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Abstract. A locally compact group G is compact if and only if its convolution
algebras contain non-zero (weakly) completely continuous elements. Dually, G is
discrete if its function algebras contain non-zero completely continuous elements.
We prove non-commutative versions of these results in the case of locally compact
quantum groups.
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1. Introduction. A classical result of Sakai [26] states that a locally compact group
G is compact if and only if it admits (weakly) compact convolution operators. Dually,
G is discrete if and only if it admits (weakly) compact multiplication operators on
L2(G).

In this paper, we investigate these connections in the case of locally compact
quantum groups.

It is known that for a locally compact group G the following are equivalent: (i)
G is discrete, (ii) L∞(G) contains a compact operator on L2(G), (iii) L1(G) has the
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Radon–Nikodym property, (iv) the von Neumann algebra L∞(G) is purely atomic (cf.
[7] and [30]).

In the more general setting of locally compact quantum groups, (i) implies other
properties, (iii) and (iv) are equivalent, and there are examples that satisfy (iii) but not
(i) (cf. [30] and [14]).

The main result of [13] extends the implication (ii) ⇒ (i) to the case of regular
locally compact quantum group. We remove the regularity condition, and prove this
result for all locally compact quantum groups.

THEOREM. A locally compact quantum group � is discrete if and only if L∞(�) ∩
K(L2(�)) �= {0}, and in this case we have C0(�) = L∞(�) ∩ K(L2(�)).

We use this theorem to establish an equivalence between discreteness of � and
existence of (weakly) compact elements in C0(�) or L∞(�). Consequently, we show G
is discrete if and only if L∞(�) has a finite dimensional direct summand.

THEOREM. Let � be a locally compact quantum group. If the von Neumann algebra
L∞(�) has a decomposition L∞(�) ∼= M ⊕ N where M is finite dimensional C∗-algebra,
then � is a discrete quantum group.

The significance of this result is that it characterizes discreteness only in terms of the
von Neumann algebra structure of L∞(�), without referring to the quantum group
structure of �.

Dually, compactness is characterized in terms of (weak) compactness of
convolution operators: for a locally compact group G the following are equivalent:
(i) G is compact, (ii) there exists a non-zero measure μ ∈ M(G) such that the
convolution map L1(G) � ν �→ μ ∗ ν ∈ L1(G) is compact, (iii) there exists a non-
zero measure μ ∈ M(G) such that the convolution map L1(G) � ν �→ μ ∗ ν ∈ L1(G)
is weakly compact [26].

We prove quantum versions of these equivalences.

THEOREM. For a locally compact quantum group � the following are equivalent:
(1) � is compact;
(2) there exists μ ∈ M(�) such that the convolution map ν �→ μ � ν on L1(�) is compact

and its image contains an invertible element;
(3) there exists μ ∈ M(�) such that the convolution map ν �→ μ � ν on L1(�) is weakly

compact and its image contains an invertible element.

In particular, if the convolution operator of a non-zero positive quantum measure
μ ∈ M(�)+ is weakly compact, then � is compact. We are not able to remove the
requirement on the image in the above theorem entirely, but we prove:

THEOREM. A locally compact quantum group � is compact if and only if there is μ ∈
M(�) such that the convolution map ν �→ μ � ν on L1(�) has finite rank.

Denote by �̃ the group of quantum point masses of a co-amenable locally compact
quantum group �, i.e. the spectrum of C0(�) (cf. [15]). Another generalization of
Sakai’s result is formulated as follows.

THEOREM. Let � be a co-amenable locally compact quantum group. If there is a non-zero
μ ∈ M(�) such that the convolution operator M(�) � ω �→ μ � ω ∈ M(�) is compact,
then �̃ is compact.
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Weakly compact multipliers on the second dual L1(�)∗∗ (endowed with the Arens
product) have been studied in [10] and [19], where the authors prove that with the left
Arens product, L1(�)∗∗ admits a weakly compact left multiplier if and only if G is
amenable, and it admits a weakly compact left multiplier if and only if G is compact.

We prove the following generalization to the case of locally compact quantum
groups.

THEOREM. A locally compact quantum group � is compact if and only if there is a weakly
compact right multiplier (equivalently, left multiplier) T of L1(�)∗∗, and m ∈ L1(�)∗∗

such that T(m) ∈ L1(�) and 〈T(m), 1〉 �= 0.

We also consider the canonical maps from convolution algebras into function
algebras. More precisely, we study almost periodic elements of a locally compact
quantum group as introduced and studied in [27] and [5]. We show that � is compact
if and only if AP(C0(�)) ∩ C0(�) �= {0}. This generalizes a similar classical result [3].

2. Preliminaries. In this section, we introduce our notation and terminology,
and recall some results on locally compact quantum groups that we will be using
throughout the paper. For more details on locally compact quantum groups the reader
is referred to [16, 17].

A locally compact quantum group � in the sense of Kustermans–Vaes is a
quadruple � = (L∞(�),�, ϕ,ψ), where L∞(�) is a von Neumann algebra, � :
L∞(�) → L∞(�)⊗̄L∞(�) is a co-associative co-multiplication, and ϕ and ψ are
the left, respectively, right Haar weights. The pre-adjoint of the co-multiplication
� induces an associative multiplication � : L1(�)⊗̂L1(�) → L1(�) on the predual
L1(�) := L∞(�)∗, which we call the (quantum) convolution product; here, ⊗̂ is the
operator space projective tensor product. Moreover, (L1(�), �) forms a completely
contractive Banach algebra.

In the classical case of L∞(G) or VN(G) with G a locally compact group, the algebra
(L1(�), �) is the usual convolution group algebra L1(G) and the Fourier algebra A(G),
respectively.

The convolution on L1(�) induces a canonical completely contractive L1(�)-
bimodule structure on L∞(�) satisfying

x � f = (f ⊗ id)�(x) and f � x = (id ⊗f )�(x) (x ∈ L∞(�), f ∈ L1(�)).

The quantum group � is said to be co-amenable if L1(�) has a bounded
approximate identity.

Let C0(�) be the reduced C∗-algebra associated with � and let M(C0(�)) be
the multiplier algebra of C0(�). Then, we have the inclusions C0(�) ⊆ M(C0(�)) ⊆
L∞(�), and C0(�) is a weak* dense C∗-subalgebra of L∞(�).

A locally compact quantum group � is compact if 1 ∈ C0(�), and it is discrete if
the dual quantum group �̂ of � is compact, which is equivalent to L1(�) being unital.
It is known that when � is discrete we have

�∞(�) =
⊕

α∈I

Mnα
, (1)

where I is the set of all equivalence classes of irreducible unitary representations of the
dual quantum group �, and each Mnα

is a matrix algebra (cf. [8]).
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The co-multiplication � maps C0(�) into the multiplier algebra M(C0(�) ⊗min

C0(�)). Then M(�) := C0(�)∗ is a completely contractive dual Banach algebra under
the multiplication

〈μ � ν, x〉 = 〈μ ⊗ ν,�(x)〉 (μ, ν ∈ C0(�)∗, x ∈ C0(�)).

Similarly to the classical case L1(�) is canonically identified with a closed two-sided
ideal in M(�).

We denote by �̂ the dual quantum group, and by W ∈ L∞(�)⊗̄L∞(�̂) and V ∈
L∞(�̂)′⊗̄L∞(�) the left and right fundamental unitaries of �, respectively. The left
regular representation is a completely contractive injection defined by

λ : f ∈ L1(�) �→ (f ⊗ id)(W ) ∈ C0(�̂) ⊆ L∞(�̂)

Moreover, λ has a canonical (weak* continuous) extension to a completely contractive
algebra homomorphism M(�) → M(C0(�̂)) ⊆ L∞(�̂), still denoted by λ, given
by 〈λ(μ), f̂ 〉 = 〈μ, λ∗(f̂ )〉, where λ∗ : L1(�̂) → C0(�) ⊆ L∞(�) is the completely

contractive injection f̂ �→ (id ⊗f̂ )(W ). We have λ(L1(�))
||.|| = C0(�̂). Similarly, the

right regular representation is defined by ρ : f ∈ L1(�) �→ (id ⊗f )(V ) ∈ L∞(�̂)′.
A locally compact quantum group � is amenable if there exists a left invariant mean

on L∞(�), i.e. a state m ∈ L∞(�)∗ such that m(f ⊗ id)� = 〈1, f 〉 m for all f ∈ L1(�).
Right, and two-sided invariant means are defined similarly.

In fact, both the existence of right invariant means, and two-sided invariant means
are equivalent to amenability of �.

We define

LUC(�) = 〈L∞(�) � L1(�)〉 and RUC(�) = 〈L1(�) � L∞(�)〉.

We then have [25] the inclusions

C0(�) ⊆ LUC(�) ⊆ M(C0(�)).

A bounded linear map μ on a Banach algebra A is called a right multiplier if
μ(ab) = aμ(b) for all a, b ∈ A. We denote by RM(A) the algebra of right multiplier
maps on A. When A is a completely contractive Banach algebra, RMcb(A) will denote
the algebra of completely bounded maps in RM(A).

The left and completely bounded left multiplier algebras of A are defined similarly,
and are denoted by LM(A) and LMcb(A), respectively. For every a ∈ A we define the
multiplication maps La and Ra on A by La(x) = ax, and Ra(x) = xa. Then La ∈ LM(A)
and Ra ∈ RM(A).

We say that a ∈ A is a left (respectively, right) completely finite rank element of A
if La (respectively, Ra) is of finite rank; a ∈ A is a completely finite rank element if it
is both left and right completely finite rank element, i.e. both the right ideal aA and
the left ideal Aa are finite-dimensional. We denote by Alcf and Arcf the set of all left,
respectively right, completely finite rank elements of A. Both Alcf and Arcf , as well as
the set Acf of all completely finite rank elements in A are closed ideals of A.

Similarly, we say that a ∈ A is a left (respectively, right) completely continuous
element of A if La (respectively, Ra) is a compact operator on A; a ∈ A is a completely
continuous element if it is both left and right completely continuous element. We
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denote by Alcc and Arcc the ideals of all left, respectively right, completely continuous
elements of A, and by Acc the ideal of all completely continuous elements in A.

We say that a ∈ A is a compact element if LaRa is a compact operator. The set Acpt

of all compact elements in A is only a closed multiplicative semigroup in A in general.
Finally, we say that a is a finite rank element if LaRa is a finite rank operator. The set
of all finite rank elements in A is denoted by Af .

We say that a is a left (respectively, right) weakly completely continuous element
of A if La (respectively, Ra) is a weakly compact operator on A. The set of all left
(respectively, right) weakly completely continuous elements of A is denoted by Alwcc

(respectively, Arwcc). Again, both Alwcc and Arwcc are closed ideals of A. In the case
of a C∗-algebra, these ideals are thus self-adjoint, and since the involution is weakly
continuous it follows Alwcc = Arwcc. Therefore we shall simply write Awcc to denote the
set of (left, or equivalently right) weakly completely continuous elements.

If A = B(H), then a ∈ Acpt if and only if a ∈ K(H). For a C∗-algebra A, it is known
that Acpt = Awcc (cf. [33]). Also, there is a faithful representation π of A on a Hilbert
space H such that, for a ∈ A, we have a ∈ Acpt if and only if π (a) ∈ K(H) (cf. [32]).

For a locally compact quantum group �, M(�) is embedded in RMcb(L1(�)) via
μ �→ Rμ, where Rμ : f ∈ L1(�) �→ f � μ ∈ L1(�).

We denote by L2(�) the GNS Hilbert space of the right Haar weight, which is
canonically identified with the GNS Hilbert space of the left Haar weight. Then,
the right fundamental unitary V of � induces on B(L2(�)) a co-associative co-
multiplication

�r : B(L2(�)) → B(L2(�))⊗̄B(L2(�)) ; x �→ V (x ⊗ 1)V∗,

such that the restriction of �r to L∞(�) is just the co-multiplication � on L∞(�).
The pre-adjoint of �r defines on T(L2(�)) := B(L2(�))∗ an associative completely
contractive multiplication

� : T(L2(�))⊗̂T(L2(�)) → T(L2(�)), ω ⊗ γ �→ ω � γ = (ω ⊗ γ ) ◦ �r.

Analogously, the left fundamental unitary W of � induces the co-multiplication

�l : B(L2(�)) → B(L2(�))⊗̄B(L2(�)) ; x �→ W ∗(1 ⊗ x)W,

such that the restriction of �l to L∞(�) is just the co-multiplication � on L∞(�).
Similarly, the pre-adjoint of �l defines on T(L2(�)) the multiplication

� : T(L2(�))⊗̂T(L2(�)) → T(L2(�)), ω ⊗ γ �→ ω � γ = (ω ⊗ γ ) ◦ �l.

For ω ∈ T(L2(�)) we use R�
ω, R�

ω, L�
ω, and R�

ω to distinguish the multiplication
operators in the corresponding product.

3. Compact elements and discreteness. A locally compact group G is discrete if
and only if L∞(G) contains a compact operator (on L2(G)). In the quantum setting,
if � is a discrete quantum group, then c0(�) ⊂ K(�2(�)). But the converse has only
been partially proved. In [11] it was shown that if C0(�) ⊆ K(L2(�)) then � is discrete.
Then the second author proved in [13] that if � is a regular locally compact quantum
group, and L∞(�) ∩ K(L2(�)) �= {0}, then � is discrete.
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We remove the (restrictive) regularity condition and prove the above result for
general locally compact quantum groups.

THEOREM 3.1. A locally compact quantum group � is discrete if and only if L∞(�) ∩
K(L2(�)) �= {0}, and in this case, C0(�) = L∞(�) ∩ K(L2(�)).

Proof. The forward implication is obvious. For the converse, suppose L∞(�) ∩
K(L2(�)) �= {0}. Since then L2(�) is the standard Hilbert space of L∞(�), it follows
that L∞(�)′ ∩ K(L2(�)) �= {0}. Take a non-zero x ∈ L∞(�)′ ∩ K(L2(�)), and choose
ω ∈ T(L2(�)) such that ω(x) �= 0. Then using [11, Theorem 3.1], we obtain

(id ⊗ ω)(Ŵ ∗(1 ⊗ x)Ŵ ) = ω �̂ x = ω(x)1 ∈ C0(�̂).

Thus 1 ∈ C0(�̂), which yields compactness of the dual quantum group �̂. Hence, � is
discrete. �

It is a well-known classical result that a locally compact group G is discrete if and
only if L1(G) has the Radon-Nikodym property (RNP) (recall a Banach space X is
said to have RNP if for each finite measure space (�, S, μ) and each bounded linear
operator T : L1(�, S, μ) → X , there is a bounded μ-measurable function φ : � → X
such that Tf = ∫

�
f φ dμ for all f ∈ (L1(�, S, μ)).

This is not true in the general locally compact quantum group setting (cf. [30]). Now
Theorem 3.1 also allows to remove regularity condition in [13, Lemma 6 and Corollary
7] to obtain equivalent conditions that distinguish the RNP from discreteness in the
quantum setting.

COROLLARY 3.2. Let � be a locally compact quantum group such that L∞(�) =
l∞ − ⊕

i∈I B(Hi). Then, the following conditions are equivalent:

(1) dim(Hi) < ∞ f or all i ∈ I;
(2) dim(Hi) < ∞ f or some i ∈ I;
(3) dim(Hi) = 1 f or some i ∈ I;
(4) C0(�) = c0 − ⊕

i∈I K(Hi);
(5) � is discrete.

Next, we characterize discreteness of a quantum group � in terms of existence of
compact elements in L∞(�). As mentioned in the previous section, for a Hilbert space
H, it is known that a ∈ B(H) is a compact element if and only if a ∈ K(H). Moreover
if A is an irreducible C∗-subalgebra of B(H), then a ∈ A is a compact element if and
only if a ∈ K(H) (cf. [33]). The irreducibility condition cannot be removed in general
(see for example [28]).

Clearly L∞(�) ⊆ B(L2(�)) is not irreducible unless � is trivial. Therefore, in light
of Theorem 3.1 it is natural to ask whether discreteness of � can be detected via
existence of compact elements in L∞(�).

THEOREM 3.3. Let � be a locally compact quantum group. Then the following are
equivalent:

(1) C0(�) = C0(�)cpt

(2) C0(�) ⊆ L∞(�)cpt

(3) L∞(�)lcc �= {0}
(4) L∞(�)lcf �= {0}
(5) � is discrete.
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Proof. The implications (2) ⇒ (1), and (4) ⇒ (3) are obvious, and (5) ⇒ (4) follows
from (1).
The equivalence (1) ⇔ (5) is a direct consequence of [23, Theorem 4.4] and [22,
Proposition 1.14.3].
(5) ⇒ (2): By [6, Lemma 2.6] for every a ∈ C0(�) and f ∈ L1(�) the set

{(aga∗) � f : g ∈ L1(�) and ‖g‖ ≤ 1}

is relatively compact in L1(�). Since � is discrete, L1(�) has an identity, and therefore
it follows that the set {aga∗ : g ∈ L1(�) and ‖g‖ ≤ 1} is relatively compact in L1(�)
for all a ∈ C0(�). This implies that the map L1(�) � g �→ aga∗ ∈ L1(�) is compact,
whence so is the adjoint map x �→ a∗xa on L∞(�). Thus, by [28, Lemma 2.3.12] we
conclude a ∈ L∞(�)wcc = L∞(�)cpt.
(3) ⇒ (4): Replacing by a∗a, we may assume that a is hermitian. By [20, Theorem 2.1.1]
the spectral radius, the norm of a, and the norm of the linear map x �→ ax coincide.
Therefore, the map x �→ ax has a non-zero eigenvalue and a non-zero eigenvector b.
Now [4, Lemma 4.1] implies that the linear map x �→ bx is of finite rank.
(4) ⇒ (5): Let 0 �= a ∈ L∞(�)lcf . The set of square integrable elements Nϕ = {x ∈
L∞(�) : ϕ(x∗x) < ∞} is a left ideal of L∞(�) and is dense in L2(�). In particular,
x �→ ax maps Nϕ into a finite dimensional subspace of Nϕ . Thus the operator a has
finite rank as an operator on the GNS Hilbert space L2(�). By Theorem 3.1, � is
discrete. �

It follows from Theorem 3.3 that if � is discrete then �∞(�) contains compact
elements. But the converse is not true in general as shown in the following example.

EXAMPLE 3.4. Let � be a locally compact quantum group such that L∞(�) = B(H)
for some (infinite dimensional) Hilbert space (e.g. the non-semiregular example of [1]).
Then L∞(�)cpt = K(H), but since L∞(�) is a factor, � is not discrete.

REMARK 1. A very interesting observation is that since the C∗-algebras
〈C0(�)C0(�̂)〉 and 〈L∞(�)L∞(�̂)〉 act irreducibly on L2(�), they contain non-zero
compact elements if and only if � is a semi-regular locally compact quantum group.

THEOREM 3.5. Let � be a locally compact quantum group. If the von Neumann
algebra L∞(�) has a decomposition L∞(�) ∼= M ⊕ N where M is finite dimensional
C∗-algebra, then � is a discrete quantum group.

Proof. Without loss of generality, we may assume L∞(�) = B(H) ⊕ N, where H is
a finite dimensional Hilbert space and N is a von Neumann subalgebra of L∞(�). Let
1H be the identity map in B(H). It is clear that the map L∞(�) → L∞(�) : b �→ 1Hb
is of finite rank. The conclusion follows from Theorem 3.3. �

COROLLARY 3.6. Let � be a locally compact quantum group. Then

(1) L∞(�) has a non-zero compact element if and only if the type I summand of the von
Neumann algebra L∞(�) is non-zero and contains a type I factor.

(2) L1(�) has the RNP if and only if the set of compact element of L∞(�) is weak*
dense in L∞(�).

https://doi.org/10.1017/S0017089516000276 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000276


452 MASSOUD AMINI ET AL.

Proof. (1) By results of Section 4 of [9] there is a central projection p ∈ L∞(�) such
that

L∞(�) = L∞(�)p ⊗ L∞(�)(1 − p), (2)

where L∞(�)p is the part of the factor decomposition of L∞(�) that consists of a
direct sum of type I factors and contains all compact elements of L∞(�). Hence, the
equivalence in (1) holds.
(2) It follows from the decomposition (2) that the compact elements of L∞(�) are
weak* dense in L∞(�) if and only if p = 1, which is equivalent to L∞(�) being a direct
sum of type I factors. By [14, Theorem 4.4.5] the latter is equivalent to L1(�) having
the RNP. �

4. Compact convolution operators. In this section, we consider the question of
existence of compact, and weakly compact convolution operators. In the group setting,
by a classical result of Sakai [26], a locally compact group G is compact if and only if
there is a non-zero element in the measure algebra μ ∈ M(G) such that the convolution
operator L1(G) � f �→ μ � f ∈ L1(G) is (weakly) compact.

The main goal of this section is to investigate quantum versions of Sakai’s result.

4.1. Convolution operators on L1(�). It follows from [23, Theorem 3.8] that a
locally compact quantum group � is compact if and only if the convolution product
on L1(�) is weakly compact. Next result strengthens one direction of this equivalence.

Recall that for μ ∈ L1(�), Rμ denotes the convolution operator L1(�) � ω �→
ω � μ ∈ L1(�).

PROPOSITION 4.1. A locally compact quantum group � is compact if and only if the
convolution operator Rμ is compact for every μ ∈ L1(�).

Proof. We only need to prove the forward implication. By [6, Lemma 2.6], for
any a ∈ C0(�) and μ ∈ L1(�), the set {(aωa∗) � μ : ω ∈ L1(�) , ‖ω‖ ≤ 1} is relatively
compact in L1(�). Since � is compact, 1 ∈ C0(�). Setting a = 1 yields the result. �

But our aim is to conclude our results from the assumption of existence of a single
(weakly) compact convolution operator.

The following observation shows that we can restrict our attention to multipliers
arising from elements of L1(�). We denote the set of weakly compact right multipliers
of L1(�) by RMwc(L1(�)) �= {0}.

LEMMA 4.2. If RMwc(L1(�)) �= {0}, then L1(�) ∩ RMwc(L1(�)) �= {0}.
Proof. Let T ∈ RM(L1(�)), and ω ∈ L1(�). Then for every ρ ∈ L1(�), we have

T ◦ Rω(ρ) = T(ρ � ω) = ρ � T(ω) = RT(ω)(ρ)

This shows T ◦ Rω = RT(ω). Thus, if T(ω) �= 0, then L1(�) ∩ RMwc(L1(�)) �= {0}. �
THEOREM 4.3. A locally compact quantum group � is compact if and only if there is

μ ∈ M(�), μ �= 0, such that the convolution operator Rμ is of finite rank.

Proof. If � is compact with Haar state ϕ, then μ � ϕ = μ(1)ϕ for all ω ∈ L1(�),
which means Rϕ has rank one.
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For the converse, note that since the regular representation λ is an algebra
homomorphism, λ(L1(�))λ(μ) = λ(L1(�) � μ) is a non-zero finite dimensional
subspace of λ(L1(�)). The latter is weak* dense in L∞(�̂), which implies λ(μ) ∈
L∞(�̂)rcf . Hence �̂ is discrete by Theorem 3.3, and equivalently � is compact. �

The following equivalences follow immediately from Theorem 4.3.

COROLLARY 4.4. Let � be a locally compact quantum group. Then the following are
equivalent:

(1) � is a compact quantum group;
(2) L1(�) has a non-zero finite-dimensional (one sided) ideal;
(3) L1(�) has a non-zero one-dimensional (one sided) ideal.

THEOREM 4.5. Let � be a locally compact quantum group and μ ∈ L1(�). The
convolution operator Rμ is weakly compact if and only if image(R∗

μ) ⊆ C0(�).

Proof. Suppose Rμ is weakly compact, then R∗
μ is weak*–weak continuous. Since

C0(�) is weak* dense in L∞(�), the range of R∗
μ is contained in the weak closure of

the range of its restriction to C0(�), which is contained in C0(�).
Conversely, suppose that the range of R∗

μ is contained in C0(�). Let (xα) be a net
in C0(�) with weak*− lim xα = x ∈ L∞(�). Now suppose ν̃ ∈ L∞(�)∗, and ν ∈ M(�)
is the restriction of ν̃ on C0(�). Using the fact that ν � μ ∈ L1(�), we get

〈μ � xα , ν̃〉 = 〈μ � xα , ν〉 = 〈xα , ν � μ〉
→ 〈x , ν � μ〉 = 〈μ � x , ν〉 = 〈μ � x , ν̃〉,

which shows R∗
μ is weak*–weak continuous, and hence is weakly compact. �

COROLLARY 4.6. A locally compact quantum group � is compact if and only if there
is a non-zero μ ∈ L1(�) such that Rμ is weakly compact and image(R∗

μ) contains an
invertible element of L∞(�).

In particular, we have:

COROLLARY 4.7. A locally compact quantum group � is compact if and only if there
is μ ∈ L1(�) with μ(1) �= 0 (e.g. μ is positive), such that Rμ is weakly compact.

Proof. The forward implication is obvious. For the converse, note that Rμ(1) =
μ(1)1. Hence 1 ∈ image(R∗

μ). So, � is compact by Corollary 4.6. �
Denote by G(�) the intrinsic group of �, that is the group of unitaries u ∈ L∞(�) with
�(u) = u ⊗ u.

COROLLARY 4.8. A locally compact quantum group � is compact if and only if there
is μ ∈ L1(�) such that Rμ is weakly compact, and μ(u) �= 0 for some u ∈ G(�).

Proof. For u ∈ G(�) we have (Rμ)∗(u) = (id ⊗μ)�(u) = μ(u)u. Therefore, if μ(u) �=
0 for some u ∈ G(�), image(R∗

μ) contains u. Hence, � is compact by Corollary 4.6. �

4.2. Convolution operators on T(L2(�)). We continue our study of (weakly)
compact convolution operators in this section at the level of T(L2(�)).

We first consider convolution operators R�
ω, ω ∈ T(L2(�)).
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In the classical case, for a locally compact group G, every weakly compact
convolution operator is compact (cf. [26]). For general locally compact quantum group,
we do not know whether this holds. We have the following partial result for positive
functionals.

PROPOSITION 4.9. Let 0 �= ω ∈ T(L2(�)) be positive and let R�
ω be weakly compact.

Then, R�
ω is compact.

Proof. Let (ωn)∞n=1 ⊆ T(L2(�))+1 be a sequence of positive linear functional in the
unit ball of T(L2(�)). Since R�

ω is weakly compact, (ωn � ω) has a weakly convergent
subsequence, say (ωnk � ω). By [29, Corollary III.5.11], this subsequence is norm
convergent.

Now, since every element of the unit ball of T(L2(�)) can be written as a linear
combination of four positive elements of the unit ball, it follows that for every sequence
(ωn)∞n=1 ⊆ T(L2(�))1, (ωn � ω) has a norm convergent subsequence. Hence R�

ω is a
compact operator. �

PROPOSITION 4.10. Let � be a locally compact quantum group, and ω ∈ T(L2(�))+.
If R�

ω is weakly compact, then (ω ⊗ id)W ∈ K(L2(�)).

Proof. Let y = (ω ⊗ id)W , and for the sake of contradiction, suppose that y /∈
K(L2(�)). In particular, y is not a compact element of B(L2(�)). By [28, Lemma
2.3.12], the map B(L2(�)) � x �→ xy ∈ B(L2(�)) is not weakly compact. Equivalently,
the preadjoint T(L2(�)) � ω �→ yω ∈ T(L2(�)) is not weakly compact.

Now [29, Theorem III.5.4] implies that there exists a decreasing sequence of
projections (pm)∞m=1 ⊆ B(L2(�)) such that pm ↘ 0 but limm→∞(yω)(pm) = 0 is not
uniform on the unit ball T(L2(�))1. Hence, there is ε > 0 such that for every N ∈ �

there is m ≥ N and ωn ∈ T(L2(�))1 with |(yωn)(pm)| ≥ ε. Therefore,

ε2 ≤ |(yωn)(pm)|2 = |(ω ⊗ ωn)((1 ⊗ pm)W )|2
≤ (ω ⊗ ωn)(W ∗(1 ⊗ pm)W )

= (ω � ωn)(pm).

Again, [29, Theorem III.5.4] implies that R�
ω is not weakly compact. �

COROLLARY 4.11. Let � be a locally compact quantum group, and 0 �= ω ∈ T(L2(�))
be positive. If R�

ω is weakly compact, then � is compact.

Proof. By Proposition 4.10, (ω ⊗ id)W ∈ K(L2(�)). Also note that (ω ⊗ id)W ∈
L∞(�̂). Hence by Theorem 3.1 the dual quantum group �̂ is discrete; equivalently �

is compact. �
COROLLARY 4.12. Let � be a locally compact quantum group. The following are

equivalent:

(1) � is a compact quantum group;
(2) for every ω ∈ T(L2(�)), R�

ω is a weakly compact linear map;
(3) for every ω ∈ T(L2(�)), R�

ω is a compact linear map.

Proof. The equivalence (1) ⇔ (2) follows from [11, Proposition 6.1] and [22,
Proposition 1.14.3]. The implication (3) ⇒ (2) is obvious.
(2) ⇒ (3): It follows from Proposition 4.10 that R�

ω is compact for all ω ∈ T(L2(�))+.
Now an arbitrary ω ∈ T(L2(�)) is a finite linear combination of positive elements,
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therefore R�
ω is a finite linear combination of compact operators, whence is

compact. �
PROPOSITION 4.13. Let � be a locally compact quantum group. If R�

ω is weakly
compact, then the range of (R�

ω)∗ is contained in C0(�).

Proof. Note that R�
ω is weakly compact if and only if (R�

ω)∗ is weak*–weak
continuous. Since K(L2(�)) is weak* dense in B(L2(�)), the range of (R�

ω)∗ is contained
in the weak closure of the range of its restriction to K(L2(�)). But by [11, Formula
1.25], (R�

ω)∗(K(L2(�))) ⊆ C0(�). This completes the proof. �
This implies, for instance, that if image(R�

ω)∗ contains an invertible element of
L∞(�), then � is a compact quantum group. In particular, we have:

COROLLARY 4.14. Let � be a locally compact quantum group. If the convolution
operator R�

ω is weakly compact for some ω ∈ T(L2(�)) whose restriction to L∞(�̂)′ is
not zero, then � is compact.

Proof. Recall that W ∈ L∞(�) ⊗ L∞(�̂), and therefore

R�
ω(x̂′) = (id ⊗ω)W ∗(1 ⊗ x̂′)W = ω(x̂′)1

for all x̂′ ∈ L∞(�̂)′. So, if ω(x̂′) �= 0 then 1 ∈ C0(�), and hence � is compact. �
In the remaining of this section, we consider convolution operators R�

ω, ω ∈
T(L2(�)).

First, we observe a similar result as Corollary 4.11 in this case.

COROLLARY 4.15. Let � be a locally compact quantum group. If R�
ω is weakly

compact for a non-zero ω ∈ T(L2(�))+, then � is a finite quantum group.

Proof. Recall that V ∈ L∞(�̂)′ ⊗ L∞(�), and therefore

R�
ω(x̂) = (id ⊗ω)V (x̂ ⊗ 1)V∗ = ω(1)x̂,

for all x̂ ∈ L∞(�̂). So, if ω(1) �= 0, then the identity map on L∞(�̂) is weakly
compact. This implies that L∞(�̂) is a reflexive von Neumann algebra, hence finite
dimensional. �

The same argument as the one given for Proposition 4.10 yields the following.

PROPOSITION 4.16. Let � be a locally compact quantum group, and ω ∈ T(L2(�))+.
If R�

ω is weakly compact, then (ω ⊗ id)W ∈ K(L2(�)).

The counter-part of Corollary 4.12 in this case reads as follows.

PROPOSITION 4.17. Let � be a locally compact quantum group. The following are
equivalent:

(1) � is a finite quantum group.
(2) For every ω ∈ T(L2(�)), R�

ω is a weakly compact linear map.
(3) For every ω ∈ T(L2(�)), R�

ω is a compact linear map.

Proof. The only non-trivial implication is (2) ⇒ (1), which follows from [11,
Proposition 6.4] and [22, Proposition 1.14.3]. �
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PROPOSITION 4.18. Let � be a regular locally compact quantum group and ω ∈
T(L2(�)). If R�

ω is weakly compact, then the range of (R�
ω)∗ is contained in K(L2(�)).

Proof. First, since � is regular, by [11, Corollary 3.6], (R�
ω)∗ leaves K(L2(�))

invariant. Then, a similar argument to Proposition 4.13 completes the proof. �

The following is immediate.

COROLLARY 4.19. A locally compact quantum group � is finite if and only if there is
a non-zero ω ∈ T(L2(�)) such that R�

ω is weakly compact and image(R�
ω)∗ contains an

invertible element.

COROLLARY 4.20. Let � be a commutative or co-commutative locally compact
quantum group. If there is a non-zero ω ∈ T(L2(�)) such that R�

ω is weakly compact,
� is a finite quantum group.

Proof. First, since the restriction of (R�
ω)∗ to L∞(�) is also weakly amenable, by

classical results (Sakai’s for the commutative and Lau’s for co-commutative case), �

is compact. On the other hand, commutative and co-commutative locally compact
quantum groups are regular. Therefore by Proposition 4.18 (R�

ω)∗(B(L2(�))) ⊆
K(L2(�)). Since (R�

ω)∗ leaves L∞(�) invariant, and does not vanish on it, L∞(�) ∩
K(L2(�)) �= {0}. Hence � is discrete by Theorem 3.1.

Thus � is both compact and discrete, hence finite. �

4.3. Almost periodic elements. In previous sections, we considered multiplication
operators on L∞(�) and L1(�). In this section, we present a new approach, by
investigating (weak) compactness of the convolution maps of the form L1(�) � ω �→
μ � x ∈ L∞(�) for a fixed x ∈ L∞(�).

This leads to the study of (weakly) almost periodic elements of L∞(�): x ∈ L∞(�)
is called a (weakly) almost periodic if the above map is (weakly) compact.

Let us fist recall some definitions concerning this concept. We refer the reader to
[27] and [5] for more details.

A (finite dimensional) representation of a locally compact group � on a finite
dimensional Hilbert space H is an invertible element T ∈ M(C0(�)) ⊗ B(H) with (� ⊗
id)T = T12T13. Identifying M(C0(�)) ⊗ B(H) ∼= �n(M(C0(�))), we may consider T
as a matrix (Tij) ∈ �n(M(C0(�))). This matrix is invertible, and satisfies

�(Tij) =
n∑

k=1

Tik ⊗ Tkj.

We shall say that T is admissible if its transpose matrix (Tji) is invertible.
A matrix elements of T is a linear span of the elements Tij. The set of all

matrix elements of admissible representations of C0(�) forms a unital ∗-subalgebra
of M(C0(�)) [27, Proposition 2.12], which we denote by AP(C0(�)). Also, we denote
by ��(A) the closure of AP(A). Thus ��(A) is a unital C∗-algebra and � restricts to
��(A) to give a compact quantum group.

We say that x ∈ L∞(�) is periodic if �(x) is a finite-rank tensor in L∞(�)⊗̄L∞(�).
Denote the collection of periodic elements of L∞(�) by P∞(�), and denote its norm
closure in L∞(�) by �∞(�). It is known that �∞(�) is a C∗-subalgebra of L∞(�) and
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an L1(�)-submodule of L∞(�), and

P∞(�) = {x ∈ L∞(�) : Lx is finite rank} = {x ∈ L∞(�) : Rx is finite rank},
where Lx and Rx are linear maps L1(�) � f �→ x � f ∈ L∞(�) and L1(�) � f �→ f �

x ∈ L∞(�), respectively [5, Lemma 4.7].
In the following, S will denote the antipode of the quantum group �.

THEOREM 4.21. Let � be a locally compact quantum group. Then, the following are
equivalent:

(1) � is a compact quantum group.
(2) ��(C0(�)) = C0(�).
(3) AP(C0(�)) ∩ C0(�) �= {0}.
(4) �∞(�) = C0(�).
(5) {P∞(�) ∩ D(S)} ∩ C0(�) �= {0}.

Proof. (1) ⇒ (2) is well known, see for example [27, Remark 2.3].
(2) ⇒ (3) is obvious.
(3) ⇒ (1): suppose x = ∑n

i,j=1 ci,jui,j is a non-zero element in the intersection
AP(C0(G)) ∩ C0(�), where ci,j ∈ �, and ui,j’s are matrix elements of admissible
representations πij of �. Since admissible representations are closed under taking direct
sums [27, Proposition 2.4], considering ⊕πij, we may assume x is a linear combination
of matrix elements of one admissible representation, say U ∈ Mn(C0(�)).

Let BU be the unital C∗-subalgebra of M(C0(�)) generated by all matrix elements
of U . Then, the proof of Proposition 2.7 of [27] shows that (BU ,�|BU ) is a compact
matrix quantum group, and therefore we can apply the results of [31]. In particular,
formula (4.32) of [31] implies that there exist linear functionals fr,s ∈ L1(�) such that

n∑

s=1

S(uk,s)(x � fr,s) = cr,k1,

for all r, k = 1, . . . , n. This implies that 1 ∈ C0(�) and � is compact.
(4) ⇒ (1) is obvious, because 1 ∈ �∞(G).
(1)&(2) ⇒ (4): since � is compact, P∞(�) = AP(C0(�)) by [5, Theorem 6.4]. Hence,
(4) follows from (2).
(1)&(2) ⇒ (5): combining Theorem 4.14 and Theorem 6.4 of [5], we obtain P∞(�) =
AP(C0(�)). Hence, (5) follows from (2).
(5) ⇒ (1): suppose that 0 �= x ∈ {P∞(�) ∩ D(S)} ∩ C0(�) and �(x) = ∑n

i=1 xi ⊗ yi.
Then, the proof of Theorem 4.14 of [5] shows that there exist linear functionals
ωi, τj ∈ L1(�), i, j = 1, . . . , n, such that (ωj � x � τi)n

i,j=1 = (Ui,j)n
i,j=1 ∈ �n(M(C0(�))) is

an invertible finite-dimensional representation of C0(�). Since x ∈ C0(�), Ui,j ∈ C0(�)
and hence (Ui,j)n

i,j=1 ∈ �n(C0(�)). This implies that 1 ∈ C0(�) and so � is a compact
quantum group. �

Using this Theorem, we give a different proof of Theorem 4.3.

COROLLARY 4.22. Let � be a locally compact quantum group. If Rμ is of finite rank
for a non-zero μ ∈ L1(�), then � is compact.

Proof. Since Rμ is of finite rank, for every x ∈ L∞(�) the map L1(�) � ν �→
ν � (μ � x) ∈ L∞(�) is of finite rank, and so μ � x ∈ P∞(�) by [5, Lemma 4.7]. Thus,

https://doi.org/10.1017/S0017089516000276 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000276


458 MASSOUD AMINI ET AL.

the range of R∗
μ is contained in P∞(�) ∩ C0(�). On the other hand, since {λ∗(ω̂) : ω̂ ∈

L1(�̂)} ⊆ D(S) (cf. [16]), by choosing x = λ∗(ω̂) for a non-zero ω̂ ∈ L1(�̂), we get

μ � λ∗(ω̂) = λ∗(λ(μ)ω̂) ∈ P∞(�) ∩ D(S) ∩ C0(�).

Hence, by Theorem 4.21 � is compact. �
In particular, for f ∈ L1(�)lcf , L∞(�) � f ⊆ P∞(�), but it is not clear that for f ∈

L1(�)lcc, L∞(�) � f ⊆ �∞(�). It is obvious that Lx�f : L1(�) → L∞(�) is compact,
that is L∞(�) � f is contained in the set of almost periodic elements in sense of [24],
but we don’t know if this is in the set of completely almost periodic elements in sense
of [24]. It is known only in the commutative case that these two spaces are equal
(cf. [24]). However, one may hope that for f ∈ L1(�)lcc, L∞(�) � f ⊆ �∞(�) and that
�∞(�) = ��(C0(�)) (cf. [5]).

5. Convolution operators on M(�) and L1(�)∗∗. In this section, we consider the
convolution product, and (weak) compactness of the corresponding operators on the
measure algebra M(�) and the second dual L1(�)∗∗.

5.1. The measure algebra M(�). We first investigate the relations between
L1(�)rcc and M(�)rcc. Similar statements and proofs are valid for compact, weakly
compact and weakly completely continuous elements.

Note that since L1(�) is an ideal in M(�), we have M(�)rcc ∩ L1(�) ⊆ L1(�)rcc.

PROPOSITION 5.1. Suppose � is a co-amenable locally compact quantum group, and
μ ∈ L1(�) is such that Rμ : L1(�) → L1(�) is a compact operator. Then Rμ : M(�) →
M(�) is as well a compact operator.

Proof. Suppose (ωα) is an approximate identity for L1(�). Since L1(�) is an ideal
in M(�), for every α, Rμ�ωα

is a compact operator on M(�). Moreover, Rμ�ωα
→ Rμ

in norm, which implies Rμ is a compact operator on M(�). �
PROPOSITION 5.2. Let μ ∈ M(�) and μ(1) �= 0. If Rμ is weakly compact, then � is

a compact quantum group.

Proof. Let ω ∈ L1(�)+1 be a normal state. Then, μ � ω ∈ L1(�) with μ � ω(1) =
μ(1)ω(1) = ω(1) �= 0, and the map Rμ�ω is weakly compact. Hence � is compact by
Corollary 4.7. �

PROPOSITION 5.3. Let � be a co-amenable locally compact quantum group, and let
μ ∈ M(�). If Rμ is weakly compact, then μ ∈ L1(�).

Proof. We first show that the range of Rμ is contained in L1(�). For this, note
that since Rμ is an adjoint weakly compact operator, it is weak*–weak continuous on
M(�). But since L1(�) is weak* dense in M(�), the range of Rμ is contained in the
weak closure of Rμ(L1(�)), which is contained in L1(�).

Now, since � is co-amenable, by [2, Theorem 3.1], M(�) has a unit, say ε. Then,

μ = Rμ(ε) ∈ L1(�).

�
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If � is a co-amenable compact quantum group, then RMwc{L1(�)} = L1(�),
and conversely, if RMwc{L1(�)} = L1(�), then � is a compact quantum group [12,
Theorem 4.2]. We prove a similar result for the measure algebra M(�).

COROLLARY 5.4. Let � be a co-amenable locally compact quantum group. Then,
RMwc{L1(�)} = M(�) if and only if � is a finite quantum group.

Proof. We only need to prove the forward implication. On the one hand, since
L1(�) ⊆ M(�) = RMwc(L1(�)), it follows from [23, Theorem 3.8] that � is compact.

On the other hand, since � is co-amenable, by Proposition 5.3, RMwc{L1(�)} ⊆
L1(�). Thus L1(�) = M(�), and therefore by [12, Theorem 3.7] � is discrete.

Hence � is finite. �

5.2. The group of qauntum point masses. There is a canonical way to assign to
every locally compact quantum group � a locally compact group �̃, such that if
� = L∞(G) for a locally compact group G, then �̃ = G (cf. [15]). In the case of a
co-amenable �, the group �̃ is identified with the set of all non-zero characters on
C0(�), i.e. continuous *-homomorphism from C0(�) onto �, with the multiplication
induced from the convolution product of M(�).

The following is another generalization of Sakai’s theorem.

THEOREM 5.5. Let � be a co-amenable locally compact quantum group. If there is a
non-zero μ ∈ M(�) such that the convolution operator Rμ : M(�) → M(�) is compact,
then �̃ is a compact group.

Proof. Suppose �̃ is not compact. Considering �̃ as the group of all multiplicative
linear functionals on C0(�), we may choose a net χα ∈ �̃ such that χα → 0 in the
σ (M(�), C0(�))-topology.

Since the set {μ � χ : χ ∈ �̃} is relatively compact in L1(�), there are χ1, χ2, . . . ,
χk such that

inf
i=1,2,...,k

‖μ � χ − μ � χi ‖ ≤ 1,

for all χ ∈ �̃. Passing to a subnet if necessary, we may assume that for some j, 1 ≤ j ≤ k

‖μ � χα − μ � χj ‖ ≤ 1,

for all α. This implies that μ � χj is zero on C0(�), hence μ = 0, a contradiction. �

5.3. The second dual L1(�)∗∗. In this last section, we prove some results
concerning (weakly) compact multipliers of the second dual L1(�)∗∗ endowed with
the Arens products.

Recall that for m, n ∈ L1(�)∗∗ and x ∈ L∞(�), the left Arens product m�n ∈
L1(�)∗∗ is defined via 〈m�n, x〉 = 〈m, n�x〉, where n�x = (ι ⊗ n)�(x) ∈ L∞(�).

For every m ∈ L1(�)∗∗ we denote by R�
m and L�

m the corresponding right,
respectively, left multiplication operator by m.

For any m ∈ L1(�)∗∗, R�
m is weak*–weak* continuous. The left topological center

of L1(�)∗∗ is defined as

Zt(L1(�)∗∗,�) = {m ∈ L1(�)∗∗ : L�
m is weak* continuous on L1(�)∗∗}.
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The right Arens product �, and the corresponding right topological center
Zt(L1(�)∗∗,�) are defined similarly. It is known that

L1(�) ⊆ Zt(L1(�)∗∗,�) = {m ∈ L1(�)∗∗ : L�
m = L�

m} ⊆ L1(�)∗∗.

The algebra L1(�) is said to be strongly Arens irregular (SAI) if

Zt(L1(�)∗∗,�) = L1(�) = Zt(L1(�)∗∗,�).

It is well-known that for every locally compact group G, L1(G) is SAI (cf. [18]).
The following observation shows that unlike the classical case, in the general

setting of locally compact quantum groups, RM{(L1(�)∗∗,�)} and LM{(L1(�)∗∗,�)}
may contain elements other than multiplication operators.

PROPOSITION 5.6. Let � be a locally compact quantum group. Then the following
hold:

(1) � is co-amenable if and only if RM{(L1(�)∗∗,�)} = L1(�)∗∗.
(2) � is co-amenable and LUC(�) = L∞(�) if and only if

LM{(L1(�)∗∗,�)} = L1(�)∗∗.

Proof. (1) � is co-amenable if and only if (L1(�)∗∗,�) is right unital. So, if
RM{(L1(�)∗∗,�)} = L1(�)∗∗, then L1(�)∗∗ is unital, and therefore � is co-amenable.
Conversely, suppose � is co-amenable, and suppose that e ∈ L1(�)∗∗ is the right unit.
Then, T(n) = T(n�e) = n�T(e). Thus, T = R�

m for m = T(e).
(2) According to [12, Theorem 2.4.(ii)] LUC(�) = L∞(�) if and only if (L1(�)∗∗,�)
is left unital. Suppose that e ∈ L1(�)∗∗ is left unit. Then, T(n) = T(e�n) = T(e)�n.
Thus, T = L�

m for m = T(e). �
PROPOSITION 5.7. Let � be a locally compact quantum group and let T be a

weak*–weak* continuous left multiplier of (L1(�)∗∗,�). Then T(Zt(L1(�)∗∗,�)) ⊆
Zt(L1(�)∗∗,�). In particular, if L1(�) is SAI, then T(L1(�)) ⊆ L1(�).

Proof. Let m ∈ Zt(L1(�)∗∗,�). Then, L�
m is weak*–weak* continuous on L1(�)∗∗.

So L�
T(m) = T ◦ L�

m is weak*–weak* continuous and hence T(m) ∈ Zt(L1(�)∗∗,�). �
In particular, the above proposition implies that for a locally compact group G,

if a left multiplier of (L1(�)∗∗,�) is an adjoint map, then it is a second adjoint map,
hence an element of M(G).

This fails if move one level up to multipliers of the third dual L1(�)∗∗∗ [21].

COROLLARY 5.8. Let � be a locally compact quantum group and let T be
a weak*–weak* continuous weakly compact left multiplier of (L1(�)∗∗,�). Then,
T(L1(�)∗∗,�)) ⊆ Zt(L1(�)∗∗,�). In particular, if L1(�) is SAI, then T(L1(�)∗∗) ⊆
L1(�).

Proof. Since T is weak*–weak* continuous and weakly compact, it is weak*–
weak continuous, and since Zt(L1(�)∗∗,�) ⊆ L1(�)∗∗ is weak* dense, the range
of T is a subset of T(Zt(L1(�)∗∗,�))

−w
. Hence, by Proposition 5.7, T(L1(�)∗∗) ⊆

Zt(L1(�)∗∗,�). �
Let � be a co-amenable compact quantum group. Suppose that e ∈ L1(�)∗∗ is

a right unit. Then R�
e = id : L1(�)∗∗ → L1(�)∗∗. Thus, in contrast to the case of
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L1(�), compactness of � does not imply weak compactness of every right multiplier
of L1(�)∗∗.

But we have the following generalization of Corollary 4.7, which also generalizes
[23, Theorem 3.8].

THEOREM 5.9. A locally compact quantum group � is compact if and only if there
is a weakly compact right multiplier (equivalently, left multiplier) T of L1(�)∗∗, and
m ∈ L1(�)∗∗ such that T(m) ∈ L1(�) and 〈T(m), 1〉 �= 0.

Proof. For every ω ∈ L1(�) we have

RT(m)(ω) = ω � T(m) = T(ω�m) = T ◦ Rm(ω).

Since T is weakly compact, so is its restriction to L1(�). Therefore, RT(m) = T ◦ Rm is
weakly compact on L1(�), and since 〈T(m), 1〉 �= 0, � is compact by Corollary 4.7. �

REMARK 2. Let � be an amenable locally compact quantum group with the two-
sided invariant mean m ∈ L1(�)∗∗. Then, the map n �→ n�m = 〈1, n〉m on L1(�)∗∗ has
rank one, and hence is compact.

Thus, Theorem 5.9 does not hold if we remove the assumption of T(m) ∈ L1(�).
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