢, |s s € Inn(S), as required. O

4. The casen < 5

In this section, we verify Theorem A for the case n < 5.
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Proposition 4.1. Let g be a nontrivial odd prime power, and let G be a finite simple group. Then the
following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of PSL,(q);
(ii) the Sylow 2-subgroups of G are isomorphic to those of PSLy(q);
(iii) G = PSL5(q") for some & € {+,—} and some odd prime power q* > S with £q* ~ g, or
|PSLy(q)|» =8 and G = As.

In particular, Theorem A holds for n = 2.

Proof. The implication (i) = (ii) is clear.

(ii) = (iii): Assume that the Sylow 2-subgroups of G are isomorphic to those of PSL,(q). Hence, G
has dihedral Sylow 2-subgroups of order %(q —1)2(g + 1),. Applying a result of Gorenstein and Walter
[30, Theorem 1], we may conclude that G = PSL;(q"*) for some odd prime power g* > 5, or G = A7.
Suppose that the former holds. Then (¢* —1),(¢* + 1), = 2|G|z = (¢ — 1)2(g + 1)2, whence either ¢g* ~ ¢
or —q* ~ q. Since PSLy(q*) = PSU,(q"), this implies that the first statement in (iii) is satisfied. If
G = A7, then |PSLy(q)|» = |Gl = 8 so that the second statement in (iii) is satisfied.

(iii) = (i): Assume that (iii) holds. Set G| := G and G, := PSL(q).Fori € {1,2},letS; € Syl,(G;)
and F; = Fg,(G;). Clearly, S| and S, are dihedral groups of the same order. Let i € {1,2}. By [23,
Chapter 5, Theorem 4.3], any subgroup of S; is cyclic or dihedral. By [18, Proposition 4.53], a dihedral
subgroup of §; with order greater than 4 cannot be F;-essential. Since the automorphism group of a
finite cyclic 2-group is itself a 2-group, a cyclic subgroup of S; cannot be F;-essential either. So we
have that any F;-essential subgroup of S; is a Klein four group. Alperin’s fusion theorem [10, Part I,
Theorem 3.5] implies that

Fi=(Autg,(P) | P <S;,P=CyxCyor P=3S;)s,.

If|S;| = 4, then Autr, (S;) is the unique subgroup of Aut(S;) with order 3, because otherwise Autr, (S;) =
Inn(S;), so that [39, Theorem 1.4] would imply that G; is 2-nilpotent. If |S;| > 8, then Autg, (S;) =
Inn(S;) since Aut(S;) is a 2-group by [18, Proposition 4.53], and for any Klein four subgroup P of
Si, we have Autr, (P) = Aut(P) by [23, Chapter 7, Theorem 7.3]. As S| = S, and as the preceding
observations do not depend on whether i is 1 or 2, we may conclude that | = J>, as required. O

Proposition 4.2. Let g be a nontrivial odd prime power, and let G be a finite simple group. Then the
following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of PSL3(q);
(ii) the Sylow 2-subgroups of G are isomorphic to those of PSL3(q);
(iii) G = PSL5(q") for some € € {+, —} and some nontrivial odd prime power q* with eq* ~ q, or
(g+1)=4and G = My;.

In particular, Theorem A holds for n = 3.

Proof. The implication (i) = (ii) is clear.

(ii) = (iii): Assume that the Sylow 2-subgroups of G are isomorphic to those of PSL3(q). Hence, a
Sylow 2-subgroup of G is wreathed (i.e., isomorphic to C,x !C, for some positive integer k) if g = 1 mod 4
and semidihedral if ¢ = 3 mod 4. Applying work of Alperin, Brauer and Gorenstein, namely [ 1, Third
Main Theorem] and [2, First Main Theorem], we may conclude that either G = PSL$(g") for some
& € {+, —} and some nontrivial odd prime power ¢* with e¢* = g mod 4 or ¢ =3 mod 4 and G = M.
If the former holds, then ((g* — £))%(¢* + €), = |G| = ((g — 1)2)*(g + 1),, and it easily follows that
£q" ~ q.1f G = My, then 16 = |G|2 = ((q — 1)2)*(q + 1)2, and hence, (g + 1), = 4.

(iii) = (i): Assume that (iii) holds. If g = 1 mod 4, then Proposition 3.20 implies that the 2-fusion
system of G is isomorphic to the 2-fusion system of PSL3(q). Alternatively, this can be seen from [18,
Proposition 5.87]. Now suppose that ¢ = 3 mod 4. If (¢ + 1), # 4, then we could apply Proposition
3.20 again, but we are going to argue in a more elementary way. Let G| := G and G, := PSL3(q). For
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i € {L,2},letS; € Syl,(G;) and F; := Fs,(G;). Clearly, S| and S, are semidihedral groups of the same
order. Let i € {1,2}. By [23, Chapter 5, Theorem 4.3], any proper subgroup of S; is cyclic, dihedral
or generalized quaternion. By [18, Proposition 4.53], dihedral subgroups of S; with order greater than
4 and generalized quaternion subgroups of S; with order greater than 8 cannot be F;-essential. Since
the automorphism group of a finite cyclic 2-group is itself a 2-group, a cyclic subgroup of S; cannot be
Fi-essential either. Alperin’s fusion theorem [10, Part I, Theorem 3.5] implies that

Fi=(Autg,(P) | P = Cy x Cy, P = Qg, or P =§;)s,.

Since Aut(S;) is a 2-group by [18, Proposition 4.53], we have Autr, (S;) = Inn(S;). From [1, pp. 10-11,
Proposition 1], one can see that Autr, (P) = Aut(P) for any subgroup P of S; isomorphic to C X C;
or Og. As §1 = S and as the preceding observations do not depend on whether i is 1 or 2, we may
conclude that F| = F,, as required. |

The following lemma is required to verify Theorem A for the case n = 4.

Lemma 4.3. Let g be a nontrivial odd prime power. Assume that G is Ao, A11, M2y, Mr3 or McL. Then
the 2-fusion system of G is not isomorphic to the 2-fusion system of PSL4(q).

Proof. Assume otherwise. Let L := PSL4(q) and S € Syl,(L). Then |S| = |G|, = 27,50 ¢ = +3 mod 8.
Let &£ := Fs(L).

Take a Sylow 2-subgroup V of GL;(q), and let W be the Sylow 2-subgroup of G L4(g) obtained
from V by the construction given in the last statement of Lemma 3.14. Then Sy := W N SL4(q) is a
Sylow 2-subgroup of SL4(g), and we assume without loss of generality that S is the image of Sy in L.

Now Z(S) = (z), where z is the image of diag(1, 1,—-1,—1) in L. Let F be the image of

{(A B) A, Be€ SLZ(LI)}

():neen)

in L, where Vy := VN SLy(g). Then F < Cr(z), and so Q = SN F is strongly closed in S with respect to
Ce(2). Also, Q' = (z) is strongly closed in S with respect to C¢(z), and we have [Q, (z)] = 1. Applying
[10, Part I, Proposition 4.6], we conclude that O < Cg¢(z). Since Q is a self-centralizing subgroup of S,
it follows that C¢ (z) is constrained. Set M := N¢, (;)(Q). Then M is the image of

{(A B) P A, B € NG, (q) (Vo). det(AB) = 1}<(Z Ié)>

in L. Since ¢ = +3 mod 8, we have Nsz,(q)(Vo) = SL2(3) by [48, Proposition 3.1]. Thus,
INGL,(q)(Vo)| = 24(g — 1), and it follows that [M| = 27 - 32. By [34, Proposition 8.8], M is a model of
Ce(2).

Now let R € Syl,(G) and F := Fr(G). Also, let u be the central involution of R. Then Cr(u) =
Cg(z) is constrained with M a model Cx(u). By [34, Proposition 8.8], there is a core-free section of
C¢ (u) which is isomorphic to M.

If Gis McL, then Cg(u)/{u) = Ag by [28, Table 5.3] so that Cx(u)/(u) is nonsolvable. On the
other hand, C¢(z2)/{z) = Cx(u)/{u) is solvable. Thus, G # McL.

If G is Ajg, My or M3, then |Cg(u)| = 27 - 3 or 27 - 21 so that |M| does not divide |Cg (u)], a
contradiction.

in L, and let Q be the image of
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So G must be A;. Then |Cg ()| =27 - 32, and Cg () has a normal subgroup of order 3. Therefore,
M cannot be isomorphic to a core-free section of C¢ (u), which is again a contradiction.
The proof is now complete. O

Proposition 4.4. Let g be a nontrivial odd prime power, and let G be a finite simple group. Then the
Jollowing are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of PSL4(q);
(i) G = PSL;(q") for some & € {+, =} and some nontrivial odd prime power q* with £q* ~ q.

In particular, Theorem A holds for n = 4.

Proof. The implication (ii) = (i) is given by Proposition 3.20.

(i) = (ii): Assume that the 2-fusion system of G is isomorphic to the 2-fusion system of PSL4(q).
Then the Sylow 2-subgroups of G are isomorphic to those of PSL4(q). Applying Mason’s results [41,
Theorem 1.1 and Corollary 1.3] and [40, Theorems 1.1 and 3.15], the latter together with [28, Theorem
4.10.5 (f)], we see that one of the following holds:

(1) G = PSL§(q") for some nontrivial odd prime power ¢* and some & € {+, —} with £¢" = g mod 4;
(2) G =AjporAp;
3) G = M, My3 or McL.

However, we know from Lemma 4.3 that the 2-fusion system of G is not isomorphic to the 2-fusion
system of PSL4(q) when (2) or (3) holds. Thus, (1) holds.

Let go be a nontrivial odd prime power, &y € {+, -}, and ko, so € N such that 2k = (gg — &¢), and
2% = (qo + &0)2. Then we have

. 20 2 3ko+2s0+1
IPSLE (qo)la = IGLY (g0)l2 _ 2(IGL3 (qo)l)* _ 2%o+2s0

2ko(4,2k0) — 2ko(4,2k0) (4,2k0)
Let k, k*, s, s* € N such that 25 = (g — 1), 28" = (¢* —€)2, 25 = (g + 1) and 25" = (¢* + &),. Then we
have
23k*+2s*+l 23k+2s+l
= |Gh="—0=—.
@y 9=
Since £g* = ¢ mod 4, it follows that eg™ ~ q. O

Proposition 4.5. Let g be a nontrivial odd prime power, and let G be a finite simple group. Then the
following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of PSLs(q);
(ii) the Sylow 2-subgroups of G are isomorphic to those of PSLs(q);
(iii) G = PSLZ(q") for some nontrivial odd prime power q* and some & € {+, =} with eq” ~ q.

In particular, Theorem A holds for n = 5.

Proof. The implication (i) = (ii) is clear, and the implication (iii) = (i) is given by Proposition 3.20.
(ii) = (iii): Assume that the Sylow 2-subgroups of G are isomorphic to those of PSLs(q). Applying
work of Mason [42, Theorem 1.1], it follows that G = PSLZ(g") for some & € {+,—} and some
nontrivial odd prime power g*. In view of Lemma 3.15, it is easy to see that a Sylow 2-subgroup
of G is isomorphic to a Sylow 2-subgroup of GLJ(¢*), while a Sylow 2-subgroup of PSLs(q) is
isomorphic to a Sylow 2-subgroup of GL4(q). Now it is easy to deduce from Lemmas 3.10, 3.11
and 3.14 that a Sylow 2-subgroup of G has a center of order (¢* — €),, while a Sylow 2-subgroup of
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PSLs(q) has a center of order (¢ — 1),. It follows that (¢* — &), = (¢ — 1),. Let k, s, k¥, s* € N with
2k =(g—1),2°=(g+ 10,25 =(¢* — &) and 2* = (¢* + €),. Then

2RI 2 |GLE (¢ = |Gl = |GLa(g) | = 24K+,

Since 2X" = 2% we thus have k = k* and s = s*. This implies £¢* ~ g. O

5. The case n > 6: preliminary discussion and notation

Given a natural number k > 6, we say that P(k) is satisfied if whenever ¢ is a nontrivial odd prime
power and H is a finite simple group satisfying (CK) and realizing the 2-fusion system of PSLy(qo),
we have H = PSL{ (g") for some nontrivial odd prime power ¢* and some & € {+, —} with ¢ ~ qq.

In order to establish Theorem A for n > 6, we are going to prove by induction that P(k) is satisfied
for all £ > 6. From now on until the end of Section 8, we will assume the following hypothesis.

Hypothesis 5.1. Let n > 6 be a natural number such that P(k) is satisfied for all natural numbers k
with 6 < k < n, and let q be a nontrivial odd prime power. Moreover, let G be a finite group satisfying
the following properties:

(i) G realizes the 2-fusion system of PSL, (q);
(i) O(G) =1;
(iii) G satisfies (CIC).

We will prove the following theorem.

Theorem 5.2. There is a normal subgroup G of G isomorphic to a nontrivial quotient of SL7 (q*) for
some nontrivial odd prime power q* and some € € {+,—} with eq* ~ q. In particular, P(n) is satisfied.

The proof of Theorem 5.2 will occupy Sections 5-8. In this section, we introduce some notation and
prove some preliminary results needed for the proof.

For each A C {1,...,n} of even order, let £4 be the image of the diagonal matrix diag(dy, ..., d,)
in PSL,(q), where

di = -1 ifieA
1 ifigA

for each 1 < i < n. If i is an even natural number with2 <i <nand A ={n—i+1,...,n}, then we
write ¢; for 4. We denote #; by ¢, and we write u for 7 5.

We assume p to be an element of F, of order (n, g — 1). If p is a square in F,, then we assume y to
be a fixed element of F, with p = .

If n is even, p is a square in Fy, and 7 is an odd natural number with 1 <i < n, then

llln—i
—pd;

is an element of SL,,(g) by Proposition 3.5, and we will denote its image in PSL,(q) by t;.
If n is even and p is a nonsquare element of F,, then we denote the matrix

1n/2
pIn/Z

by w, and if w € SL,(q), then we use w to denote its image in PSL, (q).
Note that, by Proposition 3.5, any involution of PSL,(g) is conjugate to t; for some 1 < i < n such
that ¢; is defined, or to w (if defined).
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Next, we construct a Sylow 2-subgroup of Cpsy, (4) (f) containing some ‘nice’ elements of PSL, (q).
Take a Sylow 2-subgroup V of G L;(q) containing each diagonal matrix in G L,(g) with 2-elements of
I, along the main diagonal. Similarly, we assume V; to be a Sylow 2-subgroup of G L,-4(q) containing
each diagonal matrix in GL,-4(gq) with 2-elements of F; along the main diagonal. Now let W be a
Sylow 2-subgroup of GL,_»(q) containing

(") aevipen).

If n = 6, then we assume that V = V; and that W is the Sylow 2-subgroup

(o) amev) {ls ")

Let? :=diag(1,...,1,-1,-1) € SL,(q). Then we have
A
Csr, (¢ (1) = {( B) : AeGL,1(q),B € GLy(q),det(A)det(B) = 1}.
It is easy to note that
~ A
T := {( B) : AeW,BeV,det(A)det(B) = l}

is a Sylow 2-subgroup of Cgy,, (¢) (7). Let T denote the image of T in PS L, (q). As the centralizer of ¢ in
PSL,(q) is the image of Csy,, (4 (7) in PSL,(g), we have that T is a Sylow 2-subgroup of Cpsy,, (¢) (1)
We assume S to be a Sylow 2-subgroup of PSL,,(g) containing T Since Cs(t) = T € Syl2(Cpsr,, () (1)),
we have that (z) is fully Fs(PSL,(q))-centralized.

Let K; be the image of
A
(4] nestesa)
2

in PSL,(g), and let K, be the image of

{(’"—2 B) : BeSLz(q)}

in PSL,(q). Clearly, K; and K, are normal subgroups of Cpgsy,, (4)(¢) isomorphic to SL,_>(g) and
SL;>(q), respectively. Define X to be the image of

{(A ) i AeWn SLn_g(q)}
153
in PSL,(g), and define X, to be the image of
In72 .
5| : BEVNSLi(q)

in PSL,(q).
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Note that X; =T N K; € Syl,(K;) and X, =T N K, € Syl,(K3). Define
Ci == Fx; (K;)

fori € {1,2}. By [10, Part I, Proposition 6.2], C; and C, are normal subsystems of Fr (Cpsy,, (¢) (1))

Lemma 5.3. Let F := Fs(PSL,(q)). If g = 1 or 7Tmod 8, then the components of Cx({t)) are precisely
the subsystems Cy and Cy. If ¢ = 3 or 5 mod 8, then C, is the only component of C({t)).

Proof. Set C := Cpsy,,(q)(t). Observe that the 2-components of C are precisely the quasisimple
members of {K|,K>}. Asn > 6 and as K| = SL,»(g) and K, = SL;(q), it follows that the 2-
components of C are K; and K> if ¢ # 3 and that K is the only 2-component of C if g = 3.

By Lemma 3.21, K| /Z(K}) is not a Goldschmidt group. If ¢ # 3, then the lemma just cited also
shows that K»/Z(K?>) is a Goldschmidt group if and only if ¢ = 3 or 5 mod 8.

Now we apply Proposition 2.17 to conclude that Frng, (K;) and Frnk,(K2) are precisely the
components of Fr(C) if ¢ = 1 or 7 mod 8 and that Frng, (K;) is the only component of F7 (C)
if ¢ = 3 or 5 mod 8. This completes the proof because Cr({t)) = Fr(C), Ci = Frpok, (K1) and
Cs = Frok, (K2). m

Lemma 5.4. Let F := Fs(PSL,,(q)). Then the factor system Cx({t)) /XX is nilpotent.

Proof. Set C := Cpsp,,(q)(t). As X; = K; N T is Sylow in K;, X1 X, = K1K, N T. By Lemma 2.11,
Cr({t))/X1X; is isomorphic to the 2-fusion system of C /K K>. The factor group C /K K5 is 2-nilpotent
by Propositions 3.40 and 3.42, and so the 2-fusion system of C /K K> is nilpotent. Hence, C#({t)) /X1 X
is nilpotent. O

Lemma 5.5. Let A € W and B € V such that det(A)det(B) = 1. Let
A
m = ( B)Z(SLn(q)) eT.

Then we have m € Z(Cy{m)) if and only if A € Z(GL,-2(q)).

Proof. By [33, Proposition 1], we have Ci{(m) = Fx, (m)(K1{m)). So, by Lemma 2.13, m € Z(Ci{m))
if and only if m € Z*(K(m)). This is the case if and only if [ K|, (m)] < O(K}). If the latter holds, then
[(m),K(,K] = [K,{m),K|] =1as O(K;) < Z(K}), and so [K|, (m)] = 1 by the three subgroups
lemma. Thus, the condition [K|, (m)] < O(K)) is satisfied if and only if [K], (m)] = 1. So we have
m € Z(Cy{m)) if and only if m centralizes K, and this is the case if and only if A € Z(GL,-»(g)). O

Lemma 5.6. Set F := Fs(PSL,(q)) and G := Cx({t)). Then hup(Cg(X1)) = X>.

Proof. Set C := Cpgsy,,(4)(t). Note that C" = K1 K.
By [23, Chapter 7, Theorem 3.4], we have foc(Cg(X;)) = Cr(X1) N Ce(X)) < Cr (X)) NC’ =
Cr(X)NX1 X = Z(X1) X2. Ashnp(Cg (X)) < foc(Cg(Xy)), it follows that hnp(Cg (X)) < Z(X1) Xz.
Let P be a subgroup of C7 (X1), and let ¢ be a 2’-element of Autc.. (x,)(P). By [37, 8.2.7], we have

[P.{0)] = [P. (). (@)] < [bnp(Cg(X1)) N P.{(p)] < [Z(X1)X2 N P, {(p)].

Since ¢ € Autc.(x)(P), K» & C and Xo = T N Ky, it follows [P,{¢)] < X,. Consequently,

hnp(Cg(X1)) < Xo.
On the other hand, since K» < 0?(C¢ (X)), we have X> < hup(Cg(X;)) by [18, Theorem 1.33]. O

Lemma 5.7. Set C := Cpsy,, (q)(t). Then Autc(X1) is a 2-group.
Proof. Letm € N¢(X1). We have

m= (M‘ Mz)Z(SLAq))
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for some M| € GL,_>(q) and some M, € GL;(q) with det(M;)det(M;) =1.Let A € WN SL,,_»(q)
and

= (A )Z(SLn(q)) € X,
I

As m normalizes X, we have
AM:
( L )Z(Latan =27 € X1,
2

This easily implies that AM € W N SL,_»(q). It follows that M, normalizes W N SL,_»(q). By [36,
Theorem 1], we have Ny, ,(g)(W N SLp,_2(q)) = WCqr,,_,(q)(W). It follows that ¢, |x, x, is a 2-
automorphism. O

Define T to be the image of

(4, aevasi)
n-2

in PSL, (g) and T; to be the image of

I
B ) : BeV,NSL,-4(q)
I

in PSL,(q). By the definitions of X; and of W, T} and T, are subgroups of X;. Recall that we use u to
denote t{1 2y € Xj. The following lemma sheds light on some properties of the centralizer fusion system

CCl ( <M>) .
Lemma 5.8. The following hold.

(i) We have Cx, (u) € Syl,(Ck, (u)). In particular, (u) is fully C\-centralized.
(ii) foc(Ce, ((u))) = T
(iii) Ifn = 6 and g = 3 or 5 mod 8, then T\ and T, are the only subgroups of foc(Cc, ({u))) which are
isomorphic to Qg and strongly closed in C¢, ({u)).
(iv) Ifn > Tandq = 3 or5mod 8, then T is the only subgroup of the intersection foc(Ce, ({u)))NCx, (T2)
which is isomorphic to Qg and strongly closed in Ce, ({u)).

(v) Let Cy be the image of
{(A ) 1 Ae SLz(q)}
In72

in PSL,,(q) and C; be the image of

Ig)
B : Ae SLn_4(q)
L

in PSL,(q). Then any component of Cc, ({u)) lies in {Fr,(C1), Fr,(C2)}. Moreover, Fr,(C1) is a

component if and only if ¢ = 1 or 7 mod 8, and Fr,(C3) is a component if and only if n > 7 or
g =1or7mod 8.
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Proof. Clearly, Ck, (u) is the image of

A
B |: AeGLy(q),BeGL,4(q),det(A)det(B) = 1
153

in PSL,(q). Let W be the image of

A
B : AeV,BeV,det(A)det(B) =1
163

in PSL,(q). By definition of X, we have W < Cx, (u). We have |Ck, (u)| = |GL2(g)||SLu-4(q)| and
|W| = |V|[VanSL,-4(q)|; so W is a Sylow 2-subgroup of Ck, (u). Thus, Cx, (1) = W € Syl,(Ck, (u)).
Hence, (i) holds.

We have C¢, ({(u)) = Fey, w) (Ck, (1)) = F5 (Ck, (u)). The focal subgroup theorem [23, Chapter

7, Theorem 3.4] implies that foc(Ce, ((u))) = wN (Ck, (u))’. It is easy to see that (Ck, (1))’ = C;Cs,
where C and C; are as in (v). We thus have foc(C¢, ((#))) = T1T». Hence, (ii) holds.

Now we turn to the proofs of (iii) and (iv). Assume that ¢ = 3 or 5 mod 8. Clearly, C; and C;
are normal subgroups of Ck, (#) and we have 71 = C; N V~V, T, =C N W. This implies that 77 and
T, are strongly closed in C¢, ({#)). By Lemma 3.12, we have T} = Qg and, if n = 6, we also have
T, = Qs. Clearly, any strongly C¢, ({u))-closed subgroup of foc(Ce, ({u))) = TiT; is strongly closed
in Fr,1,(C1Cy). Hence, in order to prove (iii), it suffices to show that if n = 6, then 7} and 7, are the
only strongly Fr,7, (C1C>)-closed subgroups of 717, which are isomorphic to Q. Similarly, in order to
prove (iv), it suffices to show that if n > 7, then T is the only subgroup of 717, which centralizes 7>,
which is isomorphic to Qg, and which is strongly closed in Fr,1,(C1C2).

Continue to assume that ¢ = 3 or 5 mod 8. In order to prove the two statements just mentioned,
we need some observations. As C; = SLy(g), we have that C; is not 2-nilpotent. So Fr,(C}) is not
nilpotent by [39, Theorem 1.4]. Again, by [39, Theorem 1.4], it follows that Autc, (7)) is not a 2-group.
So Autc, (T7) has an element of order 3. Similarly, if n = 6, then Autc, (7>) has an element of order 3.
It follows that there is an element & € Autc,c,(T172) such that a|r, 7, has order 3, while «|r, 1, = idr,.
Moreover, if n = 6, then there is an element 8 € Autc,c,(T172) such that Blp, 7, = idr,, while Bl 1,
has order 3.

Continue to assume that ¢ = 3 or 5 mod 8. If n = 6, then the observations in the preceding two
paragraphs show together with Lemma 2.15 that 7} and T, are the only strongly Fr,7,(C;C,)-closed
subgroups of 71T, which are isomorphic to Qg. As observed above, this is enough to conclude that (iii)
holds. If n > 7, then we may apply the observations in the preceding two paragraphs together with
Lemma 2.15 to conclude that if T is a strongly F7,7, (C1 C2)-closed subgroup of 717, such that Ty = Qg
and such that Ty centralizes T3, then Ty = 7. As observed above, this is enough to conclude that (iv)

holds.
Noticing that the 2-components of Ck, (1) are precisely the quasisimple members of {Cj, C2}, we
obtain (v) from Proposition 2.17 and Lemma 3.21. O

Let G be as in Hypothesis 5.1. The group G realizes the 2-fusion system of PSL,(g). So, if R is
a Sylow 2-subgroup of G, then Fs(PSL,(q)) = Fr(G). For the sake of simplicity, we will identify
S with a Sylow 2-subgroup R of G and Fs(PSL,(q)) with Fr(G). Hence, we will work under the
following hypothesis.

Hypothesis 5.9. We will treat G as a group with S € Syl,(G) and Fs(G) = Fs(PSL,(q)).

The following lemma will play a key role in the proof of Theorem 5.2.
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Lemma 5.10. Let x be an involution of S such that Cs(x) € Syl,(Cg(x)). Let C be a component of
Fesx)(Cg (x)), and let k be a natural number with 3 < k < n. Then the following hold.

(i) There is a unique 2-component Y of Cg (x) such that C = Fcgx)ny (Y).

(ii) If C is isomorphic to the 2-fusion system of SLy(q), then we either have that Y/O(Y) =
SL7(q")/O(SL; (q")) for some nontrivial odd prime power q* and some & € {+, =} with q ~ £q";
ork =3, (q + 1)2 =4, andY/Z*(Y) = My;.

(iii) If C is isomorphic to the 2-fusion system of a nontrivial quotient of SLy(q?), then Y]O(Y) is
isomorphic to a nontrivial quotient of SL; (q*) for some nontrivial odd prime power q* and some
g € {+, =} with ¢* ~ eq".

In order to prove Lemma 5.10, we need the following observation.

Lemma 5.11. Let k > 6 be a natural number satisfying P(k). If qo is a nontrivial odd prime power
and H is a known finite simple group realizing the 2-fusion system of PSLy(qo), then H = PSL; (q")
for some & € {+, =} and some nontrivial odd prime power q* with eq* ~ qo.

Proof. Tt suffices to show that any known finite simple group H satisfies (C/C). Without using the CFSG,
this is a priori not clear. It can be deduced from [28, Proposition 5.2.9] if H is alternating, from [28,
Table 4.5.1] if H is a finite simple group of Lie type in odd characteristic, and from [28, Table 5.3] if H
is sporadic. If H is a finite simple group of Lie type in characteristic 2, then H satisfies (C/C) since, in
this case, no involution centralizer in H has a 2-component (see [5, 47.8 (3)]). m|

Proof of Lemma 5.10. Since G satisfies (C/C), we have that Y /Z*(Y) is a known finite simple group for
each 2-component Y of C¢ (x). Proposition 2.17 implies that there is a unique 2-component Y of Cg (x)
with C = Feg(x)ny (Y). Thus, (i) holds.

Suppose that C is isomorphic to the 2-fusion system of SLy(go)/Z, where either gp = g and Z = 1,
or go = q> and Z < Z(SLy(g?)). In order to prove (ii) and (iii), we need the following three claims.

(1) The 2-fusion systems of Y /Z*(Y) and PSLy(qq) are isomorphic.

As C = Feg(x)ny (¥), we have that the 2-fusion system of Y is isomorphic to the 2-fusion system
of SLix(qo)/Z. So, by Corollary 2.12, the 2-fusion system of Y /O(Y) is isomorphic to the 2-fusion
system of SL(go)/Z. Lemma 2.14 implies that the 2-fusion systems of Y/Z*(Y) and PSLy(qp) are
isomorphic.

(2) We have Y [Z*(Y) = PSL{(q") for some nontrivial odd prime power q* and some & € {+,—}
with go ~ eq*,ork=3,(qo+ 1), =4andY/Z*(Y) = My,.

If k = 3, then it follows from (1) and Proposition 4.2. If k € {4, 5}, then it follows from (1) together
with Propositions 4.4 and 4.5. Assume now that & > 6. By Hypothesis 5.1 and since k < n, we have
that k satisfies P(k). Since Y/Z*(Y) is a known finite simple group, the claim follows from (1) and
Lemma 5.11.

(3) Suppose that Y [Z*(Y) = PSL;(q"), where q* and € are as in (2). Then we have Y /O(Y) =
SLZ(q")/U, where U < Z(SL{(q")) and the index of U in Z(SL{(q")) is equal to the 2-part of
|Z(SLk(q0))/Z|.

The group Y /O(Y) is a perfect central extension of PSL{ (g*). Since Y /O(Y) is core-free, the center
of Y/O(Y) is a 2-group. So, by Lemmas 3.1 and 3.2, there is a central subgroup U of SL;(¢*) with
Y/O(Y) = SL;{(q")/U. The claim now follows from

|PSLi(qo)l2|1Z(SLk(q0))/Z|2 = |1SLk(q0)/Zl2
=1Y|
=Y/Z"(Y)h|Z(Y/O(Y))|
= |PSLi(q0)l1Z(SL; (q"))/U].

Here, the second equality follows from the fact that Y realizes C, the third one holds since |Z*(Y)|, =
|Z*(Y)]O(Y)|r = |Z(Y/O(Y))|» = |Z(Y/O(Y))|, and the fourth one follows from (1).
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Assume that go = ¢ and Z = 1. By (2) and (3), one of the following holds: either k =3, (¢ + 1), = 4
and Y/Z*(Y) = My or Y/O(Y) = SL7(q")/U, where " is a nontrivial odd prime power, € € {+, -},
q ~eq", U < Z(SL;(¢q")) and the index of U in Z(SL; (¢")) is equal to the 2-part of |Z(SLx(q))|.
Assume that the latter holds. As g ~ eg™, wehave (¢—1); = (eq*—1); = (¢* —¢&),. Since |Z(SLx(q))| =
(k,g—1) and |Z(SL;(g"))| = (k, q" —¢), it follows that the 2-part of |Z(SL (q))| is equal to the 2-part
of |Z(SL; (g))|. It follows that U = O(Z(SL;(g"))) = O(SL{(q")). This completes the proof of (ii).

Assume now that gg = ¢2. Then, since ¢g> = 1 mod 4, (2) and (3) imply that ¥ /O(Y) is isomorphic
to a nontrivial quotient of SL} (¢*) for some nontrivial odd prime power ¢* and some & € {+, —} with
g% ~ eq*. Thus, (iii) holds. O

6. 2-components of involution centralizers

In this section, we continue to assume Hypotheses 5.1 and 5.9. We will use the notation introduced in
the last section without further explanation.

The main goal of this section is to describe the 2-components and the solvable 2-components of the
centralizers of involutions of G.

6.1. The subgroups K and L of C;(t)

We start by considering Cg(t). Let F := Fs(G) = Fs(PSL,(q))- Since (z) is fully F-centralized, we
have that T = Cg (1) € Syl,(Cg(t)). Also, note that Fr (Cg(1)) = Cx({t)) = Fr(Cpsr,(q)(?))-

Proposition 6.1. There is a unique 2-component K of Cg(t) such that Cy = Frak (K). We have
K/O(K) = SL? ,(q*)/O(SL?_,(q")) for some nontrivial odd prime power q* and some & € {+, -}
with g ~ £q*. Moreover, K is a normal subgroup of Cg(t).

Proof. Set F = Fs(G). By Lemma 5.3, C; is a component of Cx({t)). Lemma 5.10 (i) im-
plies that there is a unique 2-component K of Cg(¢) such that C; = Frax(K). By definition,
the component C; is isomorphic to the 2-fusion system of SL,_»(g). Lemma 5.10 (ii) implies that
K/O(K) = SL;j_z(q*)/O(SL;f_z(q*)) for some nontrivial odd prime power ¢* and some & € {+, -}
with g ~ gq*.

It remains to show that K is a normal subgroup of C¢ (7). Suppose that K is a 2-component of Cg (¢)
such that K = K. Set C := Frog (K) Since K is subnormal in Cg (1), it easily follows from [10, Part I,
Proposition 6.2] that C is subnormal in C #({t)). Moreover, C =C asK = K. Hence, C is a component
of Cx({t)). But as a consequence of Lemma 5.3, there is no component of C#({t)) which is isomorphic
to C; and different from C;. So we have C; = C. The uniqueness in the first statement of the proposition
implies that K = K. Consequently, Cg () has no 2-component which is different from K and isomorphic
to K. So K is characteristic and hence normal in Cg (¢). O

From now on, K, ¢* and & will always have the meanings given to them by Proposition 6.1.

Our next goal is to prove the existence and uniqueness of a normal subgroup L of Ce(t) =
Cs(1)/O(Cg (1)) such that L = SLy(¢*) and to show that the image K of K in Ca (1)
and L are the only subgroups of Cg(f) which are components or solvable 2-components
of CG_(t) . First, we need to prove some lemmas.

Lemma 6.2. Let A € W and B € V such that det(A)det(B) = 1. Let
A
m = ( B)Z(SLn(q)) eT.
Set C (1) := Cg(1)]O(Ci(1)). Then i centralizes K if and only if A € Z(G Ly->(q)).
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Proof. Let C; be the subsystem of F7(Cg (1)) corresponding to C; under the isomorphism from
Fr(Cq (1)) to F=(Cg(1)) given by Corollary 2.12. By [33, Proposition 1], we have

C_l<’ﬁ> = ff]@(ﬂﬁ))

Since m is a 2-element of Cg (1), we have O(K(m)) = O(K) = 1. Applying Lemma 2.13, it follows that
the center of the fusion system C, (/) is equal to the center of K(in). In particular, m centralizes K if
and only if m € Z(C;(m)). By Lemma 5.5, this is the case if and only if A € Z(GL,->(q)). O

Lemma 6.3. Suppose that ¢* = 3. Let C = C¢ (1) and C := C/O(C). Then:
(i) The factor group C_/I?Cé(l?) is a 2-group.

(ii) The centralizer Cz(u) is core-free.

(iii) The factor group Cé(ﬁ)/Cg(I?) is core-free.

Proof. Clearly, C /I?Cé(l?) is isomorphic to a subgroup of Out(K). Since ¢g* = 3, we have that
K = SL§_2(3);By Piopositions 3.41 and 3.43, Out(K) is a 2-group. So (i) holds.

Set Cp := KC&(K). As a consequence of (i), Cg(ﬁ)/Ca)(ﬁ) is a 2-group. Hence, in order to prove
(ii), it suffices to show that Ca)(ﬁ) is core-free. As it € K, we have Ce, () = CE(ﬁ)Cé(E). It follows
that Cg, (i1)/C(K) = Cg(it)/(Cg (i) n_cé(l?)) = Cg(i1)/Z(K). By Corollary 3.8, _cf(ﬁ) is core-
free. This easily implies that Cx(it)/Z(K) is core-free. It follows that Ca)(ﬁ) /C&(K) is core-free.
Consequently, O(Ca)(ﬁ)) = O(Cé(l?)) = 1. So (ii) follows.

Finally, (iii) is true since Cé(ﬁ)/Cé0 (i) is a 2-group and Ce, (ﬁ)/Cé(E) is core-free. O

Lemma 6.4. Let Cs (1) := Cg(t)/O(Cg(t)). Then there is a unique pair (A", Ay*) of normal sub-
groups A1¥, Ay" of Cg (i)’ such that Cg(u)’ = A1" X Ay¥, A" = SLS(q"), A" = SLE_,(q%) and
it € A\*. Moreover, the following hold.
O A nX =T
(i) A*n Xy =T
(iii) There is a group isomorphism ¢ : K — SL? ,(q")/O(SL
to the image of

&
n-2

{(A 1n—4) DA ESL‘ZS(q*)}

in SL? ,(q*)/O(SL:_,(q")) and under which Ay™ corresponds to the image of

{(12 B) - Be SL;f_4(q*)}

(g*)) under which A\* corresponds

in SLE_,(¢")/O(SLE_,(4")).

Proof. For each subsystem G of Fr(Cg (7)), we use G to denote the subsystem of ]-'T(CT(I)) corre-
sponding to G under the isomorphism from F7 (Cg(¢)) to .FT(CT(I)) given by Corollary 2.12. Note
that C, = Fi-(K).

Set H := SL? ,(q")/O(SLZ_,(q")). For each even natural number i with 2 < i < n -2, let h; be
the image of }7, = diag(-1,...,-1,1,...,1) € Ser_z(q*) in H, where —1 occurs precisely i times as
a diagonal entry.

We claim that there is a group isomorphism ¢ : K — H such that #¥ = h; for some even
2 <i < n— 2. By Proposition 6.1, we have K = K/O(K) = H. As a consequence of Lemmas 3.3 and
3.4, any involution of SL? ,(g") is conjugate to h; for some even 2 < i < n — 2. Since any involution
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of H is induced by an involution of § Lj_z (g*), it follows that any involution of H is conjugate to h; for
some even 2 < i < n— 2. As it is an involution of K, it follows that there is an isomorphism ¢ : K — H
mapping i to h; for some even 2 < i < n — 2. Assume that i = n — 2. Then i is central in K. Thus,
it € Z(Cy) and hence u € Z(C)). This is a contradiction to Lemma 3.18 and the definition of C;. So we
havei < n—2.

Set i := ¥ = h;. Also, let H; be the image of

{(A In—2—i) .\ eSLf(q*)}

{(1" B) : B eSL;le.(q*)}

in H. For j € {1,2}, let A;" be the subgroup of K corresponding to H; under ¢.

We now proceed in a number of steps in order to complete the proof.

(1) We have CE(IZ)’ = A1+A2+, [A1+,A2+] = 1, A1+,A2+ g CI?(IZ), ue A1+ and i ¢ A2+.

It is easy to note that Cy (h)’ is the central product of H| and H; and that H| and H, are normal in
Cp (h). Therefore, Cz (i)’ is the central product of A;* and A,™, and A;*, A," are normal in C(i).
By definition of H; and H,, we have h € Hy and h ¢ H;. Thus, it € A;* and it ¢ Ay*.

2) We_have Cx; (i) € Syl,(Cg (1)), and {}_)TmA]a,(AlJr), Fx.
of Co ().

By Lemma 5.8 (i), we have that (i) is fully C;-centralized. So we have C)Tl(l;) € Syl, (Cx(ir)).

Set P := C}?I(ﬁ)w € Syl,(Cu (h)). Noticing that the 2-components of Cy (h) are precisely the
quasisimple members of {H;, H,}, we see from Proposition 2.17 that the components of Fp(Cg (h))
are precisely the quasisimple members of {Fpnp, (H1), Fpam, (H2)}.

Thus, the components of Ca(@?)) = Fcg(a) (Cg (i) are precisely the quasisimple members of

1
{(Fxina, (A1), Fira, (A2}

(3) X1 N A1 and X; N As* are subgroups of foc(Ca((ﬁ))) and are strongly closed in Ca((ﬁ)).

We have foc(Ca(OZ))) = C)TI(IZ) N Cx(ir)" by the focal subgroup theorem [23, Chapter 7, Theorem
3.4]. So the claim follows from (1).

(4) Suppose that n = 6 and q = 3 or 5 mod 8. Then we have i = 2 and hence A\* = Sng(q*) = Ayt
Moreover, X, N At =T, and X, N A" =T,

Sincen =6and2 <i <n-2=4,wehavei = 2. Thus, A" = H| = SLY(q") = Hy = A,
By Proposition 6.1, we have ¢ ~ £g”, whence ¢g* = 3 or 5 mod 8. Clearly, XiNAte Syl,(A*) and
Xin A2_+ € Syl,(A;"). Lemma 3.12 implies that X; N A;* = Qg = X; N Ay*. By Lemma 5.8 (iii),
T, and T, are the only subgroups of foc(Ca((ﬁ))) which are isomorphic to Qg and strongly closed in
Ca((in)). So, by (3), {X1 N A", X1 N Ay*} = {T1, To}. We have it € Ty, and it ¢ A™ by (1). It follows
that X; N A;* =T; and X, N A" = T».

(5) Suppose that n = 6 and q = 1 or 7 mod 8 or that n > 7. Then we have i = 2, and hence

A1" = SLS(q") and Ay = SL?_,(q*). Moreover, X\NA*Y =T and X, N Ay* =T5.
We begin by proving that X; N A>* = T5. As a consequence of Lemma 5.8 (v), Ca((ﬁ)) has a

in H, and let H; be the image of

nAL* (A2™)} contains every component

component with Sylow group 7». Applying (2), we may conclude that 7> = X; N A;* or X; N A>*. Since
e A7 by (1), butir ¢ T, we have X; N At =T,

We show next that i = 2. Using Proposition 3.19, or using the order formulas for |SL,,—4(g*)| and
|SU,,-4(g™)| given by [32, Proposition 1.1 and Corollary 11.29], we see that

ISLE (g2 = |SLp-a(q) |2 = |Ta| = |A2* |, = |Halo = ISL?_,_.(g") >
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Using the order formulas cited above, we may conclude that n —2 —i = n—4, whence i = 2. In particular,
A" = SLY(q") and Ay" = SL?  (q7).

It remains to prove X; N A;* =T;.If g = 1 or 7 mod 8, then Lemma 5.8 (v) shows that Ca(<ﬁ)) has
a component with Sylow group 771 Since u € 771, but iz ¢ A", we have )7] NAtY= 771 by (2).

Now suppose that ¢ = 3 or 5 mod 8. Then we have ¢* = 3 or 5 mod 8 since ¢ ~ £¢". So, by Lemma
3.12, a Sylow 2-subgroup of A;* is isomorphic to Qg. In particular, X; N A+ = Qs.By (3), Xin Artis
a subgroup of foc(Ca(@?))) and is strongly closed in Ca(@?)). Moreover, by (1), X; N A;* centralizes
X; N As* =T>. Lemma 5.8 (iv) now implies that Ty = X; N A;*.

(6) Cp (i) = A" x Ax*.

We have A1" = SL$(q*) by (4) and (5), and i € Z(A;™) by (1). It follows that Z(A") = (u).
By (1), A;7* N Ay* < Z(A") and iz ¢ A;* N A", Tt follows that A1t N Ay™ = 1. So (1) implies that
CI?(IZ), = A]+ X A2+.

(7) Assume that Ai°and A>° are normal subgroups of Cg(u)'such that Cg(i)" = A;° x As°,
A1° = SL{(q%), As® = SLE ,(q*) and u € A1°. Then A\° = A1* and Ay° = Ay".

Let j € {1,2}. As a consequence of (4) and (5), A;* is either quasisimple or isomorphic to SL»(3).
In either case, A j+ is indecomposable, i.e., A j+ cannot be written as an internal direct product of two
proper normal subgroups. Moreover, |A1*/(A;)’| and |Z(A,")| as well as |A;*/(A2")’| and |Z(A7Y)]
are coprime. A consequence of the Krull-Remak—Schmidt theorem, namely [35, Kapitel I, Satz 12.6],
implies that {A*, A"} = {A°, A,°}. Since u € A" and i1 ¢ A,°, we have A" = A;° and A" = A,°.

(8) The isomorphism ¢ : K — H maps A* to the image of

(*,) aesss)

in H and A" 1o the image of

{(12 B) : BeSL;j_4(q*)}
in H.

By (4) and (5), we have i = 2. So the claim follows from the definitions of A;* and A,*. m]
From now on, A;* and A,* will always have the meanings given to them by Lemma 6.4.

Lemma 6.5. Let C := Cg (1) and C := C/O(C). Then A" and A>* are normal subgroups of C(in).

Proof. We have Cg(u) 2 Cx(u) as K < C. Thus, Cg(u)" 2 Cz(ir). Having this observed, the lemma
is immediate from Lemma 6.4. m]

Let C := Cg (1) and C := C/O(C). Next, we introduce certain preimages of A;* and A, in Cc (u).
By Corollary 2.2, we have Cx(it) = Cc(u). We may see from Proposition 2.4 that there is a bijection
from the set of 2-components of Cc (u) to the set of 2-components of C=(#) sending each 2-component
A of Cc(u) to A.

Suppose that g* # 3. Then A" is a component and hence a 2-component of C(ir). We use A; to
denote the 2-component of C¢ (u) corresponding to A;™ under the bijection described above.

Suppose that ¢* # 3 orn > 7. Then A,* is a component and hence a 2-component of Cz(ir). We use
Aj to denote the 2-component of C¢ (u) corresponding to A,* under the bijection described above.

Suppose that ¢* = 3. By Lemma 6.3 (ii), O (Cz(it)) = 1. So the factor group Cc () /(Cc(u)NO(C))
is core-free, whence O (C¢ (1)) = Cc(u)NO(C).Let O(Cc(u)) < Ay < Ce(u) suchthat A;/O(Cc (u))
corresponds to A;* under the natural group isomorphism Cc¢ (u)/O(Cc(u)) — Cg(it). Furthermore,
ifn=6,let O(Cc(u)) < Ay < Cc(u) such that Ay/O(Cc(u)) corresponds to A,* under the natural
group isomorphism Cc (u)/O(Cc(u)) — Cz(u).
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Lemma 6.6. We have T} < Ay and T> < A».

Proof. Leti € {1,2}. Set C := C(t) and C:= C/0(C).

Let Cc(u) N O(C) < A; < Cc(u) such that A;/(Cc(u) N O(C)) corresponds to A;* under the
natural group isomorphism Cc(u)/(Cc(u) N O(C)) — Cz(u). We have T; < Cc(u) and, by Lemma
6.4, T; < A;*. Thus, T; < A;. If A;* = SL,(3), then we have A; = A;, and thus, T; < A;. Assume now
that A;* is a component of C(i). Then A; is the 2-component of Cc (1) associated to the 2-component
A;/(Cc(u) N O(C)) of Ce(u)/(Ce(u) N O(C)). So, by Proposition 2.4, A; = 0% (A;), and hence,
T; < A;. O
Lemma 6.7. There is an element g € G such that T\% = X, and X8 = T). For each such g € G, we
have u® =t and t% = u.

Proof. The first statement easily follows from Fs(G) = Fs(PSL,(g)). By Lemma 3.12, the groups 7}
and X, are generalized quaternion. So u is the only involution of 7} and ¢ is the only involution of X5.
Thus, u8 =t and t8 = u for any g € G with 718 = X; and X8 =T). O

With the above lemmas at hand, we can now prove the following proposition.

Proposition 6.8. Take an element g € G such that T¥ = X, and X8 = Ty. Set C := Cg(t) and
C:=C/O(C). Let L := A\8. Then the following hold.

(@) L < Cc(u).
(ii) L is subnormal in C and L = SL>(g*).
(iii) The subgroups K and L are the only subgroups of C which are components or solvable 2-
components of C.In particular, K and L are normal subgroups of C.

Proof. By Lemma 6.7, we have 8 = u and u® = t. Hence, Cc(u)® = Cc(u). As A is a subgroup of
Cc(u), we thus have L = A8 < C¢(u). So (i) holds.

Before proving (ii), we show that CZ(I?) is a normal subgroup of L containing X,. Since Cé(l?) <aC,
we have CZ(I?) =LnN Cé(l?) < L. Because of Lemma 6.6, we have X, = 718 < A;% = L. Thus,
X, < L. By the definition of X> and by Lemma 6.2, we have X, < Cg(l?). Thus, X, < CZ(I?).

Note that X; is generalized quaternion by Lemma 3.12 and in particular nonabelian.

We now prove (ii) for the case ¢g* # 3. Then A is a 2-component of C¢ (). As g normalizes C¢ (1)
and L = A8, it follows that L is a 2-component of C¢ (). So L is a 2-component of C&(u). Moreover,
we have A1/O(A;) = SLy(g*) since A1/(A; N O(C)) = A; = A;* = SLy(q*). Hence, L/O(L) is
isomorphic to SL;(g*). The group C5 (I? YO(L)/O(L) is normal in L/O(L), and it is nonabelian since
X, < Cr (K). As L/O(L) is quasisimple, it follows that Cr (K)O(L) = L. So Cr (K) has odd index
in L. Since L is a 2-component of C= & (i), we have 0% (L) = L. It follows that L = C5 (K) <Cg (K).
Since L is subnormal in Cs(u) and CC(K) < Cg(u), we have that L is subnormal in CC(K). Hence,
L is subnormal in C. As C is core-free, we have O(L) = 1. It follows that O(L) = L N O(C) and hence
L =L/O(L) = SLy(g*). So we have proved (ii) for the case g* # 3.

Assume now that ¢g* = 3. Then O(Cc(u)) = Cc(u) N O(C), O(Cc(u)) < Ay £ Cc(u), and
A1/0O(Cc(u)) corresponds to A1* = SL,(3) under the natural isomorphism C¢(u)/O(Cc(u)) —
Cs(i). By Lemma 6.5, A;* is normal in Cz(ir). Hence, A;/O(Cc(u)) is a normal subgroup of
Cc(u)/O(Cc(u)) isomorphic to SLy(3). Since g normalizes Cc(u) and L = A8, it follows that
O(Cc(u)) < Landthat L/O(Cc¢(u)) is anormal subgroup of C¢ (1) /O (C¢ (1)) isomorphic to SL;(3).
Since L/O(Cc (u)) corresponds to L under the natural isomorphism Cc (u)/O(Cc (1)) — Ce(u), it
follows that L is a normal subgroup of C&(u) isomorphic to SL(3). Recall that X, < CZ(I?) <L AsL
has order 24 and X, has order 8, CZ(I? ) either equals L or has index 3 in L. However, if the latter holds,
then ZCg(I?)/Cg(I?) is a normal subgroup of Cg(ﬁ)/Cg(I?) of order 3, which is a contradiction to
Lemma 6.3 (iii). Thus, L = Cz(K) < Cz(K). As L 2 Cz(u) and C5(K) < Cx(i), it follows that L is
normal in C 5(1? ) and hence subnormal in C. So we have proved (ii) for the case ¢* = 3.
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We now prove (iii). We have TNK=2X; sinceX; <TNKand X € Sylz(l?). Also, TNL =X,
since |X2| = |SLa(¢)|> = |SL2(g*)|> = |L|, and X5 < L. As a consequence of Lemma 5.4, the fusion
system ]-"7(6_' )/(X1X>) is nilpotent. Applying Lemma 2.18, we may conclude that K and L are the only
subgroups of C which are components or solvable 2-components of C.As K and L are not isomorphic,
both are characteristic and hence normal in C. m]

Let E = (u,t). By construction, g acts on E and A] < Cg(E). Hence, the definition of L in
Proposition 6.8 is independent of the choice of g. From now on, L will always have the meaning given
to it by the above proposition.

6.2. 2-components of centralizers of involutions conjugate to t;, i + 2

Having described the components and the solvable 2-components of the group Cg(1)/O(Cg (1)), we
now turn our attention to centralizers of involutions of G not conjugate to .
First, we recall some notation from Section 5. Let 1 < i < n. If i is even, then #; denotes the image of

)

in PSLy(q). We use p to denote an element of F,, with order (n, g — 1), and if p is a square in F,, then

# denotes an element of F;, with u* = p. If nis even, p is a square in F, and i is odd, then ¢; is defined
to be the image of

In—i
(“ u I,-) € SL,(q)

in PSL, (g). It is easy to note that #; lies in 7 and hence in S whenever #; is defined.

Let S denote the set of all subgroups E of PSL,(g) such that there is some elementary abelian 2-
subgroup E < SL,(q) with E = EZ(SL,(q))/Z(SL,(q)). For each 3 < i < n, we define S; to be the
set of all elements E of S such that E contains a PSL,(g)-conjugate of ¢; for some even 2 < j < i.

Lemma 6.9. Let 1 < i < n such that t; is defined. Assume thati # 2 and thati < 5 if n is even. Let P
be a Sylow 2-subgroup of Cpsy,,(q)(t;) and F := Fp(Cpsy,, () (1:)). Then the following hold.

(1) Assume thati ¢ {1,n—1}. Then F has precisely two components. Denoting them in a suitable way
by &1 and &,, the following hold.

(a) & is isomorphic to the 2-fusion system of SL,—;(q).

(b) &, is isomorphic to the 2-fusion system of SL;(q).

(c) Let Yy be the Sylow group of &, and let Y, be the Sylow group of &. Then Y1Y, is
strongly F-closed and F [Y\Y; is nilpotent. The group Y;, where i € {1,2}, contains a
PSL,(q)-conjugate of t. Moreover, any elementary abelian subgroup of Y of rank at least
2 is contained in S,_;, and any elementary abelian subgroup of Y, of rank at least 2 is
contained in S;.

(ii) Assume thati = 1 ori =n— 1. Then F has a unique component. This component is isomorphic
to the 2-fusion system of SL,—1(q). If Y is its Sylow group, then Y is strongly F-closed and F|Y is
nilpotent. Moreover, any elementary abelian subgroup of Y of rank at least 2 is contained in S,,—.

Proof. Assume thati ¢ {1,n — 1}. By hypothesis, we have i # 2, and i < 5 if n is even. It follows that
i >3andn—i > 3. Let J; be the image of

{(A 11-) LA eSLn_i(cn}
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in PSL,,(g), and let J, be the image of

{(I"_i A) : AeSLl-(q)}

in PSL,(q). Then J; and J are the only 2-components of Cpsy,, (4)(#;). Applying Proposition 2.17 and
Lemma 3.21, we may conclude that & := Fpny, (J1) and & := Fpny, (J2) are the only components of
F = Fp(CpstL,(g)(t:)). By definition, & is isomorphic to the 2-fusion system of SL,_;(q), while &, is
isomorphic to the 2-fusion system of SL;(g). SetY; := PNJjand Y, := PN J,.Since V1Y, < PNJ1J;,
and since both Y1Y, and P N J;J, are Sylow 2-subgroups of JiJ,, we have V1Y, = P N JiJ. As
J1J2 € Cpsi,,(g)(ti), we have that Y175 is strongly F-closed. By Lemma 2.11, F/Y}Y; is isomorphic to
the 2-fusion system of Cpgsy,, () (t:)/J1J2. Since Cpsy,, () (t:)/J1J2 is 2-nilpotent, it follows from [39,
Theorem 1.4] that F/Y,Y> is nilpotent. Asi > 3 < n — i, both J; and J, contain a PSL, (¢)-conjugate
of #. Hence, Y; has an element which is PSL, (g)-conjugate to ¢ for k € {1,2}. For any elementary
abelian 2-subgroup E of Ji, k € {1,2}, ENZ(SL,(g)) = 1, so E lies in S. Moreover, any noncentral
involution of J; is PSL, (g)-conjugate to ¢; for some even 2 < j < n —i, and any noncentral involution
of J, is PSL,(q)-conjugate to ¢; for some even 2 < j < i. This implies that any elementary abelian
subgroup of ¥} of rank at least 2 is contained in S,,—; and that any elementary abelian subgroup of Y, of
rank at least 2 is contained in ;. This completes the proof of (i).

We omit the proof of (ii) since it is very similar to the one of (i). O

if n is even. Let x be an involution of S which is G-conjugate to t;. Then Cg(x) has precisely two
2-components. Denoting them in a suitable way by J| and J,, the following hold.

Proposition 6.10. Let 1 < i < n such that t; is defined. Assume thati ¢ {1,2,n — 1} and that i < %

(i) J1/0 (1) is isomorphic to SLE_.(q*)/O(SL;_,(q")), where & and q* are as in Proposition 6.1.
(i) J2/O(J)2) = SL?(q")/O(SLF(q")), where & and q* are as in Proposition 6.1.
(iii) Any elementary abelian 2-subgroup of J1 of rank at least 2 is G-conjugate to a subgroup of S
lying in S,,—;, and any elementary abelian 2-subgroup of J of rank at least 2 is G-conjugate to a
subgroup of S lying in S;.

Proof. Let F := Fs(G) = Fs(PSL,(q)). It suffices to prove the proposition under the assumption that
(x) is fully F-centralized, and we will assume that this is the case. So we have Cs(x) € Syl,(Cg(x))
and Cs(x) € Sy, (Cpsr, (g) (x))- Also, Fcg(x) (Cg (x)) = Cr({x)) = Feg(x) (CpsL, (g) (X))

As x is G-conjugate to f;, we have that x is PSL,(q)-conjugate to #;. So Lemma 6.9 (i) shows
together with Lemma 5.10 (i) that there exist two distinct 2-components J; and J, of Cg (x) satisfying
the following conditions, where Y| := Cs(x) N J; and Y> := Cs(x) N Js.

(1) Fy,(J1) is isomorphic to the 2-fusion system of SL,,_; (q).

(2) Fv,(J2) is isomorphic to the 2-fusion system of SL;(q).

(3) 1Y, is strongly closed in Cs(x) with respect to Cx({x)), and Cx({x))/Y1Y> is nilpotent.

(4) For k € {1,2}, Yi contains a G-conjugate of ¢.

(5) Any elementary abelian subgroup of Y; of rank at least 2 lies in S,—;, and any elementary abelian
subgroup of ¥, of rank at least 2 lies in S;.

By (3) and Corollary 2.19, J; and J, are the only 2-components of Cg (x). It remains to show that J;
and J; satisfy (i)-(iii). As Yx € Syl, (Jx) for k € {1,2}, (5) implies (iii).

We now prove (ii). The proof of (i) will be omitted since it is very similar to the proof of (11)

Let s be an element of J; which is G-conjugate to t. Set C := Cg(s), C:= C/O(C) and Cg (x)
Cc(x)/0(Cg(x)).

Since J; and J; are distinct components of Cg (x) we have [Jl,Jz] =1by[37,6.53]. Ass € Ju, it
follows that J; is a component of C~—— Co® (5). As a consequence of Corollary 2.2 and Proposition 2.4,

Ci(x) N C has a 2-component H with H=1,.
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By assumption, s is G-conjugate to t. So, by Proposition 6.8, C has a unique normal subgroup K*
isomorphic to SL? ,(¢*)/O(SL?_,(q*)) and a unique normal subgroup L* isomorphic to SL(g").
Moreover, K* and L* are the only subgroups of C which are components or solvable 2-components
of C.

Clearly, His a?2- component of Cx (x). Lemma 2.5 implies that H is a 2- component of Ck+(X)

or of Cr+(x). By Corollary 3.47 (i), we even have that Hisa component of Cg+ (55) or Cp» (x). It is
easy to note that H/Z(H) H/Z*(H) = J,/Z(J,). By Corollary 3.47 (ii), we have H/Z(H) % M,
and so J»/Z(J,) 2 M;;. Now (2) and Lemma 5.10 (ii) imply that J, = SL(q0)/O(SL;"(q0))
for some nontrivial odd prime power go and some gy € {+, -} with ¢ ~ &£pqo. Hence, H /Z (ﬁ) =
L] Z(Jy) = PSL?(qo). Note that g* ~ g ~ oqo and in particular (¢** = 1) = (qo* - 1)2. Applying
Corollary 3.47 (iii), we may conclude that gg = ¢* and g9 = &. Consequently, we have J,/0(J;) =

SLE(q7)/O(SLE(q")). So we have proved (ii). O

The proof of the following proposition runs along the same lines as that of the previous result.

Proposition 6.11. Suppose that n is odd and i = n — 1 or that n is even, i = 1 and t| is defined. Let
x be an involution of S which is G-conjugate to t;. Then Cg(x) has precisely one 2-component J. We
have J|O(J) = SL?_ (q*)/O(SLE_,(q")), where & and q* are as in Proposition 6.1. Moreover, any
elementary abelian 2-subgroup of J of rank at least 2 is G-conjugate to a subgroup of S lying in Sy,—1.

Proof. Let F := Fs(G) = Fs(PSL,(q)). It suffices to prove the proposition under the assumption that
(x) is fully F-centralized, and we will assume that this is the case. So we have Cs(x) € Syl,(Cg(x))
and Cs(x) € Syl,(Cpsr, (q)(x))- Also, Fcg(x) (Co(x)) = Cx({x)) = Fcg(x) (CpsL,(q) (X))-

As x is G-conjugate to t;, we have that x is PSL, (g)-conjugate to ;. Lemma 6.9 (ii) implies that
Cx({x)) has a unique component £ and that £ is isomorphic to the 2-fusion system of SL,_;(q). Apply-
ing Lemma 5.10 (i), we may conclude that Cg (x) has a unique 2-component J with £ = Feg (s (J).
By Lemma 5.10 (ii), J/O(J) = SL‘80 (qo)/O(SL 1(qo)) for some nontrivial odd prime power g and
some gy € {+, —} with gogo ~ ¢q.

SetY := Cs(x) N J. By Lemma 6.9 (ii), Y is strongly closed in Cs(x) with respect to C+({x)) and
Cr({x))/Y is nilpotent. Applying Corollary 2.19, we may conclude that J is the only 2-component of
Cg(x). Using Lemma 6.9 (ii), we see that any elementary abelian subgroup of Y of rank at least 2 lies
in S;—1. As Y € Syl,(J), it follows that any elementary abelian 2-subgroup of J of rank at least 2 is
G-conjugate to a subgroup of S lying in S,,—;.

It remains to show that &g = £ and g = ¢*. Define s :=¢t; ifi = 1 and s := 14, where A := {1, ...,n—
1}, if i = n — 1. Then we have s € Cg(?), and s is G-conjugate to x. Set Cg (1) := Cg(1)/O0(Cg(1)).
Lemma 6.2 shows that § centralizes K. Hence, K is a component of C=——(5). As a consequence of

Cs (1)
Corollary 2.2 and Proposition 2.4, Cg(#) N Cg(s) has a 2-component H with H= K Set C := Cg(s)
and C := C/O(C). Then H is a 2- -component of C () Since s is G-conjugate to x, C has precisely one

component J*, and J* is isomorphic to SL:ﬂl (qo)/O(SL;fﬂl (qo0)). By Lemma 2.5, Hisa2- -component

of Cy+ ). We see from Corollary 3.47 (i) that H is in fact a component of Cy+(7). It is easy to see
that H/Z(H) = H/Z*(H) = K/Z(K) = PSL? ,(q"). Note that £9qo ~ q ~ &q" and in particular
(go*—1)2 = (¢*>—1),. Using this, we may deduce from Corollary 3.47 (iii) that g = ¢* and g = &. D

6.3. 2-components of centralizers of involutions conjugate to w

Recall that we assume p to be an element of F,, with order (n, g — 1). Recall moreover that if n is even
and p is a nonsquare element of FF,, then w denotes the matrix

In/2
pIn/Z

and, if w € SL,,(q), then w denotes its image in PSL, (q).
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Lemma 6.12. Suppose that w is defined. Let P be a Sylow 2-subgroup of Cpsy,, (q)(W), and let F
denote the fusion system Fp(Cpsy, (q))(W)). Then F has precisely one component. This component is
isomorphic to the 2-fusion system of a nontrivial quotient of SLx (¢?). If Y is its Sylow subgroup, then
Y is strongly F-closed, and F|Y is nilpotent.

Proof. By Lemma 3.6 (i), Cpsr,, (4)(w) has precisely one 2-component J, and J is isomorphic to a
nontrivial quotient of SL%(qz). Applying Proposition 2.17 and Lemma 3.21, we may conclude that
Fpny(J) is the only component of F. The last statement of the lemma is given by Lemma 3.6 (ii). O

Proposition 6.13. Suppose that w is defined. Let x be an involution of S which is PSL,(q)-conjugate to
w. Then Cg (x) has precisely one 2-component, say J. The group J|/O(J) is isomorphic to a nontrivial
quotient of SL (qo) for some nontrivial odd prime power qo and some &g € {+, -} with g> ~ £oqo.

2

Proof. Let F := Fs(G) = Fs(PSL,(q)). It suffices to prove the proposition under the assumption that
(x) is fully F-centralized, and we will assume that this is the case. So we have Cs(x) € Syl,(Cg(x))
and Cs(x) € Syl,(Cpsr, (q)(x))- Also, Fcg(x)(Ca(x)) = Cx({x)) = Feg(x) (CrsL,(q) (X))-

As x is PSL,(g)-conjugate to w, Lemma 6.12 implies that C»({x)) has precisely one component,
say £, and that £ is isomorphic to the 2-fusion system of a nontrivial quotient of SLz (¢%). By Lemma
5.10 (i), Cg(x) has a unique 2-component J such that £ = Fegx)ns(J). SetY = Cs(x) NJ. As a
consequence of Lemma 6.12, Y is strongly closed in Cs(x) with respect to Cx({x)), and the factor
system Cx({x))/Y is nilpotent. So, by Corollary 2.19, J is the only 2-component of C¢ (x). Lemma
5.10 (iii) shows that J/O(J) is isomorphic to a nontrivial quotient of SL %" (qo) for some nontrivial odd

prime power go and some &g € {+, —} with ¢> ~ &9qo. O

7. The components of Cg (¢)

The goal of this section is to determine the isomorphism types of K and L. In order to do so, we will apply
the signalizer functor techniques introduced by Gorenstein and Walter in [31]. In particular, we will see
that L is isomorphic to SL;(g*). This will enable us in Section 8 to prove that a certain collection of
conjugates of L generates a subgroup G of G which is isomorphic to a nontrivial quotient of SL3 (g*)
and normal in G. This will complete the proof of Theorem 5.2.

7.1. 3-generation of involution centralizers

For each 3 < i < n, we define U; to be the set of all subgroups U of PSL,,(¢q) such that U has a subgroup
E with E € §; and m(E) > 3. The following lemma will be important later in this section.

Lemma 7.1. Let 1 < i < n such that t; is defined. Suppose that i < 5 if n is even. Let x be an involution
of S such that x is G-conjugate to t; and such that {x) is fully Fs(G)-centralized. Then Cg(x) is
3-generated in the sense of Definition 3.36. Moreover, if i > 4, then we have

Ci(x) = (Ncg (0 (U) | U < Cs(x),U € Uy).
Ifi = 2, then we have
Ci(x) = (N (U) | U < Cs(x),U € Up-2).

Proof. Set C := Cg(x) and C := C/O(C). Recall that Ly (C) denotes the subgroup of C generated by
the 2-components of C and that E(C) denotes the product of all components of C. As a consequence of
Proposition 2.4, Ly (C) = E(C).

First, we consider the case (n,i) # (6,3). Then, by Propositions 6.1, 6.10 and 6.11, C has a
2-component J such that J = SL7(q")/O(SL{(q")) for some k > 4 and such that any elementary
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abelian subgroup of Y := Cs(x) NJ of rank at least 2 lies in Si. If i > 4, then we may assume that k = i,
and ifi =2, then k =n - 2.

We have Y € Syl, (J) since Cs(x) € Syl,(C) and J is subnormal in C. By Lemma 3.38, we have that
J is 3-generated. So we have

J=(N7(U)|U <Y,m(U) > 3).

Set X := Cs(x) N Ly (C). By the Frattini argument, E(C) = J_NE(@()?) and C = E(C_)Né(}?). It
follows that

C=(NzU)|U=X, orU <Y and m(U) > 3).

Lemma 2.1 implies that C is generated by O(C) together with the normalizers N¢ (U), where U = X,
orU <Y and m(U) > 3.

Let E denote the subgroup of S generated by ¢, #{,-2 -1}, t{n-3,n-2} and t{,_4 ,-3}. Then E = Ejg.
Since x is G-conjugate to t; and E < Cg (¢;), there is a subgroup E, of Cs(x) which is G-conjugate to
E. By [27, Proposition 11.23], we have

o(C) = <C0(C)(D) | D < Ex,D = Eg).

As remarked above, any elementary abelian subgroup of Y of rank at least 2 lies in S. So, if U < Y and
m(U) = 3, then U € Uy. Also, X € Uy. Clearly, any Eg-subgroup of E, lies in S and hence in Uj. We
therefore have

C=(Nc(U)|U < Cs(x),U € Uy).

Consequently, C is 3-generated, and the last two statements of the lemma are satisfied.

Suppose now that (n, i) = (6, 3). By Proposition 6.10, C has precisely two 2-components J; and J5,
and we have J; = PSLY(q") = Jo. SetY; := Cs(x) N J; and Y5 := Cg(x) N Jo. Since J; is 2-generated
by Lemma 3.37, we have

Ji=(Ny-(U) | U < Y1,m(U) > 2).

Let y be an involution of ¥,. We have [J1,J2] = 1 by [37, 6.5.3], and so y centralizes Ji.As Z(J)) =1,
we have y ¢ J;. Now let U < Y| with m(U) > 2. Then (U, y) has rank at least 3. Moreover, N]—I(U)

normalizes (U, ¥) as J; centralizes y. Thus,
Ji = <Nf]([7) | U < Y1Y2,m(U) = 3).
Interchanging the roles of J; and J,, we also see that

J=(Np(U) | U < 11Ya,m(U) = 3).

By the Frattini argument, C = J;J,N 5(171 Y>). Lemma 2.1 implies that C is generated by O(C) together
with the normalizers N¢ (U), where U < Y1Y, and m(U) > 3. For any E6-subgroup A of Cs(x), we have

0(C) =(Co(c)(B) | B< A,B = Eg).
by [27, Proposition 11.23]. It follows that C is 3-generated. The proof is now complete. m

Lemma 7.2. Suppose that w is defined. Let x be an involution of S which is PSL,,(q)-conjugate to w.
Then Cg (x) is 3-generated.
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Proof. Set C := Cg(x) and C := C/O(C). By Proposition 6.13, C has a unique 2-component J, and J
is isomorphic to a nontrivial quotient of SL}°(go) for some nontrivial odd prime power gy and some
2

&0 € {+,—} with ¢* ~ £9qo. Note that go = g9 mod 8.
First, we prove that C is 3-generated. Let R be a Sylow 2-subgroup of C and Y := RN J. We consider
two cases.

Case 1:n > 8. _
As go = €9 mod 8, by Lemma 3.38, J is 3-generated. Hence,

J=(N7U) | U <Y,m(U) > 3).

By the Frattini argument, C = JN, 5()_’). So C is 3-generated.

Case2:n=6.
We have J = PSL;90 (go). By Lemma 3.37, J is 2-generated. Applying the Frattini argument, we may
conclude that

C=(NzU)|U<Y,mU) > 2).

Now let U < Y with m(U) > 2. Since X is a central involution of C and Z(J) is trivial, we have
X ¢ J_ and hence _)? ¢ U. It follow_s (U, )E)_has rank at least 3. Moreover, as X is central in C, we have
N&(U) < Ne((U, x)). Clearly, (U, x) < R. It follows that

C=(NzU)|U < R,m(U) > 3).

Hence, Cis 3-generated.

Applying Lemma 2.1, we may conclude that C is generated by O(C) together with the normalizers
Nc(U), where U < R and m(U) > 3. By Lemma 3.6 (iii), R has an elementary abelian 2-subgroup of
rank 4, say A. By [27, Proposition 11.23], we have

o(C) = <C0(C)(B) | B< A,B = Eg).

So C is 3-generated. O
Corollary 7.3. Let x be an involution of S. Then Cg (x) is 3-generated.

Proof. As a consequence of Proposition 3.5, x is G-conjugate to #; for some 1 < i < n such that #; is
defined or PSL,,(g)-conjugate to w (if defined). So the statement follows from Lemmas 7.1 and 7.2. O

7.2. The case g* =3

Recall that our goal is to determine the isomorphism types of K and L. First, we will deal with the case
q* = 3. We will prove that, in this case, O(Cg(t)) = 1.

Lemma 7.4. Let x be an involution of S, and let J be a 2-component of C(x). Let 1 < i < n such that
t; is defined. Suppose that g* = 3 and that x is G-conjugate to t;. Then J /O (J) is locally balanced.

Proof. By Propositions 6.8 (iii), 6.10 and 6.11, we have J/O(J) = SL;(3) for some 3 < k < n. So
J/0O(J) is locally balanced by Lemma 3.48. O

Lemma 7.5. Let P and Q be subgroups of S.

(i) If P € S and m(P) < 2, then there is a subgroup P of S such that P < P, P € S and m(P) = 3.
(ii) If P and Q are elements of S of rank at least 3, then there exist some m > 1 and a sequence

P=P,....,P,=0,
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where P;, 1 <i < m, is a subgroup of S of rank at least 2 lying in S and where
P; C PiyrorPiy CP;

foralll <i<m.

Proof. Suppose that P € S and m(P) < 2. Let Sbea Sylow 2-subgroup of SL, (g) such that S is the
image of S in PSL,(q). Note that S is unique. Since P is an element of S, there exists some elementary
abelian 2-subgroup P of SL, (q) such that P is the image of P in PSL,(q). Clearly, P < S. We have
m(P) < 3 as m(P) < 2. By Corollary 3.35, P is contained in an E4-subgroup of S. This implies (i).

We now prove (ii). Suppose that P and Q are elements of S of rank at least 3. There are elementary
abelian subgroups P and Q of SLy(q) such that P is the image of Pin PSL,(q) and such that Q is the
image of Q in PSL,,(g). Clearly, P,0 < S. Also, m(P), m(Q) > 3. Since S is 3-connected by Corollary
3.34, there exist some m > 1 and a sequence

P=P,....P,=0,

where ﬁi (1 £i < m)is an elementary abelian subgroup of S of rank at least 3 and where

P; C Piyy or Piyy C P
forall 1 <i < m.Let P;, 1 <i < m, denote the image of Fl in S. Then the sequence
P=P,....P,=0
has the desired properties. O
Lemma 7.6. Suppose that q* = 3. For each elementary abelian subgroup E of S of rank at least 2, let
=(0(Cc(x)) | x € EY).
Let P and Q be subgroups of Swith P,Q € S and m(P),m(Q) > 3. Then Wp = W.
Proof. By Lemma 7.5 (ii), there exist some m > 1 and a sequence
P=Py,....,P,=0,
where P;, 1 <i < m, is a subgroup of S of rank at least 2 lying in S and where
P; CPiyor Py CP;

forall 1 <i < m. By Lemma 7.5 (i), there is a subgroup P_l of S such that P_, e S, m(P_,-) > 3 and
P; < P, foreach1 <i < m.

Let 1 <i < m, and let x be an involution of P;. Also, let J be a 2-component of Cg(x). As P, €S,
we have that x is G-conjugate to ¢; for some even 2 < j < n. Therefore, by Lemma 7.4, J/O(J) is
locally balanced. Applying [31, Corollary 5.6], we may conclude that G is balanced with respect to P;.

Let 1 < i < m. We have m(P; N P;;) > 2 since P; C P4 or Piyy € P; and m(P;),m(Piy1) > 2.
Hence, m(P; N P;;) > 2. Proposition 2.8 (ii) implies

WPA = WI—T, = WPT“H = WH = WP,-+1 .

Consequently, Wp = Wy, as wanted. O
Proposition 7.7. Suppose that q* = 3. Let x be an involution of S which is G-conjugate to t; for some
even 2 < i < n. Then we have O(Cg(x)) = 1. In particular, O(Cg (1)) = 1.
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Proof. We follow the pattern of the proof of [31, Theorem 9.1]. Let E be the subgroup of S consisting
of all 14, where A C {1,...,n} has even order. For each elementary abelian 2-subgroup A of G of rank
at least 2, let

Wa :=(0(Cs(y)) | y € A™).

Set Wy := Wg and M := Ng(Wy). We accomplish the proof step by step.

(1) Ng(S) < M.

Let g € Ng(S). Clearly, E € S, and it is easy to note E$ still lies in S. Lemma 7.6 implies that
Wy = Wgs. On the other hand, we have (Wy)8 = Wgs by Proposition 2.8 (i). So we have (Wy)8 = Wy
and hence g € M.

(2) Let y be an involution of S such that y is G-conjugate to t; for some even 2 < j < n. Theny is
M-conjugate to t ;.

We have (y) € S. By Lemma 7.5 (i), there is a subgroup A of S with (y) < A, A € S and m(A) = 3.
As a consequence of Lemma 3.22, there is an element g of G with A¢ < E. By Lemma 7.6 and
Proposition 2.8 (i), we have (Wy)8 = (W4)8 = Wus = Wy. Thus, g € M.

We have y¢ € E, and y¥ is G-conjugate and hence PSL, (q)-conjugate to ¢;. So we have y& = tp for
some B C {1,...,n} with |B| = j. From Lemma 3.23 (i), we see that y8 = tg is Npsy,, (4) (E)-conjugate
and hence Ng(E)-conjugate to 1;. As Ng(E) < M, it follows that y# is M-conjugate to ¢;. Hence, y is
M-conjugate to ;.

(3) Let y be an involution of S such that y is G-conjugate to t; for some even 2 < j < n. Then
Co(y) <M.

Because of (2), we may assume that (y) is fully Fg(G)-centralized. Then, by Lemma 7.1, Cg(y) is
generated by the normalizers Nc; (1) (U), where U is a subgroup of Cg(y) such that there exists B < U
with B € S and m(B) > 3. It suffices to show that each such normalizer lies in M.

Let U and B be as above, and let g € N¢,; (y)(U). By Lemma 7.6 and Proposition 2.8 (i), we have
(Wp)8 = (Wg)8 = Wpge = Wy. Thus, g € M and hence N¢,, (y) (U) < M, as required.

(4) Let y be an involution of S. Then Cg(y) < M.

We can see from Lemmas 3.14 and 3.15 that Z(S) has an involution s which is G-conjugate to ¢; for
some even 2 < j < n. Let P be a Sylow 2-subgroup of Cg(y) with s € P. By (1), s € M and hence
s € PNM.Nowletr € Np(PN M). Then s" € PN M. As a consequence of (1) and (2), s and s
are M-conjugate to ¢;. Therefore, there is some m € M with s” = s™. We have rm~' € Cg(s), and so
rm~' € M by (3). Hence, r € M. Consequently, Np(P N M) = P N M. It follows that P = P N M.

Let U < P with m(U) > 3, and let g € Nc¢,(y)(U). By Lemma 2.3, any Eg-subgroup of S has
an involution which is the image of an involution of SL,(q). Since m(U) > 3, it follows that U has
an element u which is G-conjugate to f; for some even 2 < k < n. By the preceding paragraph,
u,u® € U < P < M. As a consequence of (1) and (2), u and u® are M-conjugate to 7. So there is some
m € M with u8 = u™. Hence, gm~! € Cg(u). From (3), we see that Cg(u) < M, and so gm™' € M.
Thus, ¢ € M and hence N¢, () (U) < M. Since Cg(y) is 3-generated by Corollary 7.3, it follows that
Cs(y) <M.

S)M=¢G.

Assume that M # G. By [27, Proposition 17.11], we may deduce from (1) and (4) that M is strongly
embedded in G, i.e., M N M8 has odd order for any g € G \ M. Applying [50, Chapter 6, 4.4], it follows
that G has only one conjugacy class of involutions. On the other hand, we see from Proposition 3.5 that
G has at least two conjugacy classes of involutions. This contradiction shows that M = G.

(6) Conclusion.

Let y € E*, and let J be a 2-component of C (y). By Lemma 7.4, J/O(J) is locally balanced. So, by
[31, Corollary 5.6], G is balanced with respect to E. Proposition 2.8 (ii) implies that W, has odd order.
By (5), we have M = G and hence Wy < G. As O(G) = 1 by Hypothesis 5.1, it follows that Wy = 1. So
we have O(Cg(y)) = 1 for all y € E*, and the statement of the proposition follows. O
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Proposition 7.7 implies that if g* = 3, then K = SL? ,(3) and L = SL;(3). Our next goal is to find
the isomorphism types of K and L for the case g* # 3.

In general, O(Cpsy,, () (1)) is not trivial. So, if g* is not assumed to be 3, we have no chance to prove
that O(Cg (1)) = 1. However, we will be able to show that

AG(F)= (1) 0(Ca(a) =1

acF*

for any Klein four subgroup F of G consisting of elements of the form z4, where A C {1,...,n} has
even order. This will later enable us to determine the isomorphism types of K and L for the case g* # 3.

7.3. 2-balance of G

In this subsection, we prove that G is 2-balanced when ¢g* # 3.

Lemma 7.8. Set C := Cg(t) and C = C/O(C). Let F be a Klein SJour subgroup of C. Then
[Ac(F).K] =1.

Proof. We closely follow arguments found in the proof of [31, Theorem 5.2]. _ _
First, we consider the case that F" has a nontrivial element y such that y centralizes K. Then K
normalizes O(C5(y)) and, as K < C, O(C#()) also normalizes K. It follows that

[K,0(Cz(3))] < KN O(Ca(7)).

Hence, [K, O(C&(y))] is a subgroup of K with odd order. By [37, 1.5.5], K normalizes [K, o(Cz(y)].
It follows that

[K,0(Cz(¥))] < O(K).

As O(K) = 1, this implies that O(C&())) centralizes K. By definition of Ag(ﬁ), we have Aé(F) <
O(C&(y)). Consequently, A =(F) centralizes K.

Now we treat the case that CF(I? ) = 1. For each subgroup or element X of C, let X denote the
image of X in C_‘/Cé(l?). Since CF(I?) =1, we have F = F, and so F is a Klein four subgroup of C.
AsK = SL? ,(q")/O(SL?_,(q*)), we have that K is locally 2-balanced (see Lemma 3.49). Using this
together with the fact that the group c=C /C 5(1? ) is isomorphic to a subgroup of Aut(K) containing
Inn(K), we may conclude that Aé(ﬁ) = 1. By [31, Proposition 3.11], if X is a finite group, B a 2-
subgroup of X and N < X, then the image of O(Cx (B)) in X/N lies in O(Cx,;n (BN/N)). Thus, if y
is an involution of F, then the image of O(Cz(¥)) in C lies in O(Ca(y)). It follows that the image of
Ag(f) in C is contained in A@(I::) = 1. Hence, Ag(f) < Cg(l?). O

Lemma 7.9. Let C := Cg(t) and C := C/O(C). Then Cz(K) N Cz(L) is a 2-group.

Proof. For convenience, we denote Cg(l? )N Cé(Z) by Cé(l? ,L). Since C is core-free, we have that
Cg(l? s Z) is core-free. So it is enough to prove that C 5(1? s Z) is 2-nilpotent. By [39, Theorem 1.4], it
suffices to show that C 5(1? , L) has a nilpotent 2-fusion system.

Let X denote the subgroup of T consisting of all elements of T of the form

(A B)Z(SLn(q))
withA e WNZ(GL,,-2(q)), B VNZ(GLy(q)) and det(A)det(B) = 1.
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Let A € W and B € V with det(A)det(B) = 1 and
A
m = ( B)Z(SLn(q)) eT.

Assume that 772 centralizes K and L. Then we have A € Z(G L,,—»(g)) by Lemma 6.2. Since 1 centralizes
Z, m also centralizes X_2 Thus, m centralizes X5, and so B centralizes V N SL;(g). Lemma 3.17 implies
that B € Z(GLy(g)). So we have m € X. Conversely, if A € Z(GL,-»(q)) and B € Z(GL>(g)), then
m e Cg(l?, L) as a consequence of Lemmas 6.2 and 3.44. It follows that T N Cé(l?, L)=X

Let F := Fs(PSL,(q)) = Fs(G). Since X is central in Cpgsy, (4)(?), the only subsystem of C#({t))
on X is the nilpotent fusion system on X. It follows that Fg(Cg(I? , L)) is nilpotent. So C 5([? ,L)hasa
nilpotent 2-fusion system, as required. O

In the following lemma, A; and A, have the meanings given to them after Lemma 6.5.

Lemma 7.10. Set C := Cg(t). Suppose that g* # 3. Then A\, A, and L are the only 2-components of
Cc (u). Moreover, the following hold:

(i) Ay is the only 2-component of Cc (u) containing u.
(ii) Ay is the only 2-component of Cc (u) containing neither u nor t.
(iii) L is the only 2-component of Cc (u) containing t.

Proof. By definition, A and A; are 2-components of C¢ (u). Also, it is clear from the definition of L
(see Proposition 6.8) that L is a 2-component of C¢ (u).

Set C := C/O(C). As a consequence of Lemma 6.4, A; and A, are the only 2-components of
Cy(ir). Moreover, L is a component of C~ (). So Lemma 2.5 shows that A1, As and L are the only
2- components of C=(u). As we have observed after Lemma 6.5, there is a bijection from the set of
2-components of C¢ (u) to the set of 2-components of C(u) sending each 2-component A of Cc () to

A. Therefore, Ay, A, and L are the only 2-components of C¢ (u).

It remains to prove (i), (ii) and (iii). We have 71 < A; by Lemma 6.6 and thus u € A;. From the
definition of L, it is clear that t € L. Moreover, u ¢ L since 7 is the only involution of L. Similarly,
t ¢ Aq. Also, it is easy to see from Lemma 6.4 that u and ¢ cannot be elements of Aj. O

Lemma 7.11. Suppose that q* # 3. Let F be a Klein four subgroup of T. Then we have Ag(F)NCg(t) <
0(Cg(1)).
Proof. Set C :=Cg (1), D := Ag(F) N C and C := C/O(C). We are going to show that D is trivial.

A direct calculation shows that D < A (F). For each a € F*, we have O(C¢(a)) < O(Cs(a)) asa
consequence of Corollary 2.2. Therefore, we have Ac(F) < A 5(17 ), and hence, D < Aé(F ). Lemma
7.8 implies that [D, K] = 1. In particular, D < Cz(ir) = Cc(u). Fix a subgroup Do of Cc(u) with

D_o = D. Also, let g € G with u® =t and ¢ = u (such an element exists by Lemma 6.7). Note that
(Do)® < (Cc(u))® = Cc(u).
We accomplish the proof step by step.

(1) Ay, Ay and L are normal subgroups of Cc(u).

This is immediate from Lemma 7.10.

(2) There is a group isomorphism Aut(A)) — Aut(L) which maps Inn(A,) to Inn(L) and
Auts &(Al) to AutD(L)

Let Autp,(L/O(L)) denote the image of Autp,(L) under the natural group homomorphism
Aut(L) — Aut(L/O(L)). Also, let Aut(p,s(A1/O(A1)) denote the image of Aut(p,)z(A1) under
the natural group homomorphism Aut(A;) — Aut(A;/O(A))).

From Lemma 7.10, it is clear that (A; )g*I = L. The group isomorphism c,-1]a,,, induces a group
isomorphism A;/O(A;) — L/O(L), and this group isomorphism induces a group isomorphism
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Aut(A;/O(A})) — Aut(L/O(L)). By a direct calculation, the group isomorphism just mentioned
maps Aut(p,)s (A1/O(A1)) to Autp,(L/O(L)) and Inn(A;/O(A1)) to Inn(L/O(L)).

We have A; /(A1 NO(C)) = A; = SLy(g*). As SLa(g*) is core-free, it follows that A; N O(C) =
O(A}). So the natural group homomorphism A; — A; induces a group isomorphism A;/O(A;) — A
This group isomorphism induces a group isomorphism Aut(A;/O(A;)) — Aut(A;). By a direct

calculation, the group isomorphism just mentioned maps Aut(p,s(A1/O(A1)) to AutW(A_l) and

Inn(A;/O(A;)) toInn(A;). In a very similar way, we obtain an isomorphism Aut(L/O(L)) — Aut(L)
which maps Autp, (L/O(L)) to AutD—O(L) = Auty (L) and Inn(L/O(L)) to Inn(L).

As a consequence of the preceding observations, there is a group isomorphism Aut(A;) — Aut(L)
which maps Inn(A) to Inn(L) and AutW(Al) to Aut; (L), as asserted.

(&Awmﬁdﬁsmgﬂ)_ ~ ~ B

As observed above, Dy = D centralizes K. In particular, D centralizes A;. This implies that
[Dg,A2] < O(C). As Dy normalizes A, by (1), we also have that [Dy, A;] < Aj. Consequently,
[Do, A2] < O(A3). Because of Lemma 7.10, we have (A2)8 = Aj. It follows that [ (D)%, A2] < O(A).
This easily implies [ (D)8, A2] < O(Az). As Ay = SL? (") by Lemma 6.4, we have O (A2) < Z(Ay).
It follows that [A,, (Do)$. Az] = [(Do)8, Az, Az] < [Z(A;), Ay] = 1. The three subgroups lemma [37,
1.5.6] implies [Aj, (Dg)8] = [A2, A2, (Dg)8] = 1. Hence, (D)8 centralizes A,. By (1), (Dg)& normal-
izes Ay. Moreover, AutW(K ) has odd order since (Dg)8 has odd order. The assertion now follows
from Lemmas 6.4 (iii), 3.50 and 3.51.

@) D < Nyepr O(CL()).

As a consequence of (2) and (3), we have Aut;(L) < Inn(L). This implies D < LCx(L). By [37,
6.53], L < Cé(I?). As observed above, [D,K] = 1 and hence D < Cé(l?). It follows that D is a
subgroup of L(Cz(L) N Cz(K)). By Lemma 7.9, C5(L) N Cz(K) is a 2-group. As D has odd order
and L < C, , this implies that D < L. Now we see that

D < LNAZ(F)
(M @nocz())
yeF#

() (Cz() no(Cz()))

yeF#

() ocz().

yeF#

(5) Conclusion.
As F is a Klein four subgroup of 7, we have F = (y, y») for two commuting involutions y; and y;
of T. For i € {1,2}, we have

i = (Af Bi)z<SLn(q>>

for some A; € W and B; € V with det(A;)det(B;) = 1. Let y3 := y;y2, A3 := AjAp and B3 := B|B;. As
Y1,Y2,y3 are involutions, we have (Ei)z € Z(GLy(q)) foreachi € {1,2,3}.
It is easy to note that X, € Syl,(L). If B € VN SLy(gq) and

yi= (’”‘2 B)Z(SLn(q)) € X,
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then
Vi — I"—2
=" s |Z(SLa(e))

for each i € {1,2,3}. Applying Lemma 3.52, we deduce that

() oGy =1.

yeF#

So we have D = 1 by (4). This completes the proof. O

Lemma 7.12. Suppose that q* # 3. Then G is 2-balanced.

Proof. Let F be a Klein four subgroup of G, and let a be an involution of G centralizing . We have to
show that Ag(F) N Cg(a) < O(Cg(a)).

Assume that a is G-conjugate to 7. Then there is some g € G with a® = ¢ and F§ < T. By
Lemma 7.11, we have Ag(F8) N Cg(1) < O(Cg(t)). Clearly, Ag(F)8 = Ag(F?¥). It follows that
Ag(F) N Cg(a) < 0(Cg(a)).

Assume now that a is not G-conjugate to ¢. Let J be a 2-component of Cg(a). By Propositions
6.10, 6.11 and 6.13, either J/O(J) = SL{ (q")/O(SL{(q")) for some k > 3, or J/O(J) is isomorphic
to a nontrivial quotient of SL%°(qo) for some nontrivial odd prime power g and some &y € {+, —}.
So J/O(J) is locally 2—balance2:d by Lemma 3.49. Applying [31, Theorem 5.2], we may conclude that
Acg(a)(F) £ O(Cg(a)). A direct calculation shows that Ag(F) N Cg(a) < Acga)(F). Hence,
AGg(F)NCg(a) < 0(Cg(a)). m]

7.4. The case q* # 3: triviality of Ag(F)

Lemma 7.13. Suppose that q* # 3. Assume moreover that ¢ = 1 mod 4 or n > 7. Then we have
Ag(F) =1 for each Klein four subgroup F of S.

Proof. We follow the pattern of the proof of [31, Theorem 9.1].
For each elementary abelian 2-subgroup A of G of rank at least 3, we define

Wa = (AG(F) | F < A,m(F) = 2).

Let P and Q be elementary abelian subgroups of § of rank at least 3. We claim that Wp = Wy. By
Corollary 3.34 (iii), S is 3-connected. So there exist a natural number m > 1 and a sequence

P=Py,....,P, =0
such that P;, 1 <i < m, is an elementary abelian subgroup of § of rank at least 3 and such that
P; C PyjorPiy CP;

forall1 <i < m.ByLemma7.12, G is 2-balanced. Proposition 2.8 (ii) implies that Wp, = Wp,,, for all
1 <i < m. Therefore, Wp = Wy, as asserted.

We use Wy to denote Wp, where P is an elementary abelian subgroup of S of rank at least 3. Let
M := Ng(Wp). We accomplish the proof step by step.

() Ng(S) < M.

Let g € Ng(S). Take an elementary abelian subgroup P of S with m(P) > 3. By Proposition 2.8 (i),
we have (Wp)8 = (Wp)8 = Wpe = Wy. Thus, g € M.

(2) Let x be an involution of S. Then Cg(x) < M.
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By Corollary 3.35, there is an elementary abelian subgroup P of S with x € P and m(P) = 4.
Clearly, P < Cg(x). Let R be a Sylow 2-subgroup of Cg (x) containing P. By Corollary 7.3, Cg (x) is
3-generated. Hence, Cg (x) is generated by the normalizers N¢; (x)(U), where U < R and m(U) > 3.
It suffices to show that each such normalizer lies in M.

So let U be a subgroup of R with m(U) > 3, and let g € N¢,(x)(U). Let Q be an elementary
abelian subgroup of U with m(Q) = 3, and let & € G with R" < S. Then Won = Woen = Wpin = Wo.
Proposition 2.8 (i) implies that Wo = Wge = Wp = Wy. Applying Proposition 2.8 (i) again, it follows
that (Wp)8 = (Wg)8 = Wps = Wy. Hence, g € M and thus N¢, (x)(U) < M.

B)M=¢G.

Assume that M # G. By [27, Proposition 17.11]; we may deduce from (1) and (2) that M is strongly
embedded in G, i.e., M N M8 has odd order for any g € G \ M. Applying [50, Chapter 6, 4.4], it follows
that G has only one conjugacy class of involutions. On the other hand, we see from Proposition 3.5 that
G has at least two conjugacy classes of involutions. This contradiction shows that M = G.

(4) Conclusion.

Let F be a Klein four subgroup of S. By Corollary 3.35, there is an elementary abelian subgroup
P of S with F < P and m(P) = 4. Clearly, Ag(F) < Wp. Since G is 2-balanced, Wp has odd order
by Proposition 2.8 (ii). Since Wp = W, we have Wp < G by (3). As O(G) = 1 by Hypothesis 5.1, it
follows that Wp = 1. Hence, Ag(F) = 1. O

Next, we deal with the case thatn = 6, ¢ = 3 mod 4 and g* # 3. We show that, in this case, Ag (F) = 1
for each Klein four subgroup F of S consisting of elements of the form 74, where A C {1,...,n} has
even order. We need the following lemma.

Lemma 7.14. Suppose that q* # 3. Set { := n — 4. Let E be the subgroup of T consisting of all t4,
where A C {1,...,n} has even order. Let E| denote the subgroup of X, consisting of all t 4, where A is
a subset of {1,...,n — 2} of even order. Then we may choose elements my,...,me € Ng(E|) and an
Eg-subgroup E of E with

K =(O(K), Lo (Ck (Ep)), Lo (Ck (Eo))™, ..., Ly (Ck (Ep))™).

Proof. Set C := Cg(t) and C := C/O(C). Let H := SL? ,(q")/O(SLE_,(q")). Let D be the subgroup
of SL? ,(g") consisting of all diagonal matrices in SL?_,(g") with diagonal entries in {1, -1}, and let
D denote the image of D in H. Denote by H, the image of

{(A In4) DA eSLzs(q*)}
in H.

We claim that there is a group isomorphism ¢ : K — H which maps E; to D and A; to H;. By
Lemma 6.4 (iii), there is a group isomorphism ¢ : K — H under which A; corresponds to H;. Since
i is the only involution of E, we have that u¥ is the image of diag(—1,-1,1,...,1) € SL;j_z(q*) in
H. Clearly, E_1 is elementary abelian of order 273 Using Lemma 3.22, we conclude that E ?is H-
conjugate to D. So there is some a € Inn(H) mapping E; ' to D. We may assume that a centralizes ir¥.
Then H, ¢ = H, and the isomorphism ¢ := ¢« maps E| to D and E to Hy, as desired.

Using Lemma 3.39, we can find elements x, ...,x, € Ny (D) suchthat H = (H{, H™, ..., H/).
Therefore, K has elements m, ..., m, such that
K=, A"
and my,...,my € NE(E). From Lemma 2.1, we see that NE(E]) = Nk (E}). So we may assume

m; € Nk (Ey) fori € {1,...,}. Let Eq := (u,t(34},1(45)). By Lemma 6.5, we have A; 9 Cz(it). In
particular, E_o normalizes E . Moreover, }% centralizes T;. We have E = S1,(g*) and T, € Syl, (E )
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(see Lemma 6.4). Applying Lemma 3.44, we conclude that A} < CE(I%). As A] < Cg(u) and
A; < CE(I%) < Cg (ir), we even have that Aj is a component of CE(I%). It follows that

K = (Ly(Cx(Ep)), Ly (Cx(Eg)™, ..., Ly (Cx(Eg))™).

Let k € K such that k € Cg(Ep). As K < C, we have [k,Eg] < O(C) N K = O(K). Thus,
kO(K) € Ccjok)(EoO(K)/O(K)). By Lemma 2.1, there is an element z € Cc(Ep) such that
kO(K) = zO(K). Observing that z € Cx (Eo) and that k = Z, we may conclude that CE(I%) = Ck (Ey).
If 1 <i< ¢ then Ly(Cg(E0)™ = Ly(Ck (Eo))™ = Ly(Cx(Eo)) = Ly(Cx (Eo))™i, where the
second equality follows from Proposition 2.4. It follows that

K =(0(K), Ly (Ck (Eo)), L» (Ck (E0))™, ..., Lo (Ck (E))™).
This completes the proof. O

Lemma 7.15. Suppose that n = 6, ¢ = 3 mod 4 and q* # 3. Let E denote the subgroup of S consisting
of all ta, where A is a subset of {1, . . .,n} of even order. Then A (F) = 1 for any Klein four subgroup
F of E.

Proof. We follow the pattern of the proof of [31, Theorem 9.1].
Set Wo :={(Ag(F) | F < E,m(F)=2)and M := Ng(W,). Since T is the image of

{(A B) . AeW,BeV,det(A)det(B) = 1}

in PSL,(q), we have T € Syl,(PSL,(gq)) by Lemma 3.15. Hence, S = T and thus ¢ € Z(S). By choice

of W (see Section 5), we have
_A ). I
vt p) s amev) [, %)

We accomplish the proof step by step.

(1) For each subgroup E of E with order at least 8, we have NG (Ey) < M.
Clearly, E = E1¢. Therefore, the statement follows from the 2-balance of G (see Lemma 7.12) and
Proposition 2.8 (ii).

(2) Ng(S) < M.
First, we prove S < M. By (1), we have E < M. As ¢ =3 mod 4 and S =T, any element of S can be
written as a product of an element of E and an element of S induced by a matrix of the form

A
B
with A € WN SL4(g) and B € V N SLy(q). So, in order to prove that S < M, it suffices to show that
each element of S induced by a matrix of this form lies in M. If B € V. N SL,(q), then the image of

("

in § centralizes the group (t{12},%(2,3},(3,4}) = Es. So it is contained in M by (1). Hence, in order to
prove that S < M, it suffices to show that if A € W N SL4(q), then the image of

("4
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in S lies in M. So assume that A € W N SL4(q). By the structure of W, there are elements M, M, of V
such that det(M;) = det(M;) and

A

Il
E
5—/
=
S
Il
E
5_/
e
\E

The image of

M,
M,
L

in S can be written as a product of an element of E and an element of S induced by a matrix of the form

M,

M,
L

with M, M, € V 1 SLa(q). The images of

g =
( ! ) and M,
Iy I

in S centralize the groups ({3 4}, t 4,5}, 1{5,6}) and {t(1 2}, 1{2,5}» 5,6} ), Tespectively. So they are elements
of M. It follows that the image of

M,
M,
L

in S lies in M. The image of the block matrix

I
I

in S normalizes E and is thus contained in M. It follows that the image of

A
(")
in § lies in M. Consequently, S < M.
By Lemma 3.24, Autpgy, (4)(S) = Inn(S). As Fs(G) = Fs(PSL,(q)), it follows that Autg(S) =
Inn(S), and so Ng(S) = SC(S). We have seen above that S < M, and we have C;(S) < M by (1).
Hence, NG (S) < M.

(3)Cg(t) < M.

Let E be the subgroup of X; consisting of all 4, where A is a subset of {1, ..., n—2} of even order. As
aconsequence of Lemma 7.14, there is an Eg-subgroup Eq of E such that K = (O(K), Cx (Ey), Nk (E1)).
By (1), Ckx (Ep) and Nk (E1) are subgroups of M. By [27, Proposition 11.23], we have

O(K) =(Co(k)(B) | B< E,m(B) =3).

https://doi.org/10.1017/fms.2022.53 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.53

70 Julian Kaspczyk

Therefore, O(K) < M by (1). Consequently, K < M. By the Frattini argument,
Ci (1) = KNcg (1) (X1).

So it suffices to show that N¢, () (X1) < M. Since Fs(G) = Fs(PSL,(q)), we may conclude from
Lemma 5.7 that Autc,, () (X1) is a 2-group. Hence, N (1) (X1)/Ccg (1) (X1) is a 2-group. As X| <
T =S € Syl,(Cg(2)), it follows that Nc (r)(X1) = SCcqy (1) (X1). We have S < M by (2), and
Cci(n(X1) £ Cg(E1) £ M by (1). Consequently, Nc, 1) (X1) < M, as required.

(4) Let x be an involution of S which is G-conjugate to t. Then x is M-conjugate to t.

It is easy to see that if an element of T is PSL,(g)-conjugate to ¢, then it is Cpgy,, (4) (f)-conjugate
to an element of E. As Fs(G) = Fs(PSL,(q)) and S = T, it follows that x is C(¢)-conjugate and
hence M-conjugate to an element y of E. From Lemma 3.23, we see that if an element of E is PSL,,(q)-
conjugate to ¢, then it is Npsy, (4) (E)-conjugate to ¢. So, as Fs(G) = Fs(PSL,(q)), we have that y is
Ng (E)-conjugate to t. By (1), Ng(E) < M, and so x is M-conjugate to t.

(5) Let x be an involution of S. Then Cg(x) < M.

Let R be a Sylow 2-subgroup of Cg(x) with Cs(x) < R. We have r € Z(S) < Cs(x) and r € M.
Thus,t € RNM.Letr € Np(RNM).Theny :=t" € RN M. As a consequence of (4), y is M-conjugate
to z. So there is an element m of M such that 1" = y = ™. We have rm~! € Cg(t) < M by (3), and so
re RN M.Hence, Ne(RNM)=RNM,and thus, R=RN M.

By Corollary 7.3, Cg(x) is 3-generated. Therefore, Cg(x) is generated by the normalizers
Ncg; (x)(U), where U < R and m(U) > 3. It suffices to show that each such normalizer lies in M.

SoletU < Rwithm(U) > 3,andletg € N¢,, (x)(U). Take an elementary abelian subgroup Q of U of
rank 3. Lemma 2.3 shows that any Eg-subgroup of S has an involution which is the image of an involution
of SL,,(q). This implies that Q has an element s which is G-conjugate to ¢. Since 5,58 €e U < R < M,
we see from (4) that s and s& are M-conjugate to ¢. So there are elements m, m’ € M such that s = ¢
and s8 = . We have " = s8 = (#™)8 = ™8 Thus, mgm’~' € C5(t) < M, and hence, g € M. It
follows that Ncg, (x)(U) < M.

©6)YM=0G.

Assume that M # G. By [27, Proposition 17.11], we may deduce from (2) and (5) that M is strongly
embedded in G, i.e., M N M8 has odd order for any g € G \ M. Applying [50, Chapter 6, 4.4], it follows
that G has only one conjugacy class of involutions. On the other hand, we see from Proposition 3.5 that
G has precisely two conjugacy classes of involutions. This contradiction shows that M = G.

(7) Conclusion.

Let F be a Klein four subgroup of E. Clearly, A (F) < Wy. By (6), we have Wy < G. Since G is
2-balanced, Wy has odd order by Proposition 2.8 (ii). As O(G) = 1 by Hypothesis 5.1, it follows that
Wy = 1. Hence, Ag(F) = 1. O

7.5. Quasisimplicity of the 2-components of Cc (t)

In this subsection, we determine the isomorphism types of K and L.

Lemma 7.16. Let x and y be two commuting involutions of G. Set C := Cg (x) and C := C/O(C). Then
any 2-component of Cz(y) is a component of Cz().

Proof. By [31, Corollary 3.2], Ly (C&(Y)) = LQ/(CE(é) (7)). We know from Section 6 that E(C) is a

K-group, i.e., the composition factors of E (C) are known finite simple groups. Applying [25, Theorem
3.5], we conclude that LZI(CE(@ () = E(CE@) (¥)). Therefore, any 2-component of CE@) (y)isa
component of CE(@ (¥). So any 2-component of C#(y) is a component of C=(¥).

Instead of using [25, Theorem 3.5], the lemma could be proved directly by using Corollary 3.47 (i)
and the results of Section 6. O

Proposition 7.17. K is isomorphic to a quotient of SLY_,(q") by a central subgroup of odd order.
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Proof. The proof is inspired from the proof of [31, Theorem 10.1].
For g* = 3, the proposition follows from Proposition 7.7. From now on, we assume that g* # 3.

Set C := C(t). Let E denote the subgroup of T consisting of all 74, where A C {1,...,n} has even
order. We assume my, ..., me, Where £ := n — 4, to be elements of K and E to be an Eg-subgroup of E
with

K =(O(K), Ly(Ck(Ey)), Ly (Ck (Eo))™, ..., Ly (Ck (E))™).

Such elements my, . .., m, and such a subgroup E( exist by Lemma 7.14.
The proof will be accomplished step by step.

(1) Let f be an involution of Eg. Then Ly (Ck (Ey)) < Ly (Cc(f)).

As K < C, we have Cx(Eg) < Cc(Ep). This implies Ly (Ck(Ep)) < Ly (Cc(Ep)). By [31,
Theorem 3.1], we have Lo (Cc.(r)(Eo)) < Ly (Cc(f)). Clearly, Cc..(r)(Eo) = Cc(Ep). It follows
that Ly (Ck (Eo)) < Lo (Cc(Ep)) < Ly (Cc(f))-

(2) Let F be a Klein four subgroup of Egy. Set D := [Co(k)(F), L»(Ck (Eo))]. Then D = 1.

Clearly, L»(Ck(Eo)) normalizes Cok)(F). Also, 0% (Ly(Ck (Ep))) = Ly(Cg(Ep)), and
Co(k)(F) is a 2’-group. Applying [27, Proposition 4.3 (i)], we conclude that D = [D, Ly (Ck (Ep))].

Now let f be an involution of F. We are going to show that D < O(Cg (f)). Set M := Ly (Cc(f)).
By (1), Ly (Ck(Ep)) < M. Also, D < Cc(F) £ Cc(f) and M < Cc(f). It follows that D =
[D, Ly (Ck (Eo))] < [Cc(f),M] < M.

Let Cg(f) := Ca(f)/O(Cs(f)). By Corollary 2.2, C(T(f)
Proposition 2.4, Lg(Cm(f)) = M. Lemma 7.16 implies that M = L(Cm(t—)). It easily follows

that O (M) is central in M.

From the definition of D, it is clear that D < O(K). So we have D < M N O(K) < O(M). 1t
follows that D < O(M) < O(M) < Z(M). In particular, Ly (Ck (Eo)) centralizes D. Thus, D =
[D, Ly (Ck (Eo))] < O(Cg(f)).

Since f was arbitrarily chosen, it follows that D < Ag(F). By Lemmas 7.13 and 7.15, we have
Ag(F) = 1. Consequently, D = 1, as wanted.

3) O(K) < Z(K).
By [27, Proposition 11.23], we have

(f) = Cc(f). As a consequence of

O(K) ={Coxk)(F) : F < Eo,m(F) =2).
Because of (2), it follows that O (K) centralizes Ly (Ck (Ey)). By choice of E, we have
K =(O0(K), Ly (Ck (Eo)), L> (Ck (E0))™, ..., Ly (Ck (E0))™)

for some my,...,me € K. It follows that K = O(K)Cg (O(K)). Therefore, Cx (O(K)) has odd index in
K. We have 0% (K) = K since K is a 2-component of C. It follows that K = Cx (O(K)). Consequently,
O(K) < Z(K).

(4) Conclusion.
Applying [27, Lemma 4.11], we deduce from (3) that K is a component of C. Therefore, K is
quasisimple. We have

K/Z(K) = (K/O(K))/Z(K/O(K)) = PSL, ,(q").

Applying Lemmas 3.1 and 3.2, we conclude that K = SL® ,(g*)/Z for some central subgroup Z of
SL? ,(g"). Using Proposition 3.19 or using the order formulas for |[SL? ,(¢*)| and |SL,-2(q)| given

n—
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by [32, Proposition 1.1 and Corollary 11.29], we see that
ISLy_»(q)2 = 1SLyn2() 2 = |X1| = |K|2 = |SL,,_,(¢")/ Z.
Thus, Z has odd order. O

Proposition 7.18. We have L = SL;(q*) and L < Cg(t). Moreover, L is the only normal subgroup of
Cq (t) which is isomorphic to SLy(g*).

Proof. For g* = 3, this follows from Propositions 7.7 and 6.8.

Assume now that g* # 3. Let K := KO(Cg (t)). By the last statement in Proposition 2.4, K :~02' (E).
Leti € {1,2}. Since A; is a 2-component of Cc, ;) (u), we have A; = 02/(A,-). Also, A; < K, and so
A; < 0% (K) = K. It follows that A; is a 2-component of Ck (u).

By Proposition 7.17, we have K = SL? ,(g*)/Z for some central subgroup Z of SL? ,(g"*) with
odd order. It is easy to see that if m is a noncentral involution of SL? ,(g")/Z and J is a 2-component
of its centralizer in SL? ,(q")/Z, then J = SL; (g") for some k > 2. Since u is a noncentral involution
of Kand A1/O(A;) = SLy(g"), it follows that A; = SL,(g*). By definition of L (see Proposition 6.8),
L is isomorphic to Aj. So we have L = SL;(g*).

Let Ly be the 2-component of C¢ () associated to LO(Cg(1))/O(Cg(1)). By [37, 6.5.2], we have
[Lo,K] = 1. Hence, Lo < Ccy (1) (). So Lo is a 2-component of Cc,; (;)(u). Clearly, Ay # Lo # As.
Lemma 7.10 implies that Ly = L. From Proposition 6.8 (iii), we see that L = Ly < C ().

Proposition 6.8 (iii) also shows that K and L are the only 2-components of Cg(#). So L is the only
normal subgroup of C¢ (¢) isomorphic to SLy(g™). O

8. The subgroup G

Let A be a subset of {1, ..., n} with order 2. Then ¢4 is G-conjugate to ¢. Proposition 7.18 implies that
Cg (t4) has a unique normal subgroup isomorphic to SLz(g*). We denote this subgroup by L 4, and we
define G to be the subgroup of G generated by the groups L4, where A = {i,i+ 1} forsome 1 <i < n.
We are going to prove that Go < G and that Gy is isomorphic to a nontrivial quotient of SLZ (¢g*). This
will complete the proof of Theorem 5.2.

By Proposition 7.17, K is isomorphic to a quotient of SL? ,(¢*) by a central subgroup of odd order.
By the proof of Proposition 7.18, A} and A, are 2-components of Ck (u) if ¢* # 3.

Lemma 8.1. Let Z < Z(SL; ,(q")) with K = H := SL? ,(q")/Z. Let H\ be the image of

(") aesesa]

{(’2 A) A eSL,f_4(q*)}

in H. Then there is a group isomorphism ¢ : K — H which maps A to Hy and A, to H».

in H and H, the image of

Proof. For g* = 3, this follows from Proposition 7.7 and Lemma 6.4 (iii).
Assume now that g* # 3. Let ¢ : K — H be a group isomorphism. For each even natural number k
with 2 < k < n —2, let hi be the image of
_Ik
Ly ok

in H. Since Z has odd order by Proposition 7.17, we have that any involution of H is the image of
an involution of SL? ,(g*). Applying Lemmas 3.3 (i) and 3.4 (ii), we conclude that each noncentral
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involution of H is conjugate to Ay for some even 2 < k < n — 2. As u is a noncentral involution of K,
we may assume that u¥ = hy forsomeeven2 < k <n—2.

Let H; be the image of
A
: AeSL(q"
([*42n) 2 estiion)

I .
{( k A) CAeSLE, (g );

in H. The 2-components of Cy (hy) are precisely the quasisimple members of {ﬁ] , 1-75} Also, hy € Hy,
but iy ¢ H2 On the other hand, Apa and A; are the 2-components of Ck (u), and we have u € Ar. This
implies (A1)¥ = H; and (Ap)? = H,. Since A = L = SL>(g"), we have k = 2, and hence, H, = H,
and H, = H,. O

in H and H, be the image of

Lemma8.2. Let 1 <i< j<n SetA:={i,i+1}andB :={j,j+ 1}. Then:

(1) Ifi+1 < j, then [La,Lg] =1.
(ii) Suppose that j =i+ 1. Then there is a group isomorphism from (La, L) to SL$(q") under which
L A corresponds to the subgroup

0
Mo
001

: M eSL5(q")

of SL5(q*) and under which Lp corresponds to the subgroup

00

M e SL:(q")

1
0
0 M

of SLY (q").
(iii) Supposethat1 <i <n-3andthatj =i+1.Setk :=i+2and C :={k,k+1}. Then (LA, Lp, L¢)
is isomorphic to SL§ (q").

Proof. To prove (i), (ii) and (iii), we first introduce some notation and make some preliminary obser-

vations. Let H, Hy, H, and ¢ be as in Lemma 8.1. For each D C {1,...,n — 2} of even order, let hp
be the image of the matrix diag(d, ..., d,-2) € SL_,(¢*) in H, where dp = —1if { € D and d; = 1
if ¢ € {1,...,n—2}\ D. We have u¥ = hy 5y as u and hyj 5, are the unique involutions of A; and

H| = (A})¥, respectively.

Let J be the subgroup of H consisting of all 4y, where D C {1, ...,n—2} has even order, and let E|
denote the subgroup of X consisting of all tp, where D C {1,...,n — 2} has even order. Then (E})¥
is an elementary abelian 2-subgroup of H of rank n — 3. As a consequence of Lemma 3.22, there is an
element h € H such that (EY)" = J. Then (h(12))" = (u¥)" € (EY)" = J. Lemma 3.23 (i) shows
that (h{l,z})h is Ny (J)-conjugate to hy; 2. Therefore, we can assume that i centralizes h( »). Then
(H\)" = H, and (H,)" = H,. Upon replacing ¢ by ¢cj,, we may thus assume that (E;)¥ = J

Wehave Cyy (h12})" = HiXHa,and Hy = SL{(q") and Hy = SL?_,(q") are indecomposable. Also,
(IH\/H{|,1Z(H?)|) = 1 = (|H2/H}|,|Z(H1)|). So, by a consequence of the Krull-Remark-Schmidt
theorem [35, Kapitel I, Satz 12.6], Cy (h{1,2})" = Hi X H> is the only decomposition of Cy (A1 2})’
into a direct product of indecomposable groups. This implies that H; is the only normal subgroup of
Cp (hy1,2y) which contains h(; >y and is isomorphic to SL5(g*). Foreach D C {l,...,n — 2} of order
2, hp and hy oy are conjugate, and so Cy (hp) has a unique normal subgroup Hp with hp € Hp and
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Hp = SL5(q"). Note that the groups H{i 2y, H(23}, .. ., H{n-3,n-2) are the SL5 (¢q")-subgroups of H
corresponding to the 2 X 2-blocks along the main diagonal.

Now let Dy C {1,...,n — 2} with order 2. Then (tp,)¥ € (E|)¥ = J, and (¢p,)¥ is conjugate to
u¥ = hy2y. Thus, (tp,)¥ = hp for some D C {1,...,n — 2} of order 2. We claim that Lp, < K and
(Lp,)¥ = Hp. To see this, let k € K with tp, = u* = (t{l,z})k. Then Lp, = (L{Lg})k = (A)k <K,
where the last equality follows from the definition of L (see Proposition 6.8) and the definition of
Ly12y. Since Lp, < Ck(tp,), Lp, = SL5(q") and tp, € Lp,, the previous paragraph implies that
(Lp,)¥ = Hp, as claimed.

We are now ready to prove (i), (ii) and (iii). To prove (i), suppose that i + 1 < j. As Fs(G) =
Fs(PSL,(q)), we see from Lemma 3.23 (i) that there is some g € G with (£4)8 = t{1 7y and (¢3)% =
134y As [La,Lpl8 = [(La)%,(L)%] = [L{1,2},L3,4}3], we may assume that A = {1,2} and B =
{3,4}. Then (La)¥ = (A])¥ = Hj. Also, (tg)¥ € (A2)¥ = Hj, and so (t)¥ = hp for some
D cC {3,4,...,n — 2} with |[D| = 2. By the previous paragraph, [La, Lgl¥ = [(La)¥,(Lp)¥] =
[Hi,Hp] =1,and so [La, Lg] = 1, whence (i) holds.

Assume now that j =i+ 1. As Fs(G) = Fs(PSL,(q)), we see from Lemma 3.23 (i) that there is
some g € G with (14)® =112y and ()% = 1(23}. As (La, Lp)® =((La)®,(Lp)®) =(L12},L23})s
we may assume that A = {1,2} and B = {2,3}. Let D C {1,...,n — 2} with (t3)¥ = hp. We have
|D| = 2 by paragraph four and hp ¢ (H; U Hp) since tg ¢ (A} U Ap). Thus, D = {k,{} for some
k € {1,2} and some ¢ € {3,4,...,n — 2}. Because of Lemma 3.23 (i), we may assume that k = 2 and
¢ =3.Since (La)? = Hi = H(1 2y and (Lg)?¥ = Hyp 33, we have proved (ii).

Assume now that the hypotheses of (iii) are satisfied. Arguing as in the proof of (ii), we may assume
that A = {1,2}, B ={2,3},C = {3,4} and (13)?¥ = hyp3).Let D C {1,...,n-2} with (t¢)¥ = hp. By
paragraph four, we have |D| = 2. Also, hp € (A3)¥ = Hy,so DN{1,2} = 0. We claim that DN {2,3} =
{3}. Assume not. Then D N {1,2,3} = 0, and Lemma 3.23 (i) shows that there is an element of Ny (J)
which interchanges /1 2} and iy 3y and fixes s1p. So there is an element of N (E1) which interchanges
u and 1, 3y and fixes #{3 41. Having in mind that F5(G) = Fs(PSL,(q)), we see from Lemma 3.23 (ii)
that N (E1) has no such element. This contradiction shows that D N {2,3} = {3}. By Lemma 3.23 (i),
we may assume that D = {3,4}. Now (La, L, Lc)¥ = (H{1,2y, Hp,3y. H3,ay) = SL{(q"), and the
proof of (iii) is complete. O

Proposition 8.3. G is isomorphic to a nontrivial quotient of SLf (q™).

Proof. Assume that & = +. By Lemma 8.2, the groups Ly, ..., L{,—1,,) form a weak Curtis-Tits
system in G of type SL,,(¢*) (in the sense of [29, p. 9]). Applying a version of the Curtis—Tits theorem,
namely [29, Chapter 13, Theorem 1.4], we conclude that G is isomorphic to a quotient of SL,,(g*).

Assume now that € = —. Then Lemma 8.2 shows that G has a weak Phan system of rank n — 1 over
Fq*z (in the sense of [13, p. 288]). If ¢* # 3, then [13, Theorem 1.2] implies that G is isomorphic to a
quotient of SU,(g*). If ¢* = 3, the same follows from [13, Theorem 1.3] and Lemma 8.2 (iii). O

Lemma 8.4. Let R be a Sylow 2-subgroup of Go. Then R € Syl,(G) and Fr(Go) = Fr(G).

Proof. Since g ~ eg*, we have that the 2-fusion system of PSLZ(g*) is isomorphic to the 2-fusion
system of PSL, (g) (see Proposition 3.20). Clearly, Go/Z(Go) = PSL7(g*). So the 2-fusion system of
Go/Z(Gy) is isomorphic to the 2-fusion system of G. It easily follows that |Go|» = |Go/Z(Go)|> = |Gla,
and Lemma 2.11 shows that the 2-fusion system of G is isomorphic to that of Go/Z(Gg) and hence to
that of G. This completes the proof. O

Lemma 8.5. The following hold.

() If g* # 3, then 0¥ (0*(Cs(1))) = KL.
(i) If ¢* = 3, then 0*(C (1)) = KL.

Proof. Set C := Cg(t).
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Assume that g* # 3. Then KL is perfect. This implies that KL = 0% (0*(KL)) < 0% (0%*(C)).
Since TNKL = (TNK)(TNL) = X, X5, Lemmas 5.4 and 2.11 show that C/K L has a nilpotent 2-fusion
system. So C/K L is 2-nilpotent by [39, Theorem 1.4]. This implies 0> (0*(C)) < KL.

We assume now that ¢* = 3. Then KL = O?(KL) since K is perfect and L = SL,(3). Thus,
KL < 0*(C). In order to prove equality, it suffices to show that C/KL is a 2-group. By Proposition 7.7
and Lemma 6.3 (i), C/KC¢(K) is a 2-group. By [37, 6.5.2], we have L < C¢ (K). It is enough to show
that Cc (K)/L is a 2-group.

We have 0?(Cc(K)) N'T < 0*(Ce(X1)) NT = X, by Lemma 5.6 and the hyperfocal subgroup
theorem [18, Theorem 1.33]. On the other hand, X, < L = 0*(L) < 0*(Cc(K)). Consequently,
X, = 0*(Cc(K)) NT € Syl,(0*(Cc(K))). Set U = Copz (e (k) (X2). We have X, < C since X; is
the unique Sylow 2-subgroup of L = SL,(3). So we have U < C. Hence, Z(X;) = Xo NU € Syl,(U).
Applying [37, 7.2.2], we conclude that U is 2-nilpotent. We have O(U) = 1 since U < C and O(C) =1
by Proposition 7.7. It follows that U = Z(X5).

Clearly, 0% (C¢(K))/U is isomorphic to a subgroup of Aut(X3). We have |0?(C¢(K))/U|> = 4 since
Qs = X, € Syl,(0*(Cc(K))) and U = Z(Xy). Also, |0*(Cc(K))/U| = 12 since L < 0*(Cc(K)).
As Aut(X;) = Aut(Qg) = S4 by [37, 5.3.3], it follows that |0*(Cc(K))/U| = 12. This implies
0*(Cc(K)) = L. So Cc(K)/L is a 2-group, as required. O

Lemma 8.6. We have KL < G.

Proof. We have t € X, < L = Ly,_14) < Go. Let R € Syl,(Go) with ¢ € R such that () is fully
centralized in G := Fr(Gp). By Lemma 8.4, R € Syl,(G) and G = Fg(G). Therefore, Cg(?) €
Syl (Ca (1) and Co((1) = Fn(n(Ca(1). Also, T = Cs(1) € Syly(Ca (1) and Cry (1)) =
Fr(Cg(1)).So,by Lemma 5.3, Cg({t)) has acomponent isomorphic to the 2-fusion system of SL,,_»(q).
Let Z < Z(SLZ(g*)) with Go = SLZ(g*)/Z. By the proof of Lemma 8.4, Z(Gy) has odd order.
Let X be an element of SL;(g*) such that x := XZ is an involution of SL5(g*)/Z. Set C :=
Cs12(4+)/z(x). Noticing that the 2-components of C are precisely the images of the 2-components of
Csrz(q)(X) in SLZ(q*)/Z, one can see from Lemmas 3.3 and 3.4 that one of the following holds:

(1) ¢* # 3, 0¥ (0*(C)) = KoLy, where Ky and Ly are subnormal subgroups of C such that K, =
SL? .(q") and Lo = SLf(q") for some 1 < i < n. Moreover, the 2-components of C are precisely
the quasisimple members of {Ko, Lo}.

(2) ¢* =3, 0%(C) = KoLy, where Ky and L are subnormal subgroups of C such that Ko = SL? .(q")
and Ly = SLf(g") for some 1 < i < n. Moreover, the 2-components of C are precisely the

quasisimple members of {Ky, Lo}.
(3) C has precisely one 2-component, and this 2-component is isomorphic to a nontrivial quotient of

SLuj((g)?%).

As seen above, Cg({t)) = Fcg(r)(Cg,(t)) has a component isomorphic to the 2-fusion system of
SL,—>(q). By Proposition 2.17, this component is induced by a 2-component of Cg, (¢). In view of the
preceding observations, we can conclude that Cg, (7) has subgroups Ko and Lo with Ko = SL? ,(g")
and Lo = SLy(g*) such that 0% (0*(Cg,(1))) = KoLo if ¢* # 3 and 0*(Cg, (1)) = KoLo if ¢* = 3.

Clearly, 0% (0%(Cg,())) < 0% (0%*(Cg(1))) and 0*(Cg, (1)) < O*(Cg(t)). Lemma 8.5 implies
that KoLo < KL. If n is odd, then it is easy to see that |KoLo| = |Ko||Lo| = |K||L| = |KL|. If n is even,
then one can easily see that |KgLg| = %|K0||Lo| > %|K||L| = |KL|. Consequently, KoLy < KL and
|KoLo| = |KL|. It follows that KL = KoLy < Gg. O

Corollary 8.7. Let x be an involution of Go which is G-conjugate to t. Let Ly be the unique normal
SLy(g*)-subgroup of Cg(x), and let Ky be the component of Cg(x) different from Ly. Then we have

KoLy < Go.
Proof. Since t € G, we see from Lemma 8.4 that there is some g € Go with x = t&. Clearly,
(KoLg) = (KL)8, and so KoLy < G by Lemma 8.6. ]

Lemma 8.8. We have N (S) < N (Gy).
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Proof. Set M := NGg(Gy).Lets € Ns(SNM),andlet 1 <i<n-—1. Wehavety 1y € SNLy 1y <
SNGy < SNM, and hence, (t(; ;+1})* € SNM < M. Since G has odd index in M by Lemma 8.4, we even
have (¢ i+1})° € Go. Corollary 8.7 implies that (L(; ;+1})° < Go. So we have s € M by the definition
of Go. Thus, Ns (SN M) = SNM and hence S < M. We have C;(S) < Cg(ti,i41}) < Ng(Ly; ir1y) for
all1 <i <n-1.Thus, C5(S) < M. Using Lemma 3.24, we conclude that NG (S) = SCG(S) < M. O

Lemma 8.9. If x is an involution of S, then Cg(x) < NG (Gy).

Proof. Set M := Ng(Gy).

We begin by proving that Cg() < M. We have K < Gyg < M by Lemma 8.6 and Cg () =
KNc 1) (X1) by the Frattini argument. Also, Nc; (1) (X1) = TCcq 1) (X1) as a consequence of Lemma
5.7,and T < M by Lemma 8.8. So it suffices to show that Cc, r)(X1) < M.

Let z € Ccg (1) (X1). In order to prove z € M, it is enough to show that (Ly; ;1)) < Gg for all
I<i<nlIfl<i<nandi#n-2,wehavez € Cg(t{,+1}) and hence (Ly; ;+11)° = Ly i+1y < Go.
It remains to show that (L, ,-11)* < Go. Since Fs(G) = Fs(PSL,(q)), there is some g € G with
t8 = u, u8 =t and (t(23})® = t{y—2,,-1) (see Lemma 3.23 (i)). From the definition of L (Proposition
6.8), we see that Loy = A; < K. Since u = t{; ) and t{ 3} are K-conjugate by Lemma 3.23 (i), we
thus have L{53y < K < Ly (Cg(t)). Hence, Ly 4-1y = (L1p3})% < Ly (Cg(1)8 = Lo (Cg(u)).
Since z centralizes u, it follows that (Ly,-5,-1})* < Ly (Cg(u)). From Corollary 8.7, we see that
Ly (Cg(u)) < Go. Sowe have (L2 ,-11)° < Go, and it follows that Cc; (1) (X1) < M. Consequently,
Cs(t) <M.

Since G has odd index in M by Lemma 8.4, we see from Lemma 8.8 that § < Gg. Also, Fs(Gy) =
Fs(G) by Lemma 8.4. As C(t) < M, it follows that Cs(x) < M for any involution x of S which is
G-conjugate to t.

Assume now that x is an involution of S which is G-conjugate to t; for some even natural number
i with 4 < i < nsuch thati < 7 if n is even. We are going to show that Cg(x) < M. Arguing by
induction over i and using the preceding observations, we may assume that, for eacheven2 < j < i and
each involution y of § which is G-conjugate to ¢;, we have Cg(y) < M. Furthermore, we may assume
that (x) is fully Fg(G)-centralized since Fs(G) = Fs(Gy).

As a consequence of Lemma 7.1, Cg (x) is generated by the normalizers N¢, (x)(U), where U is a
subgroup of Cs(x) containing a G-conjugate of ¢; for some even 2 < j < i. We show that each such
normalizer is contained in M. Thus, let U be a subgroup of Cs(x), and let y be an element of U which is
G-conjugate to ¢; for some even 2 < j < i. Also, let g € Nc (x)(U). Then y8 € U < Cs(x) < S. Since
Fs(Go) = Fs(G), we have that y and y8 are Gy-conjugate. Hence, there is some m € G with y8 = y™.
We have mg~! € Cg(y) < M. This implies g € M since m € Gy < M. So we have Nc (x)(U) < M
and hence Cg (x) < M.

Assume now that x is an arbitrary involution of S. We are going to prove that C(x) < M. Since
Fs(G) = Fs(Gyp), we may assume that (x) is fully F5(G)-centralized. By Corollary 7.3, Cg(x) is
3-generated. Therefore, Cg (x) is generated by the normalizers N¢ (x)(U), where U < Cs(x) and
m(U) > 3. Take some U < Cs(x) with m(U) > 3. By Lemma 2.3, any Eg-subgroup of S has an
involution which is the image of an involution of SL,(g). It follows that U has an element y which is
G-conjugate to 7 for some even 2 < k < n. By the preceding observations, Cg(y) < M. Arguing as
above, we can conclude that N¢, () (U) < M. It follows that Cg (x) < M. O

Proposition 8.10. We have Go < G.

Proof. Suppose that M := Ng(Gy) is a proper subgroup of G. By [27, Proposition 17.11], we may
deduce from Lemmas 8.8 and 8.9 that M is strongly embedded in G. Therefore, by [50, Chapter 6, 4.4],
G has only one conjugacy class of involutions. On the other hand, we see from Proposition 3.5 that G has
at least two conjugacy classes of involutions. This contradiction shows that M = G. Hence, Gy < G. O

With Propositions 8.3 and 8.10, we have completed the proof of Theorem 5.2.
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9. Proofs of the main results

Proof of Theorem A. By Section 4, Theorem A is true forn < 5.

Suppose now that n > 6. Let g be a nontrivial odd prime power, and let G be a finite simple group
satisfying (C/C).

Recall that a natural number k > 6 is said to satisfy P(k) if whenever g is a nontrivial odd prime
power and H is a finite simple group satisfying (CK) and realizing the 2-fusion system of PSLy(qo),
we have H = PSL{ (g") for some nontrivial odd prime power ¢* and some & € {+, -} with £g* ~ go.
Theorem 5.2 shows that P (k) is satisfied for all natural numbers k£ > 6.

Therefore, if the 2-fusion system of G is isomorphic to the 2-fusion system of PSL,(q), then
condition (i) of Theorem A is satisfied.

Conversely, if one of the conditions (i), (ii), (iii) of Theorem A is satisfied, then this can only be
condition (i), and Proposition 3.20 implies that the 2-fusion system of G is isomorphic to the 2-fusion
system of PSL, (g). O

Proof of Theorem B. Let g be a nontrivial odd prime power, and let n > 2 be a natural number, where
g =l or 7mod 8 if n = 2. Let G be a finite simple group and S € Syl,(G). Suppose that F5(G) has a
normal subsystem £ on a subgroup T of S such that £ is isomorphic to the 2-fusion system of PSL, (gq)
and such that Cs(&) = 1. We have to show that Fg(G) is isomorphic to the 2-fusion system of PSL,,(g).

By Lemma 3.21, PSL, (g) is not a Goldschmidt group. Applying [9, Theorem 5.6.18], we conclude
that £ is simple. We see from [15, Theorem B] that £ is tamely realized by some finite simple group of
Lie type K.

By Theorem A, we have K = PSLZ(g*) for some nontrivial odd prime power ¢* and some ¢ € {+, —}
with eg* ~ q.

By Propositions 3.40 and 3.42, we have that Out(K) is 2-nilpotent. Now Proposition 2.20 implies
that F5(G) is tamely realized by a subgroup L of Aut(K) containing Inn(K) such that the index of
Inn(K) in L is odd. By Lemma 3.57, the 2-fusion system of L is isomorphic to the 2-fusion system of
Inn(K) = K and hence isomorphic to the 2-fusion system of PSL,(g). So Fs(G) is isomorphic to the
2-fusion system of PSL,(q). O

Proof of Corollary C. Let g be a nontrivial odd prime power, and let n > 2 be a natural number, where
q = lor7mod 8if n = 2. Let G be a finite simple group, and let S be a Sylow 2-subgroup of G. Suppose
that F*(Fs(G)) is isomorphic to the 2-fusion system of PSL, (q).

We have F*(Fs(G)) € Fs(G) and Cs(F*(Fs(G))) = Z(F*(Fs(G))) = 1. So Theorem B implies
that Fs(G) is isomorphic to the 2-fusion system of PSL,(q). O
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