THE ELASTODYNAMICS OF MOVING LOADS

PART I:

The field of a semi-infinite line load moving on the surface
of an elastic solid with constant supersonic velocity

MICHAEL PAPADOPOULOS
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Abstract

When a semi-infinite line load moves lengthways, at supersonic velocity,
on the plane surface of an elastic solid, the resulting velocity field is conical.
There are two characteristic cones, one associated with dilatation effects and
the other with shear effects. The propagation process is more complicated
than the well-known case of conical flow in supersonic aerodynamics not
only because of the presence of two cones of discontinuity but also because
the presence of a free surface implies interaction between shear and dilata-
tion effects. It is the interaction process at the free surface which is examined
in detail in this paper.

The results of this fundamental problem may be extended by the process
of superposition to more general steadily moving loads. In particular by
differentiating with respect to time, the potential of a steadily moving point
load is obtained explicitly.

1. Introduction

In this paper we shall consider the effect of a semi-infinite line load which
is moving lengthways on the free surface of an isotropic elastic medium.
Since this is a linear problem the solution may be built up from known
solutions of elastodynamics. The most obvious approach is to use integral
transform methods. This is a process which appears to lead to explicit,
elementary solutions only at large distances from the source of energy;
it obscures the structure of the associated disturbance, and, what is more
important mathematically, it hides the characteristic properties of the
original hyperbolic wave equations which are of direct consequence in the
physical description of the problem. Another approach is to take the known
field for a transient point load, then to consider a line distribution of pro-

79

https://doi.org/10.1017/51446788700027658 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027658

80 Michael Papadopoulos 2]

gressively applied point loads, and then to follow this with an integration
along the line of motion. This is approach is being used by Payton [1],
but it seems to lead to complications of a forbidding nature and his primary
results need careful analysis before they are shown to be equivalent to those
given in this paper. There are no previously published references to this
problem.

The classical problem of elastodynamics, that of the propagation of trem-
ors over the surface of an elastic solid, was examined in detail by Lamb
[2]. The fundamental excitation considered was that of the point — or line
source, and the problem was to determine what effect the setting-up of
such sources has on the solid particularly on the free surface.

This same type of problem has since been examined in various ways by
various authors, e.g. Cagniard [3], Lapwood [4], Pekeris [5], Strick [6] and
Craggs [7], and of these only the method described by Craggs is of any
interest in the understanding of the present paper. This situation follows a
recognition that when an infinite line load is set up on the surface of an
elastic solid, the subsequent disturbance has the property of dynamic
similarity. This property is seized on not only by Craggs, but also by Maue [8]
Miles [9] and the author [10] as the basis for further investigations into
problems of elastodynamics.

The analytical results of assuming dynamic similarity in a solution are
very similar to those in the method of conical flows (e.g. Ward and Goldstein
[11]); it is clear indeed that the field of a uniform infinite line source, suddenly
set up, is the limiting field of a semi-infinite line source moving lengthways,
with its velocity approaching infinity. In this paper we analyse the pos-
sibility of conical motion associated with steady rectilinear movement of
velocity a (greater than both the shear velocity ¢, and the dilatation
velocity ¢,) of such a line load.

The analysis rest on the following results. A scalar quantity F(z, 8, 2, f)
satisfies the wave equation

. _10F
1) V2F(r,0,2¢t) = i
with ¢ a constant propagation velocity. Assume steady motion in the 2-
direction with constant velocity a > ¢, and introduce the new variable
7 = (at — z)/a. Then
1 2F

) : V2F(r,0,7) = S

with 1/p2 = 1/c2 — 1/a2.
For conical motion only the variables s (= 7/r) and 0 may appear, for
T > 0; it follows that outside a steadily moving half-cone s = y,
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where s = y sec #, and hence F must take the form
(4) F = f(u + 0) + g(u — 0).

The surfaces # 4 0 = const. are tangent planes to the cone s = 9, and
these with their envelope, the cone itself, form families of characteristic
surfaces across which dF[dr may be discontinuous, but at which the tangen-
tial derivative must be continuous.

Within the cone s = y, F satisfies Laplace’s equation in the variables
v and 8, where, for v < 0,

s = ysechuo,
or

© emfr =050

Accordingly we are able to define a complex quantity W¥ which is to be
analytic in a certain semi-infinite strip of the complex v + #6-plane, for
which we have the identities

(6) F(v,0) = RIWF(v + i6),

and, on 6 = 0, say
oF dWF oF .dWF

(The equations 7 are the Cauchy-Riemann conditions).

In the problem of elastodynamics, we first define scalar and vector velocity
potentials. The former satisfies the wave equation (1) with the dilatation
velocity ¢;, while the rectangular cartesion components of the latter satisfy
the same equation with the shear velocity c,. We use subscripts 1 and 2 to
indicate whether the quantities y and the variables # and v, are associated
with the dilatation or shear effects, and once having defined the potentials,
we may label complex potentials W with superscripts as in equation 6.
We also follow the convention that partial derivatives of the various poten-
tials are indicated by subscripts.

2. Formulation of the Problem

We have an isotropic elastic solid, of density p and with Lamé constants
A and u in which shear waves travel with velocity c,[= (u/p)}] and dilatation
waves travel with velocity ¢,[= [(A 4 2u)/p]¥]. We take the plane y = 0
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to represent the surface of the solid lying in the region y < 0, and we imagine

a surface load to be moving with velocity a along the z-axis. We assume

infinitesimal displacements throughout, so that equations of elasticity

may be used. It is convenient to express these in terms of the velocity vectorg.
The equation of motion, differentiated with respect to time is

(8) (h + WIV(V - q) + uVig = pd2glaee.
Put
(9) g=Vé+V Xy

Then conditions to be satisfied by the scalar potential ¢ and the rectangular
components (4, B, C) of the vector potential y are (see e.g. Sternberg [12]),

that
1 o2

(10) (Vz“gﬁé)d’:o

A

1 02

11) (Vz___) Bl=0
( c3 o (C)
and
(12) Vep=0.

These equations, valid within the solid, must be satisfied in conjunction
with conditions at the free surface where the stress components 7', T .,
and T',, must vanish except perhaps in the neighborhood of the line load
(ffor r =10, > 0).

Although we have introduced four scalar potentials, we shall take B
to be identically zero. For the simultaneous vanishing of T,,, T,, T,,
and V - y on the free surface is not possible unless B, = 0 for y = 0. The
potential B is always linked with the other components of the vector
potential through the equation V -y == 0 at all points of the solid. Accord-
ingly we have either the possibility that B is zero together with the
combination 4, + C, at all points of the solid, or that B is a function of y
which is even about the surface and which plays no part in the interaction
process at the free surface, but which is dependent on the quantities 4 and C
through the equation

A, + B, + C,=0.

The more complicated case involving the presence of B will be considered,
inter alia, in Part II.

At the free surface, therefore, the time derivative of the stress-strain
relations may be written in the form
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(13) 2Ty = IV 4 ol + Ay — Co) =0
0

(14 = Ty = il2%ye + A — Coa+ Cl = 0,
and
(19 S = bt A — A, —Cal =0,
together with the condition 12 which is that for y < 0
(18) A, +C,=0.
These conditions may be simplified. From equations 14 and 16 it follows that
(17) 2¢ye — Coo — Cop + Cyy = 0
and from equations 15, 16 and 11, it follows that
(18) — 2¢,, + 24,, — 2C,, — 324, =0
With assumptions of conical flow such that

7 0 0 10

o o 2  adr

and such that only the variables s(= 7/r) and 0 may appear we can, on
switching to polar co-ordinates » and 6 reduce the conditions 16, 13, 17 and
18 to be satisfied on 6§ = 0 to the following:

(19) ad,+ sC, =0
J (2 2 1 1
o R 2t ) —
(20) 0s {a 4o s Co+ [s (y§ a2) 2] 953; 0
0 (2 1 1
i Bk e _ 2} _ —
(21) os {s $o + [S (}Jz az) ] C’} 0
and
J (2 1 1 2sC
1o, 2| — s —
Os {a $o—s l:az ygjl 4, a } 0.

The final equation is redundant as may be seen by combining it with
equation 19 to eliminate 4,. Also we see that since

8 19 139

o T 05 s ot

we may integrate equations 20 and 21 with respect to ¢; since it is the stress

components and not just the time derivatives which must vanish, we have
finally the conditions that at 6§ = 0
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aA,+sC,=0

2 1 1
;—(ﬁo:[sz(;g—;-é)— }Cs=0.

3. Solution of the problem

The structure of the conical velocity field follows from the examination
of the wave equation. The singular line load starts at a moving origin; its
subsequent effects are characterized by the presence of two distinct conical
fronts, the cone » = ¥, v which represents for the scalar potential the dividing
surface between the region in which ¢ is of simple wave type and that in
which it is harmonic, and the cone » = y,7 which does the same for the vector
components 4 and C. The structure is shown in figure 1, which although
depicted with s and 6 for polar co-ordinates is an instantaneous representa-
tion in the (7, 6) plane of any transferse section behind the tip of the moving
load.

’ B' A §' o S A B

head

wave

dilatation front

Fig. 1. A transverse section of the field showing the shear and dilatation fronts, and the head
wave regions.

Outside the larger region BD B’ we expect no potential ¢ either for physical
reasons, or by noting that zero initial state for v = 0 mans zero field not
only as s — oo but thence on all characteristic surfaces which approach
infinity either directly or by reflection at the free surface in a shear-free
region. The same reasoning applies to the vector components 4 and C,
but only outside the region BCEC’B’. The scalar potential ¢ being harmonic
does not vanish within BDB’, in particular on the interface 4 B. Interaction
imposed by the conditions 22 means 4 and C do not vanish either on AB,
or by virtue of the simplewave structure, within 4 BC.
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This is known as the head wave region, where

A=A(u2—0)}

(23) C = C(uy — 6)

and where, as in equation 3, s = y, sec u,.

Within the smaller semi-circle s = 9, in the (s, 6) plane, 4 and C are
harmonic functions, so that we have complex potentials W4(v, + 0),
We(v, + ¢0), and within the larger semi-circle s = y,, we have a complex
potential W¢(v, 4+ 16), each potential being analytic within a strip v << 0,
0>06> —a in the appropriate complex plane.

It is the virtue of the shear field structure in the head wave region that
the functional behavior given in equation 23 gives an explicit relation be-
tween normal and tangential derivatives of ¢ or, alternatively determines
the argument of the complex derivative dW*#/dv on the appropriate segment
of the boundary of the strip of regularity. We have, on combining 22 and 23,
and applying the Cauchy-Riemann relations 7, the result that with M =

valrr <1
2
(24) Rz{dW¢ [(fz__f_z)zi’ﬁ_aﬁ(——“““s)]}:o
dv, L\y: a2 ds dugs \ a2s?
for 0 > v, > — arc sech M.

Rather than consider the strip v; < 0, 0 > 6 > — x we use the conformal
mapping {, = &, + #n, = sech (v, + ¢0) to open out the strip into the
lower half {,-plane, in which the real axis corresponds to the whole of the
boundary O BD B’ of the region in which ¢ is harmonic. Points on the section
OA of the interface have the co-ordinate &, = s/y, on the segment 0 < §, <1
of the real axis.

The derivative dW*¢/d{,, must satisfy the following conditions:

i) It must be regular in the lower half {-plane with singularities restricted
to the real axis, at the points {; = 0, 4+ 1, + M which correspond either to
singularities of load, or to points where dW¢/d{, has sudden changes in
argument due to changes in ¢, 4 and C from hyperbolic to elliptic régimes
and also at any points S, S’ where simple poles associated with surface
waves may appear.

ii) It must be imaginary on the real axis when |{;| > 1 because d¢/d6
vanishes on both sides of the characteristic surface s = y,.

iii) On the segment M < & < 1 we may write (with y,Ja =L < 1)

aws 5 :
7 = () {[W (1—L2M?2) — 2]

(25) — 41+ L2231 — Bt (fx[iz - l)}}—l
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where for M << &; < 1, F(§;) is to be a real function. This result follows
from equation 24.

iv) The point at infinity in the {;~plane corresponds to the point D which
is an ordinary point, where velocities, displacements and stresses are boun-
ded. These conditions imply bounded potentials at infinity.

v) At the origin the magnitude and nature of the singularity is determined
by the nature of the moving load. This will be discussed later.

The problem is now one of finding a function F({;) on the segment
M < &, < 1 which when continued analytically into the whole of the lower
half {,-plane satisfies all the conditions of the problem including the inter-
action relations on the segment 0 << & < M corresponding to the section
0OA of the interface.

In the region A'EA, of course, A and C are harmonic functions. Hence,
we introduce the mapping £, = sech(v, + ¢0) which opens out the strip of
regularity so that every point in the physical region s <<y,, 0 > 0> — =
has a corresponding point in the lower half of the complex ¢,-plane. For the
fourth quadrant interaction between ¢ and A or C occurs only at the inter-
face OA for which 0 < £, << 1 and where we have the identity M{, = ;.

The interaction conditions 22 become for 0 < &, < 1

aw4 awe

(26) 0— Rz{ T FLME G = RGP, say,
AWe AWA  Maw
0= R0 —r2M2)—2 ; _2%[ M }
(27) {[CZ(I ) ]dcl RSl dty, 1 dg,
= RI[i(1 + L2M23)P,(¢,)], say,
AW dWe
0 = RI|2:M (1 — M22)t 21 _ [2]12) — }
(28 {’ ( Cz) az, +[§2(1 L M) 2] ac,

= RI{iP4(L,)}, say.

The real functions P,, P,, P, defined above are, for 0 < £, < 1 three
linear combinations of the three complex derivatives. From these equations
we may write that for 0 < {;, < 1

aws
29 =
(29) as,

2 -
[J—i,‘—z(l_LzMz)—z}{(1+ch§)Pzi—2(1_%) %pl}_%(wmf)(l__
R(¢y)

where
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R(M¢E,) = [22(1 —L2M?) —2)2—4(1 — M2 (1 — )1 - L2M223).

And in order that both 29 and 25 should represent the continuation of the
same expressions around the branch points at {; = + M and at {; = + 1
and in order to satisfy condition 77 above we can assert that P;, P,, P;
must be real functions not only as defined for 0 < ¢, < M but also for
{; > M. Similarly we have the result that for 0 << {; < 1

awe

ic,

— M (1~ M2 2 [iPy(1 + L2M2£2) + 218, Py (1 — £2) + i Py[£3(1 — L2 M?) — 2]
R(M{,) )

(30)

We have an immediate reason for putting P, = 0. The tangential deriva-
tives 0C/06 and 64 /06 are constant on the tangent planes in the head wave
region ABC and are continuous across the arc AC. There is thus a linkage
between the tangential derivatives of 4 and C just within the elliptic region
and, from the first and third of equations 22, the normal derivative of ¢ on
AB. The knowledge that P;, P, and P, are real functions of {, on AB
enables us to make this linkage without any further analysis, and it is then
found that P, must vanish. This simplifies equations 29 and 30 somewhat.

The corresponding expression for 4 is given by

A ; 201 _ _.971 — M2y 202 r2
(31) aﬂz—LMiz 1Py[ L3 (1 — L2M?) 2]‘*‘1{2?14‘4?:)(1 M23y) [1+LM52]}‘

The functions P, and P, may be determined by considering the behavior
at the origin and at infinity. At the origin, for example, the functions P, and
P, must be of (positive or negative) integral order in {. This follows because
our analysis making P, and P, real for positive ¢ is applicable with the same
result to the negative {-axis. Thus the behavior at the origin can only be
responsible for jumps, in the arguments of the complex derivatives, of
+ nm, where » is any integer.

In effect, therefore, since the functions P, and P, are real on the real axis,
with singularities at the origin and at infinity, we may write both P, and
P, in a real Laurent expansion of powers of {. The highest power of { is
determined by the need to have bounded displacements as { —+ . And
although any one of the individual terms in the two series is associated with
a conical field due to some particular form of singular load, yet we shall re-
strict interest to the case when P, = A4,/{,and P, = MA,[{, with Ajand 4,
constant. These give velocities which can be linked with a singular load in
the vicinity of the z-axis, preserving bounded displacements and velocities
as { — oo.
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The explicit formulae to be examined are
awe  (14+-L2HM ¢, o ( 2.4
= Ao |- (1-lL2M2) —2| —A4,{1— =
7 = RE (Ae [as 0w —2] -4 (1= )

awe  {2(1—M? (L4 L2 M2 2 A+ 54, [ 2 (1 — L2 M2) — 2]}

32
62) 2 LR(MC,)
and
A C
W e
i, i

These particular forms of complex derivative are displayed because they
may be associated with simple strain singularities. The method of investiga-
tion of their nature is not of great interest, because it involves first the
expansion of the expression 32 in power series of ¢, as { — 0, then the deri-
vation of the potentials ¢, 4 and C for small values of s = 7/7, and finally
the calculation of the local stresses and velocities in the vicinity of the axis
r = 0.

It is found that the constants A, and A4, are associated respectively with
rotational and dilatational singularities which are restricted to the semi-
infinite segment z < a¢ of the line » = 0. The imposed singular load is one
which produces a volume flux P and a circulation C about the z-axis in its
immediate vicinity. Thus

2C 2 0

Ay= — = = _Z4im | rv,a8
T T r20J—n
2P 2 0

A, =+2 = 2vm | sv.as,
T T y=0d—g

U, and U, being the radial and transverse velocity components.

The formulae of Equation 32 may be used to find the space and time
derivatives of the various potentials ane thence the velocity and stress
components everywhere. Thus

¢ = RI[ . dwW* '
) g5 |igE a0-]
2 2\ %
iM(14+ L2223y (1— 3t ‘iAo [A% (1—L2M?2) —2] —A4, (1 — Ml_z) }
- Rl )
R(&)
and

https://doi.org/10.1017/51446788700027658 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027658

(11 The elastodynamics of moving loads 89

8 __r0b_ 86 _ o Wy
(34) 'é?“?% s = [dCl a0, ds]
e T
ML — ¥ (idy [ 0 - ) — 2] — a4, (1= 25 )
=Rl - >

R(gy)S(1—s¥e))t
for points inside the dilatation cone for which

r
y17 COs 0 + 4 sin 6 (y2 72 —72)}

Cl =
while

o .. . . awe
(35) Ea(Az—}-Ck) = Rl {152(1~c§)i[—LM¢2¢+k] i }

2
i(L— {21 — M2 (1 LaM2E2) A, + 14, [L3(1 — L2 M?) —2]}}
R(M¢,)

— Rl

and

AW©€ o¢, dv,
dt, %;E?}

(1 — )21 — M2 (L + LAM2L2) Ay + 64,2 (1— L2 M?) — 2]} — LMCyi + k]
{ s(1—s¥/c) R(ML,) }

(36) = aﬁ (Ai+Ch)=— = 33 (Ai+Ck) = RI {(—-LM{zi—i—k)

for points inside the shear cone for which
7
727 €os 0 + 4 sin 0(y27% — #2)}

é‘2=

There remains the formula for the shear field in the head wave region
ABC. This may be found from the equation 22 which relates C, and ¢, by
first determining C, = — ad,/s on the free surface on the segment 4B,
where {; = s/y,, and then continuing C or 4 into the interior of the region
by using the functional form 23. For C this gives the result that

aoC oc

dug 00
~a [z o] (14 3) (1) o [0 - —2] s ()

s? (1—L2M2%)—2 s2\ (s? 52\ 2 52 2
17 [ (=) G =) 0+ ) Ge)
Va 7 a A
on the surface 4 B with y, = s = y, sec #, == y,, with the same expression
with s = sec(u, — 0) providing the field inside the region A BC.
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Notice the singular nature of the derivatives given here for points just
outside the arc AC. This implies a logarithmic singularity in the shear
potentials just outside the shear cone in the head wave region such that
C = Olln(arcsec r/y,7)] = A for » = y,7 + 0. Notice also that although
the process for evaluating the derivatives of the potentials and hence the
velocity components does not involve any but the simplest arithmetical
processes, the calculation of these quantities is particularly easy on the free
surface. Indeed, one result of particular interest is that apart from the surface
wave associated with the vanishing of the function R(¢{,;) (this will be men-
tioned later) the source of pure dilatation (with C = A4, = 0) provides only
horizontal velocities and displacements on the segment A’ A4 of the surface
while on the contrary, the source of pure circulation provides only vertical
velocities and displacements on the same segment. On the other hand both
types of source cause both horizontal and vertical displacements on the
segments AB and A'B’.

4. Extension of Results

We have derived certain expressions for complex potentials which are
associated with moving line loads of step function dependence in the variable
(at — z)/a. It is clear enough that simple superposition is possible so that
for example, we may easily calculate the effect of a longitudinally moving
line load of finite length.

To obtain a more fundamental result we may differentiate throughout
with respect to 7. The result of this operation gives explicitly the potentials
associated with a steadily moving point load. For example, within the
moving dilatation cone » = y, (at — z)/a the scalar potential ¢ corresponding
to a moving point source of strength P and which creates a circulation
C, is

e e s
e aly?(at — 2)2 — a2f2]} RI{Z,(1 — 3)dW?e[al,

where dW*[d{, is the expression given explicitly in Equations 32 and 32a.
The shear potentials both outside and inside the shear cone may be found
similarly.

More general superposition is feasible by use of the convolution theorem
once the results for point loads are established.

5. The Rayleigh Wave

It is obvious that in the limit L = 0 the problem is reduced to the well-
known two dimensional case of a suddenly applied infinite uniform line load.
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In the expressions for complex potentials given above this limit is a valid
one, with the transverse component A of the vector potential vanishing,
and with the potentials ¢ and C taking more recognizable forms.
In this strictly two dimensional case the zeros of the function Ry(M¢,),
where '
Ry(M;) = (83 — 2)* — 4(1 — )} — M2gg)?

and where M = ¢,/c,, define poles [{, = 4 V/c,] of the complex derivatives
of the potentials W¢ and W°, and hence singularities of the velocity and
stress field travelling with the specific Rayleigh velocity V. (Vi takes
values lying in the range 0.874--- << Vpgfc, << 0.965 - - according to
Rayleigh [13]).

The corresponding expression R(M{,) defined in equation 29 is easily
shown to have its zeros at

lo = = VYr/v2

where

The quantity y® thus defines the transverse velocity of the usual Rayleigh
waves, which having an actual velocity of propagation Vjy, also form a
wedge singularity on the surface within the shear cone.

The residue terms which appear in conjunction with the Rayleigh zeros
are interesting in that the pure dilatation source provides a residue only for
the vertical velocity and displacement. Its effect is to provide a Rayleigh
wave of step function type in the displacement which just counteracts or
nullifies the vertical displacement which is produced in the head wave
region by such a source. This, of course, ensures that the vertical displace-
ment returns to zero after the passage of the Rayleigh wave and stays that
way, whereas the horizontal component which should approach zero long
after the disturbing load has passed by does so in a more gradual manner,
For the source of circulation, the same sort of results are available, the
horizontal displacement being the one which returns to zero with the passage
of the Rayleigh wave, while the vertical displacement vanishes more smooth-
ly. These properties are of course only true for the particular type of source
under consideration. For a moving load of variable strength, they will not
be true, nor are they true if the source of energy is a line force.
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