
18 
D-branes, gravity and gauge theory 

As we learned in section 10.2, there are effectively two descriptions of 
the low energy dynamics of branes. One description uses the collective 
dynamics of the effetive world-volume field theory. In the case of N co­
incident D-branes, this is captured in string theory by the open string 
sectors which give a U(N) gauge theory with sixteen supercharges. The 
other description treats the brane as a soliton-like source of the various 
low energy closed string fields in the superstring theory. As such it has a 
description in terms of a classical solution of the low energy field equa­
tions. In both cases, we must remember that there is a whole tower of 
stringy dynamics which sits on top of this low energy physics, and we 
must understand in which situations this tower can be made irrelevant, 
or at least kept under control by a sensible expansion. To control string 
loops, we must work in a regime where 98 is small, so that we can trust the 
classical action that we wrote down for the supergravity. Similarly, work­
ing in the 0:' ----+ 0 limit ensures that we can safely ignore the possibility 
of the massive string states introducing corrections to our supergravity, 
and in the open string sector, that the truncation to gauge theory of the 
full Born-Infeld, etc., action, is sensible. In this chapter, we will follow 
this limit quite some way, and the two complementary descriptions will 
lead to a sharp statement of a duality between two traditionally disparate 
fields: large N gauge field theory and gravity. This is a natural and logical 
outcome of many of the gauge theory and geometry connections we have 
already been noticing throughout this book. 

440 
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18.1 The AdS/eFT correspondence 

18.1.1 Bmnes and the decoupling limit 

We have already learned from our moduli space probe computations that 
the specialisation of the results to gauge theory can be achieved by tak­
ing ex' ----+ 0 while keeping finite some characteristic gauge theory quan­
tity of interest, such as a typical vacuum expectation value of a mass­
less 'Higgs' field. In geometries already considered, this corresponded to, 
for example, keeping fixed a scaled radial coordinate u = r / 0:' as we 
send ex' ----+ 0, which also meant that r ----+ O. In other words, we must 
approach the core or horizon of the solution closely. In these limits, 
we found that the remaining supergravity quantities which survived the 
limit in combinations have physical meaning in the gauge theory on the 
probe, such as the gauge coupling, etc. Let us see if we can take this 
further. 

Let us consider the case of the extremal D3-brane, initially. At low 
energy, on the world-volume (ignoring the overall U(I) corresponding 
to the centre of mass) there is a U (N) gauge theory with N = 4 su­
persymmetry in four dimensions, i.e. sixteen supercharges. The gauge 
coupling is g?M = 2TIgs . The gauge multiplet contains the vector, AIL' 
six scalars cPi, i = 1, ... , 6 (representing the transverse motions), and 
four two-component Weyl fermions, Aa , a = 1, ... ,4, the fermionic su­
perpartners of the eight physical bosonic degrees of freedom. There is a 
SO(6) ':::::' SU(4) R-symmetry under which the scalars transform as the 6 
and the fermions transform as the 4. The theory is conformally invariant, 
(i.e. it has vanishing p-function) with the conformal group being SO(2, 4), 
which contains the Poincare group, the dilatations, etc., as discussed in 
sections 3.1 and 10.1.9. 

The low energy supergravity solution is: 

(18.1) 

where /L = 0, ... ,3, and i = 4, ... ,9, and the harmonic function H3 is 

(18.2) 

We are instructed to send ex' ----+ 0, and hold a quantity u = r / a' fixed. 
This limit focuses on the neighbourhood of the horizon of the brane, and 
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442 18 D-branes, gravity and gauge theory 

a computation gives the following metric27o : 

ex' 
*dC(4) 

where L2 

We have written it such that we can see the lengths measured by the 
metric in units of the string length. 

From our work in section 10.1.9, we recognise this solution as the metric 
of AdS5 x S5, where the cosmological constant and the radius of the sphere 
is set by £2 = ex' )29?MN, a combination ofthe supergravity /string theory 
parameters which gives the gauge coupling. Just as in the case of the 
Reissner-Nordstrom horizon, the near-horizon geometry of the D3-brane 
is a smooth 'throat' geometry, with size set by the charge of the solution. 
Since, as was discussed in chapter 10, AdS5 x S5 is a maximally symmetric 
solution, just like Minkowski space, we see that the extremal D3-brane is 
an interpolating soliton solution, like extremal Reissner-Nordstrom65 (see 
insert 1.4). The extremal M-brane solutions of section 12.6.1 also share 
this property68. 

Let us observe that the limit of small r is also a sensible restriction to 
low energy from the point of view of supergravity. Recall an effect which 
is familiar from considerations of ordinary gravity solutions such as black 
holes. There is a redshift effect, which means that the energy, as measured 
at asymptotic infinity, of a signal originating at radius r is decreased due 
to a multiplicative factor Jgtt(r) = H:;1/4, arising from having to climb 
out of the gravitational well produced by the solution. This redshift is 
infinite as r ---+ 0, and so the throat is decoupled from the asymptotic 
regime in the low energy limit. 

Now we should ask about the regime of validity of this geometry. We 
have to examine the amount of curvature this solution has, and this is set 
by the size of a typical squared curvature invariant, R2. We have sent a' 
to zero and also are keeping g8 small, to remain in the supergravity regime 
(string tree level). Looking at the essential controlling function (18.2), we 
see that we have one more parameter we can adjust, and this is N. If we 
make N large, we can keep the curvatures low. More properly, if we keep 
the effective coupling A = g?M N large enough, we can ensure that we 
stay at closed string tree level and decouple the higher string modes by 
sending g8, a' ---+ O. Notice that this limit is the regime that open string 
and hence gauge theory perturbation theory breaks down. So we have 
a useful complementarity. The large N, strong 't Hooft coupling limit of 
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the gauge theory has a description in terms of the supergravity solution 
above. This is the 'AdS/CFT correspondence,270, 271, 272. The corrections 
to this in a 1 IN expansion are the usual stringy loop corrections to the 
supergravity. In fact, the string coupling is to be identified with liN, just 
as was anticipated long ago in general terms for gauge theories at large N 
(see insert 18.1). We have a concrete realisation of this conjectured string 
theory as type IIB on AdS5 x S5. Notice that the SO(4,2) and SO(6) 
isometries of each space become the conformal group and the R-symmetry 
of the gauge theory. 

Before we go any further, let us therefore compute the five dimensional 
Newton constant, G5 in terms of our compactification on an S5 of radius g. 
We get 1/G5 = (Vol(S5)g5)/GlO. Looking at our expression for GlO in 
equation (7.44), and the one for g in equation (18.3), it is prudent to 
substitute for g8, giving our first precise entry in the AdS I eFT dictionary: 

'ITg3 

G5 = 2N2' (18.4) 

since the volume of a unit S5 is 'IT3. This will be useful to us many times 
later, since we will want to convert gravitational quantities to gauge theory 
ones. Notice that this formula also confirms for us in five dimensional 
terms that for fixed string length, the large N limit keeps us at tree level 
in the effective string theory, and hence just gravity. The effective closed 
string coupling is geff rv liN. 

18.1.2 Sphere reduction and gauged supergravity 

We have arrived at a remarkable connection between a particular large N 
gauge theory (pure N = 4 supersymmetric D = 4 SU(N)) and a trun­
cation of type IIB string theory on AdS5 x S5. For many purposes, it is 
useful to think of this as simply a five dimensional theory, obtained by the 
analogue of Kaluza-Klein reduction on S5. The resulting five dimensional 
theory is in fact a five dimensional N = 8 'gauged supergravity', with 15 
vector fields acting as gauge bosons of an SO(6) gauge symmetry. There 
are in fact 42 scalars in the theory, which in general are charged under 
the SO(6). 

One way to think of how to arrive at the gauged supergravity theory 
and the resulting solution we are studying is as follows302 . Start with the 
T 5 reduction of type IIB, which gives an N = 8 theory in five dimensions 
with a global E6(6) symmetry. The 42 scalars ¢i in the resulting theory 
live on the coset E6(6)IUSp(8). We discussed this theory in the context of 
V-duality in section 12.7, where we saw that wrapped branes filled out the 
various multiplets of the symmetry. Starting with this theory, it is possible 
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Insert lB. 1. The large N limit and string theory 

Quite general considerations301 can lead to a search for a string the­
ory description of gauge theory at large N. In the commonly used 
scaling, a power of gYM is absorbed into the fields in order to write 
the Lagrangian as £;v -TrF2/(49?M)' and this is the only appear­
ance of g?M. So there is an overall NI A (where A = g?MN is the "t 
Hooft coupling') in front of the entire Lagrangian. Hence, vertices 
in Feynman graphs come with a factor N, while propagators come 
with liN. Feynman graphs are drawn with a double line, one line 
carrying an index in the fundamental, the other an antifundamental: 
the full propagator is in the adjoint. (This might remind the reader 
of open string diagrams of chapter 2.) A closed loop will contribute 
an N, since a free index can run over all its N values. The reader 
might like to consider some vacuum graphs (appropriate to any field 
theory with adjoint fields): 

A graph with E edges (propagators), V vertices (interactions) and 
F faces (closed loops) can be drawn on a surface of Euler number 
X = F - E + V = 2 - 2h. The second equality is familiar from 
chapter 2, relating to the genus (number of handles h) of a closed 
Riemann surface. Overall, a graph comes with a factor NX and is 
some polynomial in A, and so planar (sphere) diagrams dominate at 
large N, followed by toroidal, etc. As this is reminiscent of a closed 
string theory diagram of the same topology, this suggests the identi­
fication g8 ;v liN. With reasoning along these lines, it was suspected 
that there might be stringy descriptions of large N gauge theories, 
where the string coupling is related to N as above. The difficulty 
was trying to find such a string theory. It surely could not be one of 
the strings used for 'theories of everything', since those would be too 
simple, it was thought. Now we see that we can use such strings, but 
propagating on interesting spacetimes, as we shall uncover. 
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to make some of the global symmetry local, gauging by letting some of the 
vectors of E6(6) enter into the covariantised versions of the derivatives. In 
fact, to achieve gauge invariance, such a procedure ultimately leads one 
to go beyond minimal coupling and generate potentials for the scalars, 
and the largest subgroup that can be consistently gauged turns out to 
be SO(6) C E6(6)' There is a non-trivial potential, V(¢i), for the scalars, 
coming from the non-minimal coupling procedure, and the effective theory 
is of the form (looking just at the bosonic gravity and scalar sector): 

(18.5) 

AdS5 with the particular value of the cosmological constant A = -6/ p2 
and with an SO(6) gauge symmetry is a very special solution to this. It is a 
fixed point for the scalars, and so 8¢d 8x/1 = 0 and they all vanish ¢i = 0, 
and so SO(6) is preserved, since there are no non-zero fields charged under 
it in this case. The value of the potential is V(¢i = 0) = -12/g2 and so 
we have: 

(18.6) 

for which the maximally symmetric solution is AdS5 with A = -6/ g2. 
This way of thinking of AdS is quite useful, since it leads immediately 

to an intuitive understanding of what is going on in the gauge theory in 
more complicated situations we will encounter in chapter 19. 

The other way to think of our SO(6) symmetric solution is in ten di­
mensional terms, which is how we began. However, it can be thought of 
as a Kaluza-Klein truncation of the ten dimensional theory by placing it 
on an S5. The ansatz that is used is that the five-form F(5) is set by some 
constant times the volume five-form E(5) of the S5: 

This is the 'Freund-Rubin ansatz '19, and with this choice, the ten dimen­
sional equations of motion decompose into two sectors: 

4 
Rmn = + g29mn, 

(with IL, v having Lorentzian signature (- + + + +) and m, n having 
Euclidean (+ + + + + )) which is the precise generalisation of that which 
we saw happen for the Reissner-Nordstrom solution in section 10.1.11. 
The maximally symmetric solutions are of course AdS5 and S5. 
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18.1.3 Extracts from the dictionary 

Recall that we identified the scaled radial coordinate u as representing an 
energy scale in the gauge theory. It is natural to therefore to consider the 
limit u ----+ ° as the infra-red (IR) and u ----+ 00 as the ultra-violet (UV). We 
must not forget that our theory is defied as strongly coupled even in the 
UV, since it is conformal, and we must keep).. = g?MN large to remain 
within gravity. 

The limit u ----+ 00 defines a natural boundary of AdS. In the coordinates 
used in (18.3) any radial slice is in fact four dimensional Minkowski space, 
but u = 00 is special for us, since on the one hand it takes a finite time 
for massless particles to propagate from u = 0, reflect at u = 00, and 
return. On the other hand, the UV is the natural limit in which to discuss 
intuitive objects in gauge theory, like pointlike operator insertions. 

Notice that large u seems like an IR limit for the AdS side of the duality, 
while it is UV on the side of the CFT. This is a feature of what is known 
as the 'UV /IR correspondence'. (See also the discussion before equation 
6.1.) 

When the common phrase 'the dual theory lives on the boundary', or 
some variation of it, is used, it should be understood that it is a short­
hand for this UV identification. There are many properties (or quantities 
within) the dual which cannot unambiguously be placed at the boundary, 
and so we should be careful. It is better to think of the dual theory as 
being everywhere*, and a slice at some value of u simply focuses on the 
effective theory obtained by working at a cutoff defined by the energy u, 
and the background geometry has metric (/LV = (£2/u2)h/Lv, where h/Lv is 
the metric induced on the boundary by restricting the five dimensional 
metric to constant u. 

Recall that our coordinates inherited from the brane solution put us on 
AdS in local coordinates. We know from section 10.1.9 that we can con­
sider this as a local patch of global AdS5 , and so it is natural to consider 
the same field theory dual to AdS in these coordinates. For example, for 
global AdS5 we write: 

d,' ~ - (1+ ~:) dt' + (1+ ~:) -1 dr' + r'dOl. (18.7) 

Going to the radial slice at infinity, we see that the dual theory is on a 
background lR x 8 3 with metric ds 2 = -dt2 +£2dD§, which is the Einstein 
static universe. The local coordinates before had us studying a system for 
which the dual is on lR x lR3 . There is the temptation to be confused at 

* Frustratingly, perhaps, even better is not to think of the dual gauge theory as any­
where in the five or ten dimensional spacetime at all. It is simply the dual. 
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this point, since we are supposed to think of the physics as independent 
of the coordinates, but somehow this seems to matter here. In fact, we 
must recall that in making the choices of coordinates here, we are also 
choosing a specific time slicing. This means that we are making choices 
which will affect our definition of the Hamiltonian of the theory. Further, 
since the radial coordinate seems to refer to the energy scales within the 
dual theory, being able to choose alternative radial foliations would seem 
to make good physical sense, since it refers to a choice of regulator at a 
given energy scale. 

A large part of the rest of the dictionary of the AdS / CFT correspon­
dence comes from equating the partition functions of the two theories: 

(18.8) 

Here the quantities cPO,i have two interpretations: On the gravity side, 
these fields correspond to the boundary values (i.e. at r = 00) for the bulk 
fields cPi which propagate in AdS. This includes not just the 42 scalars, 
but all fields, including the graviton and the gauge fields. On the field 
theory side, the cPO,i correspond to external sources or currents coupled to 
operators in the CFT. We can then obtain insertions of these operators by 
differentiation of the partition function with respect to the sources. This 
fits rather nicely, since all fields on the gravity side have specific SO(6) 
gauge charges, which matches the corresponding R-charge of the inserted 
operator. 

In fact, there is a specific271 , 272, 274 relation which can be derived be­
tween the dimension ,6. of an operator which a scalar couples to and the 
mass m of the scalar in the bulk spacetime. As a solution to the wave 
equation in AdS5 , a scalar cPi(r, x)'s asymptotic behaviour is in fact: 

(18.9) 

where 
,6.i = 2 + )4 + m;f2. (18.10) 

In fact, the first term is a non-normalisabile solution while the other term 
is normalisable. They both have a meaning in the theory. The first term 
is interpreted as switching on or 'inserting' the operator, while the latter 
term has the interpretation as controlling the vacuum expectation value 
of the operator. We shall see this interpretation in action with specific 
examples later on. In fact, there is a generalisation of this to the case of 
a p-form field in AdSD . It couples to a (D - p - I)-form operator and the 
dimension is: 

,6. D-I-2p {(D-I-2P)2 2f2 ( )}1/2 
= 2 + 4 +m -pp-D+l (18.11) 
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We list how the basic 42 scalars are interpreted in the gauge theory in 
table 18.1. In the table, the trace is over the adjoint of the gauge group, 

Table 18.1. An extract from the dictionary of the AdS/CFT correspondence 

Scalar m"Lp Operator SO(6) charge ~ 

<I> 0 Tr [*F 1\ F] 1 4 
C(O) 0 Tr [F 1\ F] 1 4 

Cf?l -3 Tr[A(aAb)] 10 3 

-3 Tr[),(a),b)] 
-

3 Cf?l 10 

Cf?2 -4 Tr[<p(i<pj)] - i 8ijTr [<Pk<Pk] 20 2 

under which every field transforms. In the first two lines we recognise our 
two friends from ten dimensions, the dilaton and the R-R scalar. As is 
to be expected, the dilaton couples to the basic Yang-Mills Lagrangian 
of dimension four, since its asymptotic value sets the string coupling (a 
fact we know from way back in chapter 2), and g?M = 27[gs. Similarly, we 
know that the R-R scalar couples to the topological term of dimension 
four, controlling instanton, from our studies in chapter 9. These fields were 
not involved in the sphere reduction and so do not have and non-trivial 
SO(6) charges. 

The rest of the 42 scalars couple a different class of operators. The first 
set, with m 2 = -2/ f2 couples to a symmetrised product of the scalars <Pi, 
with the trace removed. 

N.B. The reader may be disturbed by the fact that the scalars can 
have a negative mass squared. It turns out that the presence of nega­
tive cosmological constant requires us to reexamine the issue of stable 
scalar fluctuations about the vacuum. The result is that there is a 
window of squared masses below zero up to the value -4/ f2 which is 
stable. This lower bound is the 'Breitenlohner-Freedman' bound303 , 

and its negativity is a crucial feature which helps the dictionary to 
work. 

Recalling that the scalars are in the 6 of SO(6), a little group theory 
confirms that 6 ® 6 = 20 EEl 15 EEl 1, where the latter is the trace, and 
the previous two are the symmetric and antisymmetric combinations. In 
fact, there is a whole tower of Kaluza-Klein harmonics which can be 
made by such symmetrised products of the scalars. The reader might 
recognise these from group theory as the spherical harmonics of S5, which 
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are indeed made this way most commonly. These operators, which are the 
'chiral primaries' of the conformal field theory, couple to the basic tower of 
scalars which arise in the Kaluza-Klein spectrum with these same SO(6) 
transformation properties. 

The other set of scalars with m 2 = -3/£2, couple to an antisymmetrised 
product of the fermions Aa. These transform in the 4. Representation 
multiplication gives 4 Q9 4 = 10 EEl 6, and since the Aa are fermions, it is 
the 10 which is picked out. A similar structure exists for the ),a, which 
are in the 4, and hence give the 10. 

Correlation functions of the various operators in the CFT can be deter­
mined through calculation involving the dynamics of the various scalars 
to which they couple, propagating in the AdS spacetime. This is a very 
powerful technique which we do not have time to explore here. 

Just as we did in the case of black hole studies at the beginning of 
chapter 17, one can consider evaluating the AdS partition function in a 
saddle-point approximation: 

e-hdS(<Pi) = (ef <PO,i Oi ) eFT' (18.12) 

where IAdS(¢i) is the classical gravitational action as a functional of the 
(super)gravity fields, and Oi are the dual CFT operators. Hence, in this 
approximation the AdS action becomes the generating function of the 
connected correlation functions in the CFT271 , 272. This framework is also 
naturally extended to considering CFT states for which certain operators 
acquire expectation values by considering solutions of the gravitational 
equations which are only asymptotically AdS273 . We shall do that below, 
but first we will explore a little of the technology of evaluating the action. 

18.1.4 The action, counterterms, and the stress tensor 

We need to make sense of the path integral of gravity on AdS, given on 
the left hand side of the correspondence dictionary in equation (18.12). 
This returns us to the issue of calculating the action of the theory, from 
which we can compute such quantities as the stress-energy-tensor, and 
if (as we did for asymptotically flat black holes in chapter 17) we were 
to Euclideanise, various thermodynamic quantities such as the energy, 
entropy, etc. 

Recall from earlier discussions in chapter 17 that the action in D di­
mensions is defined as follows: 

1 J D 1 i D-l 11 hulk+Isurf=- G d xv'9(R-2A)--G d xvhK, 
167T 5 M 87T 5 aM 

(18.13) 
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where, as we've seen in section 10.1.9, the cosmological constant is related 
to the length scale f! by 

A= _ (D-l)(D-2) 
2jJ2 . 

Recall that the second integral is the Gibbons-Hawking boundary term, 
which is required so that upon variation with metric fixed at the bound­
ary, the action yields the Einstein equations. Here, K is the trace of the 
extrinsic curvature of the boundary aM as embedded in M, which was 
discussed in insert 10.2. 

Remember also that both of these expressions are divergent because 
the volumes of both M and aM are infinite (and the integrands are non­
zero). The approach we used in section 17.2, (there, the first term vanished 
and the second term was divergent) to avoid this problem is to perform 
a 'background subtraction', producing a finite result by subtracting from 
equation (18.13) the contribution of a background reference spacetime, so 
that one can compare the properties of the solution of interest relative 
to those of the reference state. In our computation we ensured that the 
asymptotic boundary geometries of the two solutions can be matched in 
order to render the surface contribution finite. 

In AdS, we can in fact follow a different approach, which has a natural 
meaning in the dual gauge theory304. We can supplement the action by 
a finite set of boundary integrals which depend only on the curvature 
scalar R (and its derivatives) of the induced boundary metric h/Lv, which 
itself diverges as r ---+ 00. These integrals look like a family of counterterms 
in the dual field theory, and with appropriate coefficients, they cancel 
the divergences (IR in AdS, UV in the gauge theory) as r ---+ 00, giving 
a intrinsic definition of the action for asymptotically AdS spacetimes, 
with no reference to a background spacetime. Calling the set of boundary 
integralst let, we define the complete action to be I = hUlk + lsurf + let. 

One of the useful quantities which we will extract from the action is 
the stress tensor, which is obtained by the standard expression: 

T/LI/ = _2_~ = lim (r2 _2_~) (18.14) 
A {YI/LI/ r-+oo jJ2 vi=h 8h/L1/ ' 

where in the second expression we have used h/LI/ which is the metric on 
the boundary induced by restricting the bulk metric by setting r to a 

t That this construction is unique to asymptotically AdS spaces is apparent because 
the AdS curvature scale g is essential in defining the counterterms. We are excluding 
non-polynomial terms, which could be introduced in the absence of a cosmological 
constant305 , giving a definition that is applicable to space times with other asymptotic 
behaviour. 
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constant. In the first expression, [/w is the metric obtained by removing 
a conformal factor r2 /£2 to get the dual field theory's natural metric in 
the UV. From this stress-tensor we can extract quantities like the energy 
density, etc., in the usual way, for example p = TfLVufLuV, where u fL are 
the components of a timelike unit vector. 

It turns out that the counterterm action is304, 306: 

-- xvn --+ R 1 i dD - 1 I1h [D - 2 £ 
81TG5 aM £ 2(D - 3) 

£ ab D - 1 2 
3 1 + 2(D - 5)(D - 3)2 (Rab R - 4(D _ 2) R ) + .... 

(18.15) 

Here, Rand Rab are the Ricci scalar and Ricci tensor for the bound­
ary metric, respectively. The three counterterms are sufficient to cancel 
divergences for D ~ 7. 

Let us consider an example. Take AdS5 in global coordinates, as given 
in equation (18.7). As stated beneath that equation, the metric [fLV is 
that of the Einstein static universe of radius £. Computing with the first 
two counterterms in equation (18.15), the stress tensor becomes: 

(18.16) 

where G ij refer to the metric components in the angular directions for an 
S3 of unit radius. In the r ---+ 00 limit we see that we get a finite result, 
which can be written in the suggestive form: 

1 JV2 
TfLV = 641TG5£ (4ufLuV + [fLV) = 321T2£4 (4ufLuV + [fLV) , (18.17) 

using the conversion formula (18.4). This is the standard form (see equa­
tion (10.23)) for a conformally invariant perfect fluid's stress tensor (since 
it is traceless) of density p = 3p in four dimensions with a spacetime of 
metric [fLV' The overall prefactor is p/3, as written. We have used the con­
version formula (18.4) to change gravitational quantities to field theory 
ones. Note that the stress tensor is traceless, as expected for a conform ally 
invariant theory. The field theory is in an S3 box of radius £, and so we 
can integrate the energy density to give the total energy (the dual to the 
spacetime's gravitational mass) which is: 

31T£2 3JV2 
E=-=-

32G 16£ 
(18.18) 
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In fact, this result matches expectations from field theory304. Since it 
is defined in a box, there is a Casimir energy. For free fields, the Casimir 
energy on 8 3 x R, the Einstein static universe of radius .e, may be found 
in the literature293 to be: 

1 3(JV2 - 1) 
ECas = --0 ( 4no + 17nl/2 + 88nd = .e' 960r, 16, 

(18.19) 

where no denotes the number of real scalars, nl/2 is the number of Weyl 
fermions, and nl the number of vectors. We have inserted the correct 
values for the dual 8U(JV) gauge theory, no = 6(JV2 -1), nl/2 = 4(JV2 -1) 
and nl = JV2 -1, giving an expression which agrees with the result (18.18) 
that we got from the stress tensor in the large JV limit. (See also insert 17.2 
for comments on the AdS3 case.) 

18.2 The correspondence at finite temperature 

We arrived at the correspondence between the supersymmetric gauge 
theory and pure AdS by taking the near horizon limit of the extremal 
D3-brane solution. It is natural to try to give an interpretation of the 
non-extremal solution. A key difference between the two is that the latter 
solution is at finite temperature. As we shall see, these properties relate 
to those of the field theory. 

18.2.1 Limits of the non-extremal D3-brane 

Taking the decoupling limit of the solution given in equation (10.34) for 
p = 3, we see that a3 ---+ 1 and so H3 ---+ .e4/r4 again, and so we can write 
the solution as307, 271: 

ds' ~ - (~: - P~~2 ) dt' + ~: ~ dri + (~: - ;;:' ) -1 dr' + I'dfll, 

(18.20) 
1 

where .e2 = a§ T§ ---+ T§. This is in fact the AdS5-Schwarzschild black 
hole, in local coordinates (its horizon is JPi.3 instead of 8 3), times an 8 5 of 
radius .e. It is sometimes called a 'flat' black hole. In fact, its mass and 
temperature are easily computed to be: 

37Tr4 

M = 8G5;2' rH 
T = 7T.e2 ' (18.21 ) 

Interpreting the mass as an energy in the field theory271, we see that 
in fact that there is a familiar energy-temperature relation following the 
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Stephan-Boltzmann law: 

(18.22) 

18.2.2 The AdS-Schwarzschild black hole in global coordinates 

It is easy to write a global version of the AdS-Schwarzschild black hole 
solution: 

2 r ro 2 r ro 2 2 2 ( 2 4 ) ( 2 4 )-1 
ds = - 1 + jJ2 - jJ2r2 dt + 1 + jJ2 - jJ2r2 dr +r d03 , (18.23) 

and we have relabelled rH as ro since this will in general not be an horizon 
radius. A computation of the stress tensor gives: 

Ttt = 

and so: (18.24) 

In the last line we have taken the r ---+ 00 limit and put it into the perfect 
fluid form. The mass-energy can be written as 

(18.25) 

which after conversion using equation (18.4), gives the Casimir energy we 
derived before, since we are in the same box, together with an energy over 
extremality which matches the energy density derived for the flat black 
hole in the previous subsection. 

The horizon of the solution is located at the largest root, r +, of the 
equation GTT = 0: 

=0 - 1 (J 4 2 2) r + - "2 f! + 4ro - f! . 

(18.26) 

Notice that r + i- ro for the global case, in general. The temperature of 
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454 18 D-branes, gravity and gauge theory 

the solution can be computed to be: 

(18.27) 

This expression is very interesting, since for a given temperature T, there 
are in fact two values of r + which solve the above relation, as is clear from 
figure 18.1. Notice that there is a minimum temperature below which 
there are no black hole solutions. We see also that there are two classes 
of black hole solutions. There is one branch which, for large r +, the tem­
perature goes linearly with the radius. The other branch goes at small r + 
as the inverse cube of r +. These 'small' black holes have the familiar be­
haviour of five dimensional black holes in asymptotically fiat spacetime, 
since their temperature decreases with increasing size. The term 'small' is 
appropriate, since they are smaller than the characteristic size set by the 
AdS scale /;, and so they have the characteristics of the asymptotically 
Minkowskian holes. Similarly, the 'large' black holes are obtained when 
/; is small compared to the horizon size. These cases are most apparent 
when taking the large or small /; limit of the equation (18.26). The large 
black hole limit gives the case r + = ro (which we previously called rH) 
and the linear temperature behaviour seen in the case of the planar black 
holes obtained in local coordinates in equation (18.21). 

0.5 

0.4 

f3 0.3 

0.2 

0.1 

3 4 6 

Fig. 18.1. The inverse temperature vs. horizon radii, r +, for AdS black 
holes. There are two classes of holes, small and large, and a minimum 
temperature. 
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18.3 The correspondence with a chemical potential 

It is extremely natural, given what we saw in the previous sections, to 
ask about the role of charged black holes in this AdS scenario. There 
are SO(6) gauge fields in the supergravity and so a black hole can be a 
charged source of them. We will focus on the Abelian case, and the U(I)3 
Cartan subalgebra is the maximal case. It is easy to see what in the dual 
gauge theory such a black hole would correspond to. An electric field will 
be supported by a potential of the form At rv r-2. Since this is a rank one 
massless field in AdS with this asymptotic, it must correspond, by the 
dictionary of equation (18.11), to a dimension four operator or current in 
the gauge theory. This is just what we would expect for an R-current, to 
which the gauge fields correspond. In other words, putting in a charged 
source is equivalent to switching on an external current source or chemical 
potential in the theory. It is instructive to construct the precise geometry, 
as our first example of non-trivial ten dimensional geometries which are 
dual to gauge theory. 

18.S.1 Spinning DS-branes and charged AdS black holes 

Given that the SO(6) R-charge comes from Kaluza-Klein reduction from 
ten dimensions on an S5, it is natural to guess that the appropriate geom­
etry to seek is one which has some momentum in the compact directions 
which will be equivalent to the conserved R-charges in the theory. The 
internal velocities - which couple to momenta in a canonical formalism -
will be the chemical potentials in the gauge theory, and hence conjugate 
to conserved R-charges308, 309. 

So we seek a 'spinning' D3-brane solution308 , 311. There are six dimen­
sions transverse to a D3-brane, and so we have three independent planes 
in which a rotation axis can be placed, to define three different angular 
momenta. 

Let us first review some geometrical parameterisations which will be 
usefu13l2 . Using the angles e, 1j; on an S2, we may introduce three direction 
cosines /Li, with L:i /Lt = 1,0 < e ~ 27T, 0 < 1j; ~ 7T: 

/Ll = sin e, /L2 = cos e sin 1j;, /L3 = cos e cos 1j;. (18.28) 

In terms of these, and three more angles qh, i = 1,2,3, the metric on a 
round S5 of unit radius can be written as follows (0 ~ qJi < 27T): 

3 

dO~ = "5:)d/Lt + /L; d¢;). (18.29) 
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where the functions ,6., H 3 , and Hi are given by 
3 2 4 . h2 P 4 

,6. - 'lJ 'lJ 'lJ """"' fLi H _ rH sm 3 _ a3 r3 
- IL l' L2' L3 ~ 'lJ. ' 3 - 1 + 4 ,6. - 1 + ,6. 4' 

i=l ' Lt r r 
jJ} 

Hi = 1 + ---12, i = 1,2,3. (18.31) 
r 

It will be useful at this point to refer to the expressions given for the boost 
form for the non-extremal solution given in section 10.2.2. The structure of 
the solution can be seen to be closely related to our non-extremal solution 
presented there, the key difference being that there is a deformation of the 
round S5 produced by spoiling the three directions ¢i with deformations 
controlled by the three parameters £i. The SO(6) isometry of rotation 
invariance is broken to U(1)3 generated by the obvious Killing vectors 
a; 3¢i· There are a number of interesting limits of this solution. One of 
them is discussed in insert 18.2, where we find an interesting form to 
which we will return later. 

Most pertinent to this section is the decoupling limit of the solution, 
where we scale the rotation parameters in order to keep them finite in 
the limit. We write r = a'u, rH = a'uH, and since r3 = 0:'27'3, in the limit 
a' -----+ 0, we see: 

1 A2 

sinh P3 and cosh P3 -----+ 
r3 

a' u 2 , 
H 

1 A4 1 r3 
H3 -----+ ---

a,2 u4 ,6.' 

£i 
, 

-----+ a qi, 
2 

Hi -----+ 1 + qi 
2 ' U 

,6.(£i, r) -----+ ,6.(qi, u). (18.32) 
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Insert 18.2. D3-brane distributions 

Particularly interesting is the straightforward extremal limit lh ----+ 00, 

rH ----+ 0, holding rf're2;33 /4 = r§ fixed, giving 

ij) 
e = g8' 

(18.33) 

The terms corresponding to rotation have disappeared, leaving a so­
lution which is supersymmetric311 , 313. It, of course, still has N D3-
branes composing it, but it is not spherically symmetric. The change 
of variables314 : 

Y1 = V(r2 +fI)/L1COS<P1 = V(r2 +fr) sinecos<p1, 

Y2 = V(r2 +fI)/L1 Sin <P1 = v(r2+fI) sinesin<p1, 

Y3 = v(r2+f~)/L2COS<P2 = v(r2+f~) cos e sin'lj; cos <P2, 

Y4 = V (r2 + f~) /L2 sin <P2 = V (r2 + f~) cos e sin 'lj; sin <P2, 

Y5 = v(r2+f§)/L3COS<P3 = v(r2+f§) cos e cos'lj; cos <P3, 

Y6 = V (r2 + f§) /L3 sin <P3 = V (r2 + f§) cos e cos 'lj; sin <P3, 
(18.34) 

places the solution back into the familiar form: 

d 2 H- 1/ 2 ( d 2 d 2 d 2 d 2) H 1/ 2 (d~ d~) 8 = 3 - t + Xl + X2 + X3 + 3 y. y. 

Now, H3 is not of our simple forms discussed in chapter 10. It is still 
harmonic, as it ought to be, and we may write it in the integral form: 

(18.35) 

where the density function P3 - which may be derived implicitly from 
the change of variables (18.34) - encodes a general distribution of 
branes313 , which we shall study in more detail later in section 19.2.4. 
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The last term in the metric in equations (18.30) vanishes in this limit, 
and after some algebra, the metric can be written as: 

ds 2 fA ( -1 2 -1 2 u2 2 2 2 ) d = y ~ -(HIH2H3) f dt + f du + £2 [dxl + dX2 + dX3l 

3 

+ ~ ~Hi (£2dfLT + fLT (£dcPi + (Hi 1 -1)dt)2), (18.36) 

where 

(18.37) 

Now we can consider dimensional reduction to five dimensions of this 
solution. Pulling a factor (HIH2H2)-1/3 into JK puts it into the standard 
Kaluza-Klein form for reduction to five dimensions, and we get: 

d 2 2 
~/ = -(HIH2H3)-2/3 f dt2 + (HI H2 H3)1/3(f-l du2 + ~2 dif· dif), 

Xi = Hi 1 (HIH2H3)1/3, A~ = 1 - Hi 1. (18.38) 

We have two scalar fields from the reduction, since X 1X 2X 3 = 1. There 
are three U (1 ) gauge fields since there are are three independent isometry 
directions, cPi. 

The meaning of this solution might be more apparent if one sets all the 
qi, and hence the Hi, to be equal. Then comparing to equation (17.19), 
we recognise this as a family of charged five dimensional black holes, 
written in isotropic coordinates. One difference is that, just as earlier in 
section 18.2 these are actually 'fiat' black holes, in the sense that the 
horizons are of]]{3 topology. There are spherical and hyperbolic versions 
which can be readily written down. Similarly, there are such generalisa­
tions in the case of the full ten dimensional rotating solution. In the case 
where all of the charges are different, we see that it is a quite general 
family, with three charges under the U(I)3, and two scalar fields. 

They are solutions of a U(I)3 truncation of the N = 8 SO(6) gauged 
supergravity, with action: 

1 J 5 r---r; ( 1 2 1 2 1 ""' -2 i 2 1=- d Xy-G R- -(3cpI) - -(3cp2) - - ~Xi (F) 
167TG5 2 2 4 . 

t 

4 ""' X-I 1 l.LUper).. Fl F2 A3) + 02 ~ i + -E J.w per ).. • 
t.. 4 

z 

(18.39) 

In the above, the gauge fields and their field strengths are labelled 1,2 
or 3 for each of the three U(I) sectors. The final term is a Chern-Simons 
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type term, which only will be non-zero if there are both magnetic and 
electric charges present, which will not be the case here. 

The two scalars Cf?l and Cf?2 are contained in the three Xi, via a gener­
alisation of the exponential ansatz that we used in simpler Kaluza-Klein 
cases. We write them as components of a two-vector, cj5 = (Cf?l, Cf?2), and: 

l~ ~ 
Xi = e-"2 ai ''P, (18.40) 

where the ai sum to zero in order to ensure X 1X 2 X 3 = 1, and we make 
the conventional choice311 : 

(18.41) 

where ai satisfy the dot products ai . aj = 4Dij - i. 

18.3.2 The AdS-Reissner-Nordstrom black hole 

A special case of this is to set all of the angular momenta to be equal, 
qi = q which makes all the Xi = 1, setting all of the scalars to zero. Then 
with Ft2) = F(2)/ V3, the action becomes310, 308: 

1=- 1 Jd5XV-C(R-!F2+12), 
167TC5 4 f2 

(18.42) 

where the cosmological constant is A = -6/ f2 (we omit the Chern-Simons 
term, since we only have electric charges present) and the solution is: 

2 

ds~ = _1-{-2 f dt2 + 1-{(f-l dr 2 + ~2 dx· dx), 

At = 1 - 1-{-1, 

q2 u 2 u4 
1-{ = 1 + 2' f = 021-{3 - 02 H2' r t, t,U 

(18.43) 

As stated before, this is the form of our old friend from chapter 17, 
the Reissner-Nordstrom black hole in five dimensions (17.19), but now in 
anti-de Sitter spacetime and with an horizon with topology JPi.3. We can 
make the global cousin of this which would have a spherical horizon by 
replacing g-2dx· dx) by dO§ and adding a 1 to the function f. We shall 
study this solution shortly308. 

18.3.3 Thermodynamic phase structure 

By changing to a new radial coordinate r, in the same manner in which 
we did for equation (17.19), we write the black holes we have obtained in 
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460 18 D-branes, gravity and gauge theory 

static coordinates in the form in which we have previously done our 
thermodynamic studies. For comparison to the earlier case of AdS­
Schwarzschild in section 18.2, we shall, as promised, work with the spher­
ical cousins, obtained as stated below equation (18.43): 

where 
m q2 r2 

V (r) = 1 - 2 + 4 + IJ2· r r t-

Here, m is related to the mass M of the solution as 

37T 
M= 8Gm. 

The U (1) charge Q is related to q by 

Q _ V37T 
- 87TG q· 

(18.44) 

(18.45) 

(18.46) 

(18.47) 

Let r + denote the largest real positive root of V(r). This defines the 
horizon: 

r~ + /!2r! -/!2mr~ + q2/!2 = o. 
The derivative of V is 

Vi = 51 IJ2 [2r~ + 2mr~/!2 - 4q2/!2] = 52112 [2r~ + r!/!2 - q2/!2] , 
r+t- r+t-

and so for a non-singular horizon we must have 2r~ + r+ /!2 ~ q2/!2. Now, 
as we've seen many times before, VI controls the temperature of the black 
hole via 

(18.48) 

When the inequality above is saturated the horizon is degenerate, (-J di­
verges, and we get the zero temperature extremal black hole+. 

As before, we will choose a gauge in which A is regular at the horizon: 

where (18.50) 

t Note that this extremal case is not supersymmetric, as in asymptotically flat cases. 
The supersymmetric case is m = 2q, and then 

V(r) = ( 1 - rq2 r + ~:, (18.49) 

which is clearly positive everywhere. This means that the curvature singularity at 
r = 0 is naked for this value310 . 
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It is useful to rewrite the temperature in terms of the potential: 

(18.51) 

which will be useful later. Here, <I>c = J3/4. It is useful to observe the 
behaviour of the temperature as a function of black hole size r +, as we 
did previously for the AdS-Schwarzschild case. 

The reader may notice that there are qualitatively two distinct types 
of behaviour, determined by whether <I> is less than or greater than the 
critical value <I>c. In particular, for <I> 2: <I>c, {-J diverges (T vanishes) at 
r~ = g2 (<I>2 / <I>~ -1) /2. This regime of large potential has a unique black 
hole radius associated with each temperature. Meanwhile for <I> < <I>c, (3 
goes smoothly towards zero as r + ---+ O. This latter behaviour is just like 
that we observed in the case of AdS-Schwarzschild in figure 18.1. This 
small potential regime has two branches of allowed black hole solutions, 
a branch with larger radii and one with smaller. Correspondingly, the 
smaller branch of holes is unstable, having negative specific heat. Both 
cases are plotted in figure 18.2. 
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Fig. 18.2. The inverse temperature vs. horizon radii, r +, at fixed poten­
tial for <I> 2: <I>c, <I> < <I>c. The divergence in the first graph (shown with a 
vertical line) is at zero temperature, where the black hole is extremal. 
This divergence goes away for <I> < <I>c, in general, and the curve is similar 
to that of the situation with zero potential. 
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462 18 D-branes, gravity and gauge theory 

We will study the Euclidean section (t ---+ iT) of the solution, at fixed 
temperature set by the period, {3, of the imaginary time. We will work 
with fixed temperature and potential, defining thus the grand canonical 
thermodynamic ensemble using the Euclidean version of the action given 
in equation (18.42). 

In fact, as both spaces we use are asymptotically AdS, it turns out 
that we need not consider the Gibbons-Hawking boundary term, since 
its contributions vanishes. The boundary terms from the gauge field will 
vanish if we keep the potential At fixed at infinity. Imposing the equations 
of motion we can obtain: 

E 1/"5 [F2 8] 
J = 167TG } M d xJ9 6 + jJ2 ' 

(18.52) 

(18.53) 

This is the grand canonical ensemble, at fixed temperature and fixed 
potential. The grand canonical (Gibbs) potential is W = JE / (3 = E - T S -
<I>Q. Using the expression in equation (18.53), we may compute the state 
variables of the system as follows: 

E= ('~;) 0 - ~ C;::) p ~ 8~~5 m ~ M 

(3 (aJE ) _ JE = 27T2r~ = AH and 
a{3 4G5 4G5 ' 

ij) 

S= 

Q= _~ (aJE
) = V37T q. 

{3 a<I> (3 8G5 
(18.54) 

Together, they satisfy: dE = TdS + <I>dQ. 
In order to study the phase structure we must study the free energy 

W = JE / {3 as a function of the temperature. It is shown in figure 18.3. 
The interpretation of this is as follows. At any non-zero temperature, 
for large potential (<I> > <I>e) the charged black hole is thermodynamically 
preferred, as its free energy (relative to the background of AdS with a 
fixed potential) is strictly negative for all temperatures. 

This behaviour differs sharply from the small potential (<I> < <I>e) situa­
tion, which is qualitatively the same as the uncharged case. In that situ­
ation, the free energy is positive for some range 0 < T < Te , and it is only 
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Fig. 18.3. A graph of the free energy vs. temperature for fixed potential 
ensemble. There is a crossover from the cusp behaviour in the case <I> < <I>c 
to the single branch (<I> > <I>c) behaviour. The two branches consisting of 
smaller (unstable) and large (stable) black holes are visible. The entire 
unstable branch has positive free energy while the stable branch's free 
energy goes negative. 

above Tc that the thermodynamics is dominated by AdS-Schwarzschild 
black holes (the larger, stable branch), as their free energy is negative. 

So for high enough temperature in all cases the physics is dominated 
by non-extremal black holes§. This phase represents a sort of 'unconfined' 
phase of the dual gauge theory, while AdS without a black hole is a 'con­
fined' phase271 . There is a lot of evidence for this which we cannot uncover 
here due to lack of space. However, a clear sign of this an examination 
of the behaviour of the physical quantities we have computed, such as 
the energy and entropy. One can take the quantities in equations (18.54), 
converting them to the gauge theory quantities using equation (18.4), and 
find that there is an overall factor N 2 . In an unconfined gauge theory, all 
of the N 2 adjoint degrees of freedom contribute on the same footing, and 
we see this here are an overall factor of N 2 in extensive quantities. 

§ The 1> = 0 special case of this transition, from AdS to AdS-Schwarzschild black 
holes, was studied first by Hawking and Page291 . The more general phase diagram 
was worked out later in the AdS/eFT context308 . 
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At low temperatures, and for <P > <Pc, we have something very new. No­
tice that as we go to T = 0, the free energy curve approaches a maximum 
value which is less than zero. This implies that even at zero tempera­
ture the thermodynamic ensemble is dominated by a black hole. From 
the temperature curve (18.2) it is clear that it is the extremal black hole. 
For <P = <Pc, at T = 0 we recover AdS space, returning to the 'confined' 
phase. So this suggests that even at zero temperature the system prefers 
to be in a state with non-zero entropy (given by the area of the extremal 
black hole)'. 

The resulting thermodynamic phase structure for the fixed potential 
ensemble is summarised in figure 18.4. It represents in the dual gauge 
theory the phase diagram for the introduction of a chemical potential 
into the gauge theory, and there is a phase boundary across which there 
is a first order phase transition to the deconfined phase. It is intriguing 
that this may be a (highly simplified) prototype computation for the phase 
structure of more realistic gauge theories in analogous situations. One can 
imagine the chemical potential here being analogous to baryon number 
in QeD. This would then be an analogue of the finite temperature and 
density phase diagram, a subject of some current experimental interest, at 
the time of writing. Perhaps one future use of this gauge/gravity duality 
might be to model the generic phase structure of more realistic gauge 
theories using black hole and other objects within the gauge dual. On 
the one hand, it seems unrealistic to expect a direct connection, but on 
the other, there may be universality classes of behaviour which are quite 
robust to modification of the details, and so may be captured by studies 
of the sort presented here. 

18.4 The holographic principle 

As we have seen there is a close relationship between the physical prop­
erties of five dimensional AdS backgrounds and those of a four dimen­
sional conform ally invariant gauge theory. It is a remarkable duality, 
and is in fact the sharpest known example of what is called holographic 
behaviour286 , 287: the physics involving gravity in a given number of di­
mensions is conjectured to be completely captured by a non-gravitational 
description in fewer dimensions. 

'If Notice that this T = 0 situation can be seen to display the 'confined' behaviour char­
acteristic of the ordinary zero-temperature phase, despite the presence of the black 
hole. This follows from the fact that the horizon at extremality is infinitely far away 
down a throat. There is the possibility that the extremal black hole might decay away 
by emission of charged quanta, which is possible since it it not supersymmetric, and 
so this T = 0 part of the story should be studied further. 
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18.4 The holographic principle 

AdS black holes 
( deconfined) 
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Fig. 18.4. The phase diagram for charged spherical black holes in global 
AdS. There is a transition from pure AdS to the black hole at finite tem­
perature and potential. In the dual gauge theory, the black holes represent 
a deconfined phase of the theory. There is a boundary across which there 
is a first order phase transition between the two phases. The <I> = 0 axis is 
the Schwarzschild case, with the Hawking-Page transition291 . The T = 0 
axis is the extremal charged case, also confining in the gauge theory. 

The idea of why such a conjectured phenomenon should be a reality 
is motivated by the behaviour of black holes. They seem to represent all 
their degrees of freedom on their horizon, from the point of view of an 
observer who remains outside, and the universal result that their entropy 
is one quarter of the area of the horizon is a precise statement that the 
number of degrees of freedom within the volume that is occupied by the 
black hole is in fact only of order one per unit area of the horizon, as 
measured in Planck units. 

The idea then is that in any quantum theory of gravity, the number of 
degrees of freedom in any volume are again just of order one per unit area 
of the surface surrounding the volume. This is enforced by the expectation 
that an attempt to examine the structure of the theory right down to the 
shortest distances, in order to learn about the microscopic degrees of 
freedom, will eventually probe energy densities which will dynamically 
favour the formation of a black hole, for which we believe the result is 
true. The largest obtainable entropy for a given volume is that held by a 
black hole which fills that volume. This puts an upper limit on the number 
of degrees of freedom as that given by the total surrounding area. 
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The AdS/eFT correspondence can be examined in the light of just this 
type of argument and seen to realise precisely this type of arrangement315 . 

In this case, it takes the physics of gravity in five dimensional anti-de 
Sitter spacetime and makes a hologram of it in terms of a gauge theory. 
This is also true for anti-de Sitter spacetimes of other dimension too: 
the hologram is again a non-gravitational conformal field theory in one 
dimension fewer. Some of the best known examples are as follows. There is 
AdS3 , which is dual to the 1+1 dimensional gauge theory arising from D1-
and D5-branes intersecting. This was responsible for controlling a number 
of universal properties of five dimensional black holes which we uncovered 
in chapter 17. The cases of AdS4 and AdS7 are also natural in this context. 
They arise as near-horizon limits (times 57 and 54 respectively) of the M2-
and M5-brane geometries discussed in chapter 12 (the reader can check 
this directly). In fact, as hinted at previously (see section 12.6.2), there are 
important conformal field theories, with sixteen supercharges (in 2+ 1 and 
a 5+1 dimensions), on the world-volumes of these branes, whose direct 
Lagrangian definitions are not known. However, the theories certainly 
exist as limits of more familiar theories, and the AdS /eFT relation can be 
taken as a definition of the properties of these theories via the holographic 
duality. 

The holographic expectation has been elevated to the status of a prin­
ciple, although at present there is a scarcity of well-understood examples 
outside the AdS/eFT examples and their close cousins. A very active 
area of research is the endeavour to find further examples, since this is 
clearly an important clue regarding the nature of fundamental physics 
about which we should learn more. 
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