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0. Introduction

In this paper we analyse the electrical behaviour within systems of long and short
coupled nerve axons by using a geometric approach to obtain a priori bounds on
solutions. In [4] we developed a general model for a bundle of n-uniform unmylinated
nerve fibres. If FitzHugh-Nagumo dynamics, [3] are used to describe the ionic
membrane currents, then the model takes the form

W=MW,+FW)-Z2
*
Z,=cW —yZ.

Here W=(wy,...,w,)T denotes the membrane action potentials for each fibre in the
bundle and Z=(z,,...,z,)7 represents the recovery variables for each fibre, which
control the return to the resting equilibrium after any transmission of signals.

F:R"—> R" is a continuous nonlinear vector field and ¢ and y are non-negative diagonal
matrices. The electrical interaction between separate fibres within the bundle is
controlled by the matrix M, which is taken to be of the form

M=Al—uB

where [ is the identity matrix on R", B is the adjacency matrix for a graph on n-vertices
representing the location and interaction of the fibres in cross-section, and A and « are
positive constants (see [4]).

We assume that the bundle is semi-infinite, and seek solutions of (*) for x=0, t20,
when appropriate Dirichlet boundary conditions are applied at x=0. Such conditions
may be thought of as modelling a stimulus provided by synaptic transmission between
axons further down the bundle.

Numerical and physiological evidence suggests that a strong stimulus of short
duration or a weak stimulus of long duration is sub-threshold, ie. the resultant
potentials within the bundle will decay to the inactive rest-state. We show that for zero
initial data, and compactly supported boundary data the solution of (*) is bounded for
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all time by a constant multiple of the total stimulus, and that if the stimulus is
sufficiently small, the solution has exponential decay.

M. Schonbeck [7] considers a similar problem for the FitzHugh-Nagumo equations,
and our analysis, like hers, requires the existence of certain contracting blocks for the
associated vector fields, (see [6] and[4]).

Finally we show that if the bundle is assumed to be of finite length L, then the resting
equilibrium is globally stable when L is small enough.

Although we obtain results concerning the action potentials for each fibre within the
bundle, we do not gain much insight into the precise nature of ephaptic stimulation
between fibres. An alternative approach using comparison principals and explicit
solutions for a simplified twin fibre problem yields more qualitative information for this
problem (see [5]).

1. Existence of solvability of solutions

Firstly we consider a general system of coupled non-linear diffusion equations and
ordinary differential equations. We state two theorems which are due to Schonbeck [7],
which provide a base from which we can go to discuss boundary value problems for
coupled nerve fibre models.

Before proceeding we pause to make the following definitions.

Definition 1.1. Let p:[0,00)—>R be a bounded continuous function with support
contained in [0,s,]. Then we define the norm ||-||, by

S0

el = loas

If P(s)=(py(5),...,Pm(s)T is such that for k=1,...,m, p,:[0,0)-»R is a bounded
continuous function with support in [0,s,] then we extend the norm ||-||; by defining

”P”Lm:kz [12l]s-
=1
If the assumption of compact support is dropped we define the norm ||-||,, by

”Pk”m=SUP|Pk(S)|
s20

and
[Pllo,m= 2 lIPulleo-
k=1

Finally if WeR", where W =(w,,...,w,)", say, then we define the norm ||-||,, on R™
by

n
W= 3, Iwih
=1
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We consider a general system of the form
Vi=BV,+G(V) x20,:20 (1.1)

where V is a function of two independent variables x and ¢, and V(x,t)e R™; G is a
smooth vector field over R™ satisfying G(0)=0 and B is a non-negative m x m diagonal
matrix say B=diag(b,,b,,...,b,).

We will assume that the equations have been ordered so that for some integer p we
have

b,>0 for 1Zk=<p
b,=0 for p<k=m.

If p#0, then in order to have a well posed problem, we will impose some boundary
conditions at x=0. Firstly we adopt the following conventions. Let BC(R*, R™) denote

the space of continuous bounded functions from R* to R™.

j
Let BC“(R*,R"‘)={W‘(§) WeBC(R*,R™); for j=0,...,k}
X

BCY{R*,R™)={W|WeBCHR*,R™) and w(x)-0 as x—oo}

a\ .
”(E) WelL, for Ogjgk}.

Finall\ let B denote any one of the Banach spaces above, and define C([0,T7]1B) to be
the spuce of continuous functions from the interval [0, T] into B, with norm

M',’{:{WGL

|Ullego, um= sup_||U®||5-
0=5t=sT

Returning to (1.1) we write V(x,t)=(v,(x,t),...,0.(x,1))T and impose the following
initial and boundary conditions

v(x,0)=g(x)eB for 1Zk=<m
(1.2)
v0,0)=h(t}e BC for 1Zk=<p.

Notice that the boundary conditions at x=0 are only given on v,,...,0,.
A general problem of the form (1.1), (1.2) has been considered by Schonbeck (7, §2),
who obtained the following two theorems.

Theorem 1.1. Suppose g,,...,8n hy,...,h, satisfy heB, g, eB, g(0)=h(0) for
1<k=<p and gge BN C® for p+1=<k=m, then there exists a constant t,>0, depending
only on G, g; and h, such that the Dirichlet problem (1.1), (1.2) has a unique solution V in
C([0,t01|B) and |[U|cqo. ons < 2(2||h]|co. p + ] s)-

(Here h=(hy,...,h,)T and g=(g,,....g.)")
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Theorem 1.2. Suppose that Ve C([0,t,]|B) is a solution of (1.1), (1.2) and g and h
satisfy

() g.€BCAR*) k=1,...,p
(i) g,eC*®R*)  k=p+1,...,n
(iii) h,eBC(R*)  k=1,...,p.

Then VeC®(Q) where Q=R*xR*.

2. Contracting blocks and global existence

We consider the system (*) that is

W,= MW, +F(W)—Z
(2.1)
Z,=oW —yZ

where W(x,t), Z(x,t)e R" and o, y, M and F satisfy the following hypotheses.

() o=diag(o,,...,0,), y=diag(y,,...,y,) are diagonal matrices and o, y;>0 for
i=1,...,n.
(i) M is a real symmetric matrix with strictly positive eigenvalues d,,...,d,
(ii1) There exists a unitary matrix 4 such that

ATMA=D, =diag(d,,...,d,).

(iv) F(W)=(f(wy), f(w3),...,f(w,)" where W =(wy,w,,...,w,)" and f(y)=y(1—y)(y—a)
for some ae(0,%).

In view of (iii) above we may set U= ATW and obtain the new system

U,=D,U, +ATF(AU)—A"Z
(2.2)
Z,=cAU —yZ.

Setting ¥V =(U,Z)T we see that (2.2) is of the general form (1.1), so we may apply
Theorems 1.1 and 1.2 when considering the quarter plane Dirichlet problem for (2.2).

Definition 2.1. Let H denote a vector field over R™ and let S denote some bounded
convex set in R™, with boundary 48S.

S is contracting for H if for every W e dS and for every outward normal, n, to S at
W, we have H(W).n<0. If S is of the form nJ-, [ —a, ] where —o < B, (k=1,...,m)
then it will be called a contracting block.

Also (2.2) is precisely the set of equations discussed in [4] and we state the following
Lemmas which concern the existence of contracting rectangles for the non-linear field G,
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given by

AT(F(AU)—2Z)

23
cAU —yZ 23)

G(U,Z)=

Lemma 2.1. There exists a positive constant r, depending only on the matrix A, such
that if

9j
a>rmax —
1gjsn Vj

then there exists a block — R?", containing the origin, which is contracting for G.

Lemma 2.2. If a>rmax,g;.,0,/7; then there exists a block Rc=R*", containing the
origin, with the following property.

For any compact set Qcint(R(), there is a block R, containing the origin, and a
constant k>0, such that Q =« R = R, and for all 1€(0,1] we have, G(U,Z).n< —kt for
all (U, Z)e d(zR), and any outward normal n to 6(tR) at (U, Z).

Lemma 2.3. If 1<n<3, then there exists a block R = R?", containing the origin with
the following property.
For any compact set Q in the exterior of RS, there exists a block R such that

(i) R°cR,
(ii) Q is in the exterior of R and 1R is contracting for G(U, Z) for all t€[1, c0).

We remark that the hypothesis 1<n<3 in Lemma 2.3, may be relaxed in certain
cases, and we refer to [4] for a fuller discussion of the existence of large contracting
blocks for the field G. We use contracting blocks to define nonlinear functionals on the
" solutions of (2.1)

Definition 2.2. Let R be a block in R™. Let || be the norm on R™ defined by
|U|g=inf{t=0|Uet.R}

ie. |U|g.R is the smallest multiple of R containing the point U.
We define a continuous map, Pg: BC—R by

Pg(W)=sup |W(x)|s.

xeR*

Lemma 24. Let G(W) be a vector field over R™ and let R be a rectangle in R™ with
Oeint(R). Suppose W e C((T — 8, T +8)|BCy) is a solution of

W=DW.+G(W)  x20

|T—t| <6
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such that Po(W(T))=S and Px(W(T,0)) <S where D is a non-negative diagonal matrix. If
there exists n>0 such that for all W e 6(SR) and n(W), normal to d(SR) at W, we have

GWIn(W)< —ny
then
DP(W(T) < "Lz 1 po(W(T))

where L is the length of the largest side of R.
The proof of Lemma 2.4 is almost identical to that of Lemma 3.8, [6]. The extra
condition Pg(W(T,0)) <S is needed to ensure that W(T,0) ¢ 3(SR).

Theorem 2.5. Suppose n=<3. Consider the system (2.2) together with initial and
boundary data given by

(U(0, %), Z(0, x)) =(g (%), - -, £24(%)) " =&()
U(t’ 0) = (hl(t)a LRRE] hn(t))T': h(t)a
where the functions g, h, satisfy h,e BC, g;e Bn BC,, and h(0)=g(0) for k=1,...,n;

and g€ C* B for k=n+1,...,2n.
Then there is a unique solution (U, Z) in C([0, c0)|Bn BCy).

Proof. By Lemma 2.3 we may choose a sufficiently large rectangle R <R?" such that
R is contracting for the vector field G(U, Z) given by (2.3), and

Prlg(x))<1 forall x=0.
and
Pr(h(t)) <1 forall ¢=0. (2.4)
Now, Theorem 1.1 implies the existence of a solution (U, Z) e C([0, to]|B) of (2.2) with
the initial and boundary conditions given above.
We claim that Pg(U(t), Z(t)) <1 for 0<t <t,.
If this were not so then we may set

F=inf{te(0, 10): Px(U(2), Z(t) = 1}.

By the continuity of P and (2.4) we have #>0.
By Lemma 2.4 we have

DPU(D), Z(D)) <0.

Thus for any te(i—e, ) we have Pg(U(t), Z(t)) > 1, where £¢>0 is chosen small enough.
But this contradicts the definition of £.
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The estimate Pg(U(t), Z(1)) <1 for t€[0,¢,] is the sup norm estimate needed to extend
the local solution to a global solution with Pg(U(t))<1 for all ¢t=0. Uniqueness
follows directly from the uniqueness of local solutions.

Theorem 2.6. (sup norm estimate theorem). Let 1<n<3. If (U,Z)eC([0,)|BC,) is a
solution of (2.2) together with Dirichlet boundary data

U(t, 0)=(hy(2),..., h(t)) = h(t)
satisfying h,e BC for k=1,...,n and h(t)=0 for t= T, then we have
I(U®), Z(t)|| . 20 < constant |(U(T), Z(T))||w, 2 for all t=T.

Proof. Since h(t)=0 for t=T, there exists a rectangle R which is contracting for G,
such that (U(T, x), Z(T, x)) lies in R for all x=0 and for t=T>=0

Z(t,0)=Z(T,0)e"" YeR
U(t,0)=0€R.

Thus the rectangle R contains the solution for all time t=T and provides the required
sup-norm estimate.

We remark that the hypothesis n <3 in Theorems 2.5 and 2.6 is required to guarantee
the existence of large contracting rectangles for the field. If the coupling matrix M in
(2.1) is such that large rectangles exist for G, then Theorems 2.5 and 2.6 will apply.

3. The threshold problem

We consider the system (2.2) and seek solutions on the domain R* x R* together
with initial and boundary data given by
(U(x,0),Z(x,0)) =g(x,0)=0 for all xeR* 3
U(0,8) =h(t) =(h,(b),..., h ()T forall teR* (32
where each h, is a bounded continuous function satisfying

h(0)=0
33)
h(t)=0 forall t=t,

for some constant ¢, =0.
Through this section we will assume the following conditions hold on the field G
given by (2.3):
H1: There exists a rectangle RocR?", containing the origin with the following
property:
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For any compact set Q cint(R(), there is a rectangle R, containing the origin and
a constant k>0 such that Q< R< R and for all 7€(0,1] we have G(U,Z)n< —kz
for all (U, Z)€ d(zR) and any outward normal, n, to d(zR) at (U, Z).

H2: There exists a rectangle R°cR?", containing the origin with the following
property:
For any compact set Q in the exterior of R there is a rectangle R such that
RCcR,Q is in the exterior of R and tR is contracting for G for all te[1, o).

Remark. H1 is precisely the consequence of Lemma 2.2 and, by Lemma 2.3, H2
certainly holds if n=2 or 3. We make these hypotheses so that the Global Existence and
Sup Norm Estimate Theorems of §2 apply to the Dirichlet problem (2.2), (3.1), (3.2).

Returning to (3.2), since h, is a bounded continuous function, for each k, there is a
positive constant M, such that

A} o.n < M. (34)

(Conversely ||h||o,,, < M, implies ||h||, <M, for all k=1,...,n.)
For k=1,...,n define the following functions:

Ryt,y,x)= {exp (—(y—x)*/4d,t) —exp (—(y +x)*/4dy)} (3-5)

1
~/ 4dktﬂ

Hyft,x)=—2 jhk(s) OK(t—s5,y,%)
0

P ds

y=0

1t h(s)xexp(—x*/4dy(t—s))
TRV deym (.9

Then if (U(x,1),Z(x,t)) is a solution of (2.2) subject to (3.1) and (3.2) then the
components u,(x, t), z;(x, t) satisfy

uylx, 1) = Hy(t, x) + j [ Rult =5, X)Gu(U(3.9, 203, 9) dy ds 3.7

zi(x,t) = j G+ (U(x,5s), Z(x,5)) ds, (3.8)
0

where G, is the mth component of the field G, given by (2.3).
Also from (2.2) we have

z;=0{AU);—yz; for j=1,...,n

using z(x,0)=0, we may rearrange and integrate between 0 and ¢, to obtain

t
zj(x,1) =aj(_\;e’f(""(AU(x, s);ds, for j=1,...,n
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which we write as the vector equation

Z(x,t)=0 [ Y4U(x,s) ds.
0

257

(3.9)

The following Theorem is the main result of this section, and is a generalization of a
theorem due to M. Schonbeck, who proves the same result for the FitzHugh-Nagumo

equations ([7], Theorem 5.1).

Theorem 3.1. Suppose HI and H2 hold. For all T>1,, there exists a constant k*=
k*(T, to, Mo, G, D), growing at most like max {1/(T —t,),exp(T)} such that, if (U,Z) is the

solution of (2.2) subject to (3.1), (3.2), then

”(U(.’t)’Z('at))”w.Znék*”h”Ln fora” th

Proof. By the Global Existence Theorem 2.5, there is a unique solution (U, Z) to

(2.2), (3.1) and (3.2) and a constant k such that

U, x), Z(t,x))||.n<k forall x20, :20.

The non-linearity G is smooth and G(0)=0. Since (U, Z) ranges over a bounded set,

there is a constant k>0, such that
G(U(x, 1), Z(x, )| 5, S K|[(U(x, 1), Z(x, D))|| 2 for all x20, £20.
We also note that for each k=1,...,2n we have

0= |GUU(x, 1), Z(x,1)| £ ||G(U(x, 1), Z(x, )| -
Now

U e, ), Z(x, 0)]2n =§1 (o, 0] +|2x, )}
(from the definition of ||*||, in §2). So we will prove the following two inequalities

|t T, x)| < constant (T, to, Mo, G, D). || k|,
forall k=1,....,n for T>t, and
all x=0

Izk(TZx)|§constant(’1}t0,Mo,G,D).||h||1,,, for
all k=1,...,n for T>t, and
all x=0.

Then the “sup-norm estimate” Theorem 2.6 in §2 implies the desired result.
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Proof of (3.13). Let t=T>t,. Using (3.7) and (3.8) we obtain
t
Jualx, 1)| < [H e, )| +[ [ Rdt=sy, X)|GU(y,9), Z(y,5))|dy ds
and

s, 011G,V ), 203, )]s

Consider (3.6), h(t)=0 for t=t,, so

2 IOlexp [ —x*4do 9]
|H,(z, x)| < constant z‘; @dy(t—s) " d(t—s)

but
—M’Et—)exp [ — x?/4d,(t — 5)] < constant (d,)
(t—s
forall x=0 and se[0,t,].
Thus
t |h(s)
|H,(t, x)| < constant g %ds
constant ¥ constant
S—— | |ns)|ds=———] |||,
(1) § M=l
Thus

|H(t, x)| Sconstant (T, to)| |-

(3.15)

(3.16)

(3.17)

This provides the estimate for the first term on the right hand side of (3.15). Notice
lrills < ||A||1..- To estimate the second term in (3.15) we use (3.11) and (3.10) to bound

|G(U, Z)|, again choosing t= T > t,,.

Oty

:f RUT ~5,3,%)|GU(35), Z(,5))|dy ds

<k

(=L L]

(_‘; Kk(T_S’ Y, x)”U(y’ S), Z(Y’ s)”Zn dy ds.

Now from (3.5) we see that

- tant
K,‘(T—s,y,x)§% forall x,y=0.
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Since the numerator of K, is bounded above by exp [ —(y —x)?/4d(T —s)] <1 then using
(3.19) in (3.18) we obtain

T o -
g (I) KT —s,,%)|GU(y, ), Z(y, 5))|dy ds
<constant_[ j ”U("(j’;) Z)(;VI,ZS)Hz,.d ds.
Thus we need to show that
T o
{f VG 9), Z(f;zs)”" dyds < constant (T, Mo, G, Tp) - ||l - (3.20)
00 (T-S)

This, together with (3.18), (3.17) and (3.15) will imply (3.13) as required.
In order to establish (3.20), we will prove the preliminary result

T o
z‘; i‘; |U(x, 5), Z(x, 5)|| 20 dx ds S constant (T, M, G, to, D) . ||h|| . n- (3.21)

Using (3.12), (3.15), (3.16) and (3.10) we obtain for 0Zt<T

Oty =

TI1UCe ), 20, 5)|on dxds
0

= Z": {Li I (j)s'klh—"s(q_)l—exp( x*/4d,(s—q)) dgdx dy

k=1

5=4, 5. 9(U(y, 9), Z(y, 9)|| 2. dy dg dx ds

+

x’
Ot~
(= Y]
Oty 01
Ote, 8

A

+

b
Oty
Ot 8
Oty 3

(U(x, 9), Z(x, 9))|| 20 dq dx dS}- (322
Rewrite the right hand side of (3.22) as

i {I,+kII+KkIIL}.

k=1

Changing the order of integration in /I, we have

||
Oty =~
Oty 8
Oy

g Ri(s—q,y,%)|[(U(y,9), Z(y, 9))|| 20 dx dq dy ds

(I) i‘)' g ”(U(}’,Q), Z(yyq)HZni‘;kk(s_q’y’x) dqudde
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Using (3.5) and deleting the term in exp(—(x+ y)?/4d,(s—q)) we can bound II, above

by
_i Tt exp (—(y—x)*/4d(s— q))
=] [ (UG, )Z(y,q))llz,.f o= dxdqdyds.
Now

® exp (— (v —x)*/4duls — 9)

G- =

Oty

<o F OR(=3/4h(5=0)
0

(4d,(s—q)) " dx forall y=0.

< constant
for all y=0, s>¢g=0.

Thus
t s
11, <constant g t‘; g Uy, 9, Z(y, 9))||2n dg dy ds.
Comparing the right hand side with I1I,, we see that (3.23) implies
t w0 s
I+ 111, <constant | | [ ||U(x,q), Z(x,q)||.»dq dx ds. (3.29)
000

Now returning to (3.22), we have

[hu(@)lx exp(— x*/4dy(s—q)
-0 &"

t © s
I,<constant | { | dqdx ds
000

and on rearranging the order of integration

‘ 1 © 2x exp (—x%/4d,(s —q))
I, )
k_constantb[ |h"(q)”d“2(s D7 3 ) 4d(s—q) dxdsdq
Now
@ 2 _ _
g 4dk(s )exp( x*/4d(s—q))dx=1
)

t t
I,<constant(d,) | |h(q)| |
0 g \S

1
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Now

g
5(7—5)—”;§2z1/2 for all ¢2q20.
e

Thus

t
I, < constant | t'/?|h(q)|dq
V]

t
<constant T'/2 | |h(q)|dg
(V]

<constant T*/2|| |, ds. (3.25)

Now using (3.24) and (3.25) in (3.22) we obtain

t o
(-E g ”(U(x’ S), Z(x, S))”Zn dx dS
(3.26)
t's ©
< constant (T*/?)||h||, +constant | | [ ||(U(x, q), Z(x, q))||2»dx dq ds.
000

Now applying Gronwall’s inequality to (3.26) we obtain the estimate (3.21) as required.
Now we must establish (3.20), which in turn establishes (3.12). In a similar manner to
that by which we obtained (3.22) we have

2 (U, s), Z(y, n
£||( 0:3) )(;vﬂs))nz dyds

Oty ™

n T o s Ihk(q)| x I l
<
=constantk; {g g g T— 317 5= g P[5 )dk|dquds

T o s w
+k[ [ [ { =57 Rs—4.5.%)||U(»,9), Z(¥,9)|| 2, dy dg dx ds
pooo(T )

+EE°§§H(U(X @), Z)(iC/Z‘I))HZn dqdx ds} a2

Say

Zconstant Y {IV;+V,+VI}.
k=1
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Now V¥, <constant VI,, by the same argument used to obtain (3.23). Thus we have

Tos Z
Vi+ VI Zconstant | | _[” U(x q) )(ic,zq))llz"d dxds
000

T 1 @ s
<constant g T—97 g (_E (U(x,9), Z(x, 9))||2» dg dx ds

T

<constant |||, ,,g )1/2 (3.28)

using (3.21).
Now rearranging the order of integration in IV, we obtain

1

2
1V, = constantHhk(lI)| j T (T—9)172 (s—q)17 § j (s— ;)4d

exp(—x2/4d,(s—q))dx dsdq.

Continuing as we did to obtain (3.25) we have

oo 1
IV, =constant (‘[ |h(q)] £ T—97 G- dsdq.
But
O R
ST =g "
Thus
T
1V, <constant [ |h(q)|dq
(1]
<constant]|h|,, . (3.29)

Now using (3.28) and (3.29) in (3.27) we have (3.20) as required. This proves (3.13).

Proof of (3.14). From (3.9) we have

t
Z(x,t)=0 [ e VAU(x, 1) ds
4]

SO

T
|Z(x, 0| =||1Z(x, )|l S 6 (j) e’ Y| A||.||U(x, 5)||» ds

T n
<él|4|| g k; |al(x, 5)|ds

https://doi.org/10.1017/50013091500022689 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500022689

INITIAL BOUNDARY VALUE PROBLEMS 263

where

6=max{o;} and y=min{y;}. (3.30)
j j

J

Now using (3.5), (3.6) and (3.15) we have for k=1,...,n;

T T s 2 d —_
{ |u(x, 5)|ds < constant {j { [a)lx exp( x3 /24 s=9) dqds
0 00 (s—q)

+k

Ot~y

i z? Kk(s_q’y’x)”(U(y’ Q)’Z(y: q))"anydqu}

<constant _f [hla)] _f _—W exp(—x%/4di(s—q))dsdq

+ constant f i Of ||(U(y, 2, Z(;‘;’zq))”"d dgds (3.31)
000 q)

where we have used (3.19) to bound K,.
Now consider

x

—9" exp (—x?/4dy(s—q)) ds =

Set z=x/(./s—q), then

J < | exp(—2%/4d,) dz=constant.
[1]

Thus the first term on the right of (3.31) is bounded by a constant multiplied by ||h[|;.
Consider the second term in (3.31)

T s o© U, Z 2 R

1T |Upe. 20,
=111

(s —Q)’/zq)”h dsdydq

I
Oty ™y
Ot=m 8

T 1
UG 9), Z(v, 9)| 2. £ mds dydgq.

But
T

] (s—_lé)mds=[2(s—q)”231§2T”2.
q
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Thus the right hand side of (3.31) is bounded above by
T o
constant ||k||,,,+ constant b‘ g (UG, 9, Z(y, 9))||2ndy dq

<constant ||h||,,, using (3.21).

Thus (3.30) is bounded above by a constant multiple of ||k||; ,, which establishes (3.14),
and proves the theorem.

Remark. The growth of k* follows from the constant in (3.17) which is O((T —t,) 1)
and the constant in (3.21) which is obtained via Gronwall’s inequality.

4. Stability via contracting rectangles

In this section we study the stability of the zero solution of (2.2), (3.1) and (3.2). We
show that if |||, , is sufficiently small, then we have exponential decay.

Theorem 4.1. Suppose that HI of §3 holds. Then there exist positive constants ¢,k and
A such that if

1Al 54

then the solution (U(x,t), Z(x,t)) of the Dirichlet problem (2.2), (3.1), (3.2) satisfies
(UG8, Z(, 8|, 2n Skexp(—ct)  £20
where k and A depend on T, t,, M, and G and c depends on G.

Proof. It suffices to show that for t=t, and x>0 there exists a rectangle R < R,
contracting for G(U, Z), with the property

DPr((U(t), Z(t) < —cPR(U(1), Z(1)). (4.1)
To construct R, recall that by Theorem 3.1,
”(U(',t)3Z(',t)”oo,Znék”h“l,n t>t0'

Thus if ||ky||,., is sufficiently small, there is a compact set Q < int R¢ (see H1, §3) such
that (U(t, x), Z(t,x)) € Q for all x=0. Hence there is a contracting rectangle for G such
that

P(UG,0,Z(,t)) <1 for t>t,.

We divide the proof that R has the property (4.1) into two cases. Suppose t>t,:
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(a) If ris such that
PR(( U(.) t)’ Z('a t))) > PR(( U(Os t)’ Z(O’ t)))

then Lemma 2.4 immediately implies (4.1).
(b) If ¢ is such that

PR((U(-, 1), Z(-, ) = Pr((U(0, 1), Z(0, 1))
let
Pr((U(, 1), Z(,1)))=s and set
X ={x:(U(x, 1), Z(x, 1)) € 8(sR)}.
Then X is not empty, since 0e X and X is compact since

lim (U(x, t), Z(x, £)) = (0, 0).

X— 0

Let ®=0, U {0}, be such that ® is a bounded neighbourhood of X and 0¢®,. For
t=t, we have

U0,0)=0 and Z[0,1)=—7Z(0,)

by hypothesis on h.
Thus Z(0,t+7n)=e" "Z(0,t), which implies

DPR((U(0, £+ 1), Z(0, t+m)) = — Pr((U(0, £+ 1), Z(0, £ +m)))y < —g-

So for |n| small, n+0,

PR((U(0,£+17), Z(O,t+n)))§s(1 —%’7> 42)

Note by the proof of the Basic Lemma, §3.2, [6], there is a constant k; >0 depending
on R such that

(i) If |g| is small and 9e©,
Pr((U(0,t+n), Z(0,t +n)) Ss(1—kyn). (43)
(i) If |9 is small and xeR, —©

PRU(x, t+m), Z(x, t+m)) = s(1 —kyn). (44)

EMS. G
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Now by (4.2), (4.3) and (4.4) we have for t>t, x=0
Pr(U(x,t+n), Z(x,t+n))) S s(1 —k,n)
where k, =min(k,,y/2).
Thus DPR((U(-,t), Z(*,1))) £ —k,s which implies (4.1).
Putting parts (a) and (b) together we see that (4.1) is satisfied for all ¢>t,. Therefore
there exist positive constants k and ¢ such that

PR((U(, 1), Z(-, 1)) Skexp (—ct)

for all t=0. This proves the theorem.

5. Global stability of zero for short nerve bundles

Consider the following model for a nerve bundle of length L>0

W,=MW,+F(W)-Z
0<x=<L (5.1)
Z,=0cW—yZ

Here W(x,t),Z(x,t):[0,L]xR*>R", and o,y and F are as in (*¥), which is described
in the Introduction, §0. In particular, M is a real symmetric matrix with eigenvalues
d,,...,d, satisfying

0<d,=d,<---=d,

We impose the following initial and boundary conditions on W and Z

W(x,00= Wy(x); Z(x,0)=Z(x), O0=<x=<L (5.2)
W(0,0)=h(t), t20 (53)
and either;
W(L,)=0, 20 (5.4)
or
W(t,L)+PW(t,[)=0,  t20. (5.5)

Here W, Z, and h are prescribed functions and P is a real (n x n) matrix, such that the
product MP is positive definite.

We suppose that the stimulus A(t) is non-zero only over a finite time interval [0,t]
say. Then for t= T, (W, Z) satisfies a mixed problem with homogeneous boundary data.

https://doi.org/10.1017/50013091500022689 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500022689

INITIAL BOUNDARY VALUE PROBLEMS 267

Theorem 5.1. Suppose (W,Z) is a classical solution of (5.1)«5.3) and one of (5.4) or
(5.5) and h(t)=0 for t=T.

Set
s= max {sup fk(y)/y}.
k=1,..., n { yeR
Then
T dl 1/2
L<={ZL
(%)
implies

(W, Z)|L.q0,Lr < Ke™™
Jor some constants K, a>0.

Proof. Suppose (W, Z) is a solution of (5.1)—(5.3) and one of (5.4) to (5.5). Using (5.1)
to express WTW,+Z76~'Z, we obtain

|

1
55\ 20T ZHWIWY=WTF(W)~ZT0™ YZ+ WTMW,,.

[}

t

Integrating with respect to x over [0, L], we obtain

L
(ZT6 ' Z+ WIW)dx= [ (WTF(W)—ZT6~yZ+ WTMW,,) dx. (5.6)
[}

Oty

10
20t
Now
L L
(WT MW, =— [WIMW,dx+[WTMW,_]§.
1] (4]
Now
W(O0,0)"TMW0,t)=0 for t=T
by (5.3) and hypothesis on h. Either
W(L,)T.MW/(L,t)=0 by (5.4)
or
W(L,t)T . MWJ(L,t)=—W(L,)T. MPW(L,t)

<0 by hypothesis on M and P.
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Thus

L L
fWT-MW, dx< — [ WIMW,dx
0 0
L
§—-d,_[W,7;dex
o

L
§—pd1£WT.de (5.7

where pu=(mn/2L)?> is the smallest eigenvalue of the operator 92/6x% with Dirichlet
boundary conditions at x=0, and Neumann boundary conditions at x=L (see[2],
Chapter 6).

Now, for k=1,...,n, set s,=sup { fi(y)/y} (see Figure 1 below).

VA

>y
Figure 1
Then
sy 2 fily)y forall yeR.
Let s=max, {s;}. Then
sWT. wWzwT F(w) forall WeR" (5.8)
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Using the estimates (5.7) and (5.8) in (5.6), we obtain

0
ot

N =

L
(WT-W+ZT6*Z) < [((s—pd)WT - W —Z7 6" 'Z) dx. (5.9)
4}

Oty

If s<ud, in(5.9), then

1 d
§Clz”("V’Z)HL2((o.LD§—Cz||(W’Z)||Lz([0,Ln for 12T,

where C,=min{l,6;'}>0
and C,=min {y /o, (ud, —s)} >0.

It follows that (W, Z)||.,q0,1; decays exponentially for t=T. Since |(W, Z)||L, o,y is
bounded for t[0,t), the result follows by noticing that ud, >s is equivalent to

L*<n%d,/4s.
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