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Abstract. An experimental study of the delayed threshold phenomenon in a Vertical Extended Cavity
Semiconductor Emitting Laser is carried out. Under modulation of the pump power, the laser intensity
exhibits a time delay in the vicinity of the threshold. The evolution of this delay is measured as a function
of the modulation frequency and is proved to follow the predicted scaling law. A model based on the rate
equations is derived and used to analyze the experimental observations. A frequency variation of the laser
around the delayed threshold and induced by the phase-amplitude coupling is predicted and estimated.

1 Introduction

The laser threshold is a key concept which characterizes
a given laser and marks the transition from vanishing in-
tensity toward the lasing regime. Defining the threshold
is a nontrivial issue, which sparks off interesting discus-
sions [1,2]. Classically, the threshold is defined as the op-
erating point for which the unsaturated gain equals the
losses. The laser threshold can then be considered as the
bifurcation point between two distinct domains [3]. Below
threshold, the zero intensity value is the stable solution
while the nonzero intensity value is the unstable solution.
Above threshold, the stabilities of these two solutions are
exchanged. From a more experimental point of view, the
threshold can be considered as the region in which sponta-
neous and stimulated emissions have comparable weights.
Furthermore, this bifurcation point is modified when a
control parameter, such as, e.g., the intra-cavity losses or
the gain, is varied in time across the threshold. The prob-
lem of the behavior of a laser under gain or loss mod-
ulation around threshold has been theoretically treated
by Mandel and Erneux [4–6]. When the laser is swept
from below to above threshold, the laser equations pre-
dict a delayed threshold compared with the first threshold
obtained by adiabatically sweeping the laser parameters.
A linear sweeping across the bifurcation point also leads
to a modification on the threshold profile itself. Indeed,
the delayed threshold creates a sharp transition from zero
intensity to laser oscillation. To the best of our knowl-
edge, this behavior was first noticed in the case of He-Ne
lasers with swept cavity lengths by Mikhnenko et al. [7]
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and Aronowitz [8]. The first experimental investigations
have been carried out by Sharpf et al. [9] with an Ar+

laser in which the intra-cavity losses are linearly swept
across the threshold. A similar effect was studied in two
different laser dynamics such as in the class-A
lasers [9–11] and in the class-B lasers [12–15]. When one
of the control parameters is modulated, the laser intensity
exhibits a hysteresis-like behavior defined by two branches
corresponding to the turning on and turning off the laser.
In the vicinity of the threshold, a time lag between the
two branches occurs. In the works cited above, it has been
shown that the delay between the turn-on and turn-off
branches depends on the modulation frequency according
to an inverse square root scaling law [5,9].

In this article, we present an experimental study of
the delayed threshold in a class-A semiconductor laser.
This work is a complementary investigation of the one re-
ported in a reference [15] on a class-B semiconductor laser
diode. Indeed, the analysis of the dynamical delay, when
the control of parameter is modulated, is quite difficult
and the measurements are inaccurate in semiconductor
lasers. This is due to the very short value of the photon
lifetime in such lasers (due to the large intra-cavity losses
and the smallness of the cavity) and also to the significant
amplified spontaneous emission which may hide such a
delay at low modulation frequency. Moreover, the sponta-
neous emission noise causes jitter on the time at which the
laser turns on. However, recently, Vertical External Cav-
ity Semiconductor Lasers (VECSELs) have been shown to
exhibit very long cold cavity decay times together with re-
markably low noise levels [16–18]. Moreover, these lasers
can easily operate in the class-A dynamical regime [19].
Thus, the aim of this paper is to report an experimental
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study of a VECSEL under modulation of the pump laser
power. Indeed, such semiconductor lasers are well known
for behaving quite similarly to the class-A gas lasers cited
above. One can thus expect them to exhibit a dynamical
delay around threshold. However, these lasers are semi-
conductor lasers in which the phase-amplitude coupling,
described by Henry’s α parameter [20], must play a sig-
nificant role. This coupling must thus play a role in the
frequency of the light field in the vicinity of the threshold
where the laser does not reach its steady-state regime. To
answer these questions, we present in Section 2 the an-
alytical model describing the time evolution of the laser
intensity close to threshold, and we propose a definition of
the width of the hysteresis-like cycle associated with the
delay. In Section 3, we compare the delays extracted from
this model with our experimental measurements. Finally,
we report an estimation of the frequency variation of the
laser in the vicinity of the delayed threshold.

2 Model

We consider here a single-frequency semiconductor laser in
which the gain is produced by quantum wells. The gain is
linearly swept around the laser threshold while the intra-
cavity losses are kept constant. The laser is in the good
cavity limit, also called class-A regime, meaning that the
photon lifetime τcav is much longer than the carrier’s life-
time τc. In this case, the time evolution of the carrier
density can be adiabatically eliminated. The laser rate
equations are then reduced to only one equation of
evolution of the laser intensity:

dI

dt
=

I

τcav

(
r(t)

1 + I
Isat

− 1

)
, (1)

where r(t) is the pumping parameter which is defined as
the ratio between the unsaturated gain and the losses, and
Isat is the saturation intensity. The pumping parameter
is varied linearly from below (r < 1) to above (r > 1)
laser threshold. Since the pump laser power is linearly
modulated, we express r(t) as:

r(t) = r0 + ηt. (2)

The sweep rate η is simply given by 2 (rmax − r0) fm, where
r0, rmax and fm are respectively the initial pump parame-
ter, the final pump parameter and the modulation fre-
quency. Close to threshold, I � Isat, and equation (1)
can be approximated by:

dI

dt
≈ I

τcav

(
r(t) − I

Isat
r(t) − 1

)
. (3)

This last equation can be integrated to give the following
solution [5]:

I(t) =
e

t
τcav ( η

2 t+r0−1)
1

I(0) + r0
Isatτcav

D(t)
, (4)

Fig. 1. (Color online) (a) Full line: evolution of the laser inten-
sity versus time, obtained from equation (4) with fm = 1 kHz
and η = 146 s−1. Dashed line: corresponding “adiabatic” laser
intensity. It crosses the time axis at instant t∗. (b) First deriva-
tive of the intensity versus time. The maximum defines T. The
delay δt is defined as T − t∗.

where D(t) is given by:

D(t) =
∫ t

0

e
t′

τcav ( η
2 t′+r0−1)dt′. (5)

D (t) can be linked to the Dawson integral, leading to the
following asymptotic expansion when t → ∞:

D(t) � ept(pt+2q)

2p (pt + q)

(
1 +

1
2(pt + q)2

+
3

4(pt + q)4
+ . . .

)
,

(6)

where p =
√

η
2τcav

and q =
√

1
2ητcav

(r0 − 1). The ex-

pression (4) together with equation (6) has been used to
fit the experimental recordings of the evolution of the laser
intensity. This model is also used to define the
delay between the “adiabatic” threshold, obtained with
slow sweeping, and the delayed threshold. In this paper,
we define two critical times as depicted in Figure 1.
Figure 1a reproduces the evolution of the laser intensity
versus time in the vicinity of the threshold. The full line
is obtained using equation (4): the laser intensity sharply
passes from zero value to the nonzero value. Then, once
above threshold, the laser intensity grows linearly with
time. The dashed line shows the “adiabatic” evolution of
the laser when the pumping parameter is slowly swept.
This solution crosses the time axis at t∗ which corresponds
to the time at which the laser reaches the “adiabatic”
threshold. At t∗ the losses are equal to the gain [r(t∗) = 1],
leading to:

t∗ =
(1 − r0)

η
. (7)

One can define another critical time T corresponding to
the time at which the first derivative of the intensity
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Fig. 2. (Color online) Sketch of the experimental setup. The VECSEL cavity is in a planar-concave configuration. The laser is
optically pumped with a pump laser diode. The current of the latter is modulated with a triangular function signal. The laser
output is detected with a fast photodiode. The photodiode voltage is then recorded by an oscilloscope.

reaches its maximum as shown in Figure 1b. The difference
between these two critical times characterizes the width
of the hysteresis-like cycle:

δt = T − t∗. (8)

According to previous works [5,9,11–13], the delay δt de-
pends on the modulation frequency, and it can be scaled
as δt ∝ 1/

√
fm. In the experimental part of the present

paper, we compare this prediction with the experimen-
tal measurements performed with a VECSEL. This will
also rule out other mechanisms leading to hysteresis
cycles, such as those linked to polarization switching in
VCSELs under current modulation, or thermal effect
inducing hysteresis in the laser switch-on and switch-off
points [21,22].

3 Experiment

3.1 Experimental setup

The laser used in the present experiment is a single-
frequency VECSEL which operates at ∼1 μm (see
Fig. 2). The planar-concave cavity is formed by a
1/2-VCSEL which provides the gain and acts as high
reflectivity planar mirror and a spherical output mirror
(10 cm radius of curvature and 99% reflectivity). The cav-
ity length is L � 10 cm. In the 1/2-VCSEL, the gain is
produced by six InGaAs/GaAsP strained quantum wells
(QWs) grown on a Bragg mirror which is bonded onto
a SiC substrate in order to dissipate the heat toward a
Peltier cooler. This semiconductors multilayer stack is cov-
ered by an antireflection coating to prevent from any cou-
pled cavity effect. The gain is broad (∼6 THz bandwidth),
spectrally flat and has been optimized to reach a low
threshold [18]. In order to force the VECSEL to oscillate
on a single longitudinal mode, we insert an uncoated glass

étalon (200 μm thick) inside the cavity. The laser is opti-
cally pumped at 808 nm. The current supply of the pump
laser diode is modulated using a triangular voltage sig-
nal provided by a function generator. Starting below the
VECSEL threshold r0 < 1, the pumping rate increases
linearly up to the maximum pumping parameter rmax, be-
fore decreasing linearly back to its initial value. The op-
tical signal is detected with a fast photodiode (rise time
∼13 ns). The photodiode signal is then recorded with an
oscilloscope.

3.2 Dynamical delay effect

Figure 3 reproduces the evolution of the laser power ver-
sus pumping rate. The arrows indicate the direction of the
evolution. The full line represents the experimental data
recorded for a modulation frequency equal to 1 kHz. They
clearly exhibit the dynamical delay evidenced by the exis-
tence of two different branches. The lower branch shows a
sharp increase with a threshold delayed from the dashed
line which represents the “adiabatic” solution. This lat-
ter line crosses the horizontal axis at r = 1 (nondelayed
threshold). The upper branch is the evolution of the laser
intensity when the pumping rate decreases down to its ini-
tial value r0 ∼ 0.98. By contrast with the lower branch,
the upper one decreases smoothly toward zero.

The value of τcav is obtained by fitting the lower branch
of the experimental data using equations (4) and (6).
Using the data of Figure 3, we obtain τcav ≈ 60 ns. This
value is consistent with the length and losses of the cavity.
The dot-dashed line in Figure 3 is obtained by numerical
integration of equation (1) with this value. This leads to
a very good agreement with the experimental data.

The behavior of the laser intensity in Figure 3 can be
physically understood in the following way. For the lower
branch (increasing pumping parameter), the response time
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Fig. 3. (Color online) Full line: measured laser signal. The
curve is the result of the averaging of five successive record-
ings. Dot-dashed line: theoretical evolution of the laser signal,
obtained from equation (1) with fm = 1 kHz, η = 140 s−1, and
τcav = 60 ns. Dashed line: “adiabatic” solution.

of the laser, which diverges close to threshold due to the
critical slowing down phenomenon, restrains the laser from
responding fast enough to the fact that it is suddenly
above threshold, leading to a delay in its actual threshold.
On the contrary, for the upper branch (decreasing pump-
ing parameter), the gain suddenly becomes smaller than
the losses while the cavity is filled with light. Thus, the
intracavity intensity decreases exponentially with a decay
time governed by the cavity photon lifetime.

Notice that in all the experiments reported here,
the delay between the switching off and the next switch-
ing on of the laser was several thousand times longer
than the lifetime of the photons inside the cavity,
thus ensuring that the laser starts from spontaneous emis-
sion only.

3.3 Width of the hysteresis-like cycle due
to the delayed threshold

In this section, we present our measurements of the evo-
lution of the width δt of the hysteresis-like cycle when
the pump power modulation parameters are varied. We
remind that we define δt as in Figure 1. According to
Mandel [5], Arecchi et al. [12], and our numerical simula-
tions of equation (1), we expect δt to scale as the inverse
square root of fm.

To check this behavior, the laser signal evolution is
recorded for several values of the modulation frequency
ranging from 1 kHz to 6 kHz by steps of 500 Hz. For each
modulation frequency, we record a set of five traces of the
laser signal, which are averaged. We extract δt from this
average. Figure 4a reproduces the evolution of δt versus
fm. The experimental data are represented by the dots
and show that the delay decreases when the modulation
frequency increases. This behavior is consistent with the
results reported previously for gas lasers [5,12,13]. The full

Fig. 4. (Color online) (a) Dots: measured width δt of the
hysteresis-like cycle as a function of the modulation frequency
fm. Full line: numerical simulations. (b) Same data on a log-log
plot. Full line: linear fit leading to a slope equal to −0.50 ± 0.01.

line in Figure 4a corresponds to the theoretical values of
δt obtained by simulating equation (1) with τcav = 60 ns.
We obtain a very good agreement with the experimen-
tal measurements. Figure 4b shows the same data on a
log-log plot. A linear fit leads to a negative slope of
−0.50 ± 0.01. This is in excellent agreement with the
expected δt ∼ 1/

√
fm scaling law. To our knowledge, these

results are the first such measurements to be carried out
with a class-A semiconductor laser.

3.4 Estimation of the laser frequency chirp
at threshold

Up to now, we have seen that our class-A semiconductor
laser behaves exactly like the gas lasers in which
delayed threshold has been observed up to now. However,
one salient feature of semiconductor lasers is the exis-
tence of a nonnegligible phase-amplitude coupling effect
summarized in Henry’s factor α. Since around the de-
layed threshold, the population inversion has a nonlin-
ear variation as a function of time, we can thus expect
the laser phase to be affected by this effect. The subse-
quent frequency variation can be estimated by rewriting
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Fig. 5. (Color online) (a) Time evolution of the laser signal at
the modulation frequency fm = 1 kHz. (b) Frequency variation
as a function of time calculated with Henry’s parameter α = 7.

equation (1) for the slowly varying complex amplitude A
of the laser field:

dA
dt

=
A

2τcav

(
(1 − iα)

r(t)
1 + I

Isat

− 1

)
, (9)

where we have used the fact that our laser is a class-A
laser, where we have chosen the e−iωt time dependence for
the complex field and where we suppose for simplicity that
I = |A|2. The laser frequency deviation δν with respect to
the cold cavity eigenfrequency is obtained by taking the
imaginary part of equation (9), leading to:

δν(t) =
α

4πτcav

r(t)
1 + I

Isat

. (10)

When the laser has reached steady state, one has
r(t)

1+ I
Isat

= 1 leading to the following frequency deviation

with respect to the cold cavity frequency:

δνst =
α

4πτcav
. (11)

Figure 5 reproduces the evolutions of the intensity
and the frequency deviation versus time according to equa-
tions (1) and (10), with the same parameters as in
Figure 1. We have also taken α = 7. The frequency devia-
tion follows the time evolution of the population inversion.
It reaches its maximum value during the delayed thresh-
old, i.e., when the population inversion is different from its
threshold value, i.e., when the laser intensity is very differ-
ent from its adiabatic value. Later, when the laser inten-
sity is back to its adiabatic value, the frequency variation
reaches its steady-state value δνst ≈ 21.95 MHz. Then,
the population inversion remains equal to the population
inversion at threshold. Notice that the expected peak-to-
peak variation of the frequency during the delayed thresh-
old phenomenon is of the order of 250 kHz, making it

quite difficult to observe, particularly because it occurs on
short time scales (about 10 μs) and for very low output
powers.

4 Conclusion

In this paper we have reported an experimental obser-
vation of the delayed threshold phenomenon in a class-
A semiconductor laser. We have shown that as long as
the delayed threshold phenomenon is concerned, our
VECSEL behaves just like CO2 or Ar+ laser systems in
which this effect had already been studied. For example,
we have shown experimentally and theoretically that the
time lag δt scales as 1/

√
fm, where fm is the modulation

frequency of the pump. Our experimental results are in
very good agreement with a model based on the rate equa-
tions for a class-A laser. We have also predicted the exis-
tence of a frequency variation which occurs in the vicinity
of the delayed threshold just while the laser starts las-
ing. This frequency variation exists only in semiconductor
lasers due to the fact that α 
= 0. This phenomenon de-
serves to be observed with a dedicated experimental ap-
paratus. Indeed, according to the simple dependence of δν
versus time with respect to α, such an apparatus would of-
fer a direct and accurate way to measure the Henry factor
in VCSEL active media.

The authors acknowledge support from the Agence Nationale
de la Recherche (Project NATIF No. ANR-09-NANO-012-01).
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