JOINT SPECTRA FOR COMMUTING OPERATORS

by A. KÄLLSTRÖM* and B. D. SLEEMAN

(Received 23rd July 1984)

0. Introduction

The theory of joint spectra for commuting operators in a Hilbert space has recently been studied by several authors (Vasilescu [11,12], Curto [4,5], and Cho-Takaguchi [2,3]). In this paper we will use the definition by Taylor [10] of the joint spectrum to show that the joint spectrum is determined by the action of certain "Laplacians" (cf. Curto [4,5]) of a chain-complex of Hilbert spaces.

In particular, if A_1, \ldots, A_n is a doubly commuting set of bounded linear operators, then these Laplacians are all determined by the one single operator $D = A_1^* A_1 + \cdots + A_n^* A_n$.

The paper is organized as follows. In Section 1 we briefly review the definition of joint spectrum. In Section 2 we discuss the role of the Laplacians in the chain-complex of Hilbert spaces described in Section 1. In Section 3 we look at the special case of doubly commuting operators and relate the spectrum of D above to the joint spectrum of A_1, \ldots, A_n . In Section 4 we study the classification of points in the joint spectrum, particularly for the case of two commuting operators. In Section 5 we discuss an example and conjecture of Dash [7]. Finally in Section 6 the connection with the work of Vasilescu [11] is studied.

1. Joint spectrum

The concept of joint spectrum for commuting operators was introduced by Arens-Calderon [1]. Subsequently several definitions have been given notably by Dash [6] and Taylor [10]. We will review the definition by Taylor. It is known that in certain cases the Taylor spectrum and the Dash spectrum coincide (cf. [2]).

Let H be a complex Hilbert space and A_1, \ldots, A_N bounded commuting linear operators in H. Let e_1, \ldots, e_N be N indeterminates and construct the exterior algebra E^N with e_1, \ldots, e_N as generators. The elements of degree $p \ge 0$ in E^N is the linear hull E_p^N of all elements of the form

$$e_{i_1} \wedge \cdots \wedge e_{i_p} \quad (1 \leq i_1 < \cdots < i_p \leq N).$$

The space $E_p^N(H)$ is defined as $H \otimes E_p^N$, the linear hull of all the elements of the form

$$x e_{i_1} \wedge \cdots \wedge e_{i_p} \quad (1 \leq i_1 < \cdots < i_p \leq N).$$

*The research of this author was supported by SERC grant GR/C/40343

 $E_p^N(H)$ is canonically identified with a direct sum of $\binom{N}{p}$ copies of H and thus it is itself a Hilbert space. We now define the maps $\delta_p: E_p^N(H) \to E_{p+1}^N(H)$ for p = 0, 1, ..., N-1 (where $E_0^N(H) = E_N^N(H) = H$) by

$$\delta_p(xe_{i_1} \wedge \cdots \wedge e_{i_p}) = \sum_{k=1}^N A_k xe_k \wedge e_{i_1} \wedge \cdots \wedge e_{i_p}$$
 (1)

and extended by linearity. With these maps we can construct the following sequence

$$0 \to E_0^N(H) \xrightarrow{\delta_0} E_1^N(H) \xrightarrow{\delta_1} \cdots \xrightarrow{\delta_{N-2}} E_{N-1}^N(H) \xrightarrow{\delta_{N-1}} E_N^N(H) \to 0. \tag{2}$$

Using the fact that the A's commute it is easily seen that (2) is a complex, i.e. that im $\delta_p \subseteq \ker \delta_{p+1}$, for all p. This is the Koszul-complex. Furthermore, all the maps δ_p are bounded linear maps.

Definition 1. The N-tuple $A = (A_1, ..., A_N)$ is called non-singular if the complex (2) is exact, that is if

$$\operatorname{im} \delta_p = \ker \delta_{p+1}, \quad p = 0, 1, \dots, N-1,$$

otherwise it is called singular.

Definition 2. The complex N-tuple $\lambda = (\lambda_1, \dots, \lambda_N)$ is said to be in the *joint spectrum* of $A = (A_1, \dots, A_N)$, denoted by $\sigma(A) = \sigma(A_1, \dots, A_N)$, if $A - \lambda I = (A_1 - \lambda_1 I, \dots, A_N - \lambda_N I)$ is singular.

Example 1. In the case of a single operator A this reduces to the usual definition of spectrum. The Koszul-complex for this case looks like

$$0 \rightarrow H \xrightarrow{A-\lambda I} H \rightarrow 0$$

and $A - \lambda I$ is non-singular if and only if $\ker(A - \lambda I) = \{0\}$ and $\operatorname{im}(A - \lambda I) = H$. We can also define a dual complex by using the maps $\delta_p^* : E_{p+1}^N(H) \to E_p^N(H)$, defined by

$$\delta_{p}^{*}(x e_{i_{1}} \wedge \cdots \wedge e_{i_{p+1}}) = \sum_{k=1}^{p+1} (-1)^{k-1} A_{i_{k}} x e_{i_{1}} \wedge \cdots \wedge \hat{e}_{i_{k}} \wedge \cdots \wedge e_{i_{p+1}}$$
 (3)

and extended by linearity. The sign \hat{e}_s denotes omission of the factor e_s . The dual complex is

$$0 \leftarrow E_0^N(H) \xleftarrow{\delta_0^*} E_1^N(H) \xleftarrow{\delta_1^*} \cdots \xleftarrow{\delta_{N-2}^*} E_{N-1}^N(H) \xleftarrow{\delta_{N-1}^*} E_N^N(H) \leftarrow 0. \tag{4}$$

It is a simple exercise to show that (2) is exact if and only if (4) is exact. This follows from the facts that im δ_p is closed if and only if im δ_p^* is closed and that ker $\delta_p = (\text{im } \delta_p^*)^{\perp}$ (\perp denoting orthogonal complement) (cf. Kato [8], Theorem 5.13, p. 234).

2. The Laplacians of a complex

In this section we will give a necessary and sufficient condition for a complex and its dual to be simultaneously exact at a particular point of the complex.

Consider the complex of Hilbert spaces

$$\cdots \to H \xrightarrow{A} H' \xrightarrow{B} H'' \to \cdots \tag{C}$$

and its dual

$$\cdots \leftarrow H \xleftarrow{A^*} H' \xleftarrow{B^*} H'' \leftarrow . \tag{C*}$$

Here A and B are closed densely defined maps between the respective Hilbert spaces. This means that AA^* and B^*B are densely defined selfadjoint operators on H' (cf. [8], Theorem 3.24, p. 275). We assume that the "Laplacian" $D = AA^* + B^*B$ is also a closed densely defined operator. D is easily seen to be symmetric and bounded from below by 0. Hence D always has a self-adjoint extension \bar{D}_0 , the Friedrichs extension, with the same lower bound as D.

Example 2. Let us consider the case of two bounded linear operators A_1 and A_2 such that A_1 commutes with A_2 and A_2^* . Then also A_1^* commutes with A_2 and A_2^* . The Koszul-complex can be written

$$0 \rightarrow H \xrightarrow{\delta_0} H \oplus H \xrightarrow{\delta_1} H \rightarrow 0$$

where $\delta_0 x = A_1 x \oplus A_2 x$, $\delta_1 (x_1 \oplus x_2) = A_1 x_2 - A_2 x_1$ and the dual complex

$$0 \leftarrow H \xleftarrow{\delta_0^*} H \oplus H \xleftarrow{\delta_1^*} H \leftarrow 0$$

with the maps

$$\delta_1^* x = (-A_2^* x) \oplus A_1^* x, \ \delta_0^* (x_1 \oplus x_2) = A_1^* x_1 + A_2^* x_2.$$

The Laplacians of the complex are

$$\begin{split} &D_0 = \delta_0^* \delta_0 = A_1^* A_1 + A_2^* A_2 \\ &D_1 = \delta_0 \delta_0^* + \delta_1^* \delta_1 = (A_1 A_1^* + A_2^* A_2) \oplus (A_1^* A_1 + A_2 A_2^*) \\ &D_2 = \delta_1 \delta_1^* = A_1 A_1^* + A_2 A_2^*. \end{split}$$

Note that if A_1 and A_2 are normal commuting operators and we put $D = A_1^*A_1 + A_2^*A_2$,

then

$$D_0 = D$$
, $D_1 = D \oplus D$, $D_2 = D$.

Returning now to the complexes (C) and (C^*) we state the following.

Theorem 1 (cf. [5], Prop. 3.1, p. 395). (C) and (C*) are both exact at H', (i.e. im $A = \ker B$, im $B^* = \ker A^*$) if and only if D is selfadjoint and boundedly invertible on H'.

For the proof we need the following two facts about closed densely defined linear operators $T: H_1 \rightarrow H_2$.

Lemma 1 (cf. [8], Theorem 5.13, p. 234). im T is closed if and only if im T^* is closed. In this case we have

im
$$T = (\ker T^*)^{\perp}$$
, im $T^* = (\ker T)^{\perp}$.

Lemma 2 (cf. [8], Theorem 5.2, p. 231), T has closed range if and only if there is a constant C > 0, such that

$$||Tx||_2 \ge C||x||_1$$
 for all $x \in D(T) \cap (\ker T)^{\perp}$. (5)

Proof of Theorem 1. First we note that since (C) and (C^*) are complexes we always have

$$\operatorname{im} A \subseteq \ker B, \operatorname{im} B^* \subseteq \ker A^*.$$
 (6)

Furthermore ker B and ker A^* are closed since the maps B and A^* are closed.

Assume now that D is selfadjoint and im D = H'. Then $\ker D = (\operatorname{im} D)^{\perp} = \{0\}$. Hence D^{-1} is a closed map defined on all of H and consequently D^{-1} is bounded. Now

$$H' = \operatorname{im} D \subseteq \operatorname{im} A + \operatorname{im} B^* \subseteq \operatorname{im} A + \overline{\operatorname{im} B^*} = \operatorname{im} A + (\operatorname{ker} B)^{\perp} \subseteq H'.$$

By (6) it follows that im $A = \ker B$ and hence (C) is exact at H'. Similarly

$$H' = \operatorname{im} D \subseteq \operatorname{im} A + \operatorname{im} B^* \subseteq \overline{\operatorname{im} A} + \operatorname{im} B^* = (\ker A^*)^{\perp} + \operatorname{im} B^* \subseteq H'$$

showing that im $B^* = \ker A^*$. Thus (C^*) is also exact at H'.

Conversely, assume that both (C) and (C^*) are exact at H'. Then

 $\operatorname{im} A = \ker B \Rightarrow \operatorname{im} A$ closed $\Rightarrow \operatorname{im} A^*$ closed by Lemma 1

im $B^* = \ker A^* \Rightarrow \operatorname{im} B^*$ closed $\Rightarrow \operatorname{im} B$ closed by Lemma 1.

Hence, there are constants C_1 , $C_2 > 0$ such that

$$||A^*x|| \ge C_1 ||x|| \quad x \in D(A^*) \cap (\ker A^*)^{\perp}$$

$$||By|| \ge C_2 ||y|| \quad y \in D(B) \cap (\ker B)^{\perp}.$$

But any $u \in D(D)$ can be decomposed as $u = u_1 + u_2$, where $u_1 \in D(D) \cap (\ker B)$ and $u_2 \in D(D) \cap (\ker B)^{\perp}$. But then

$$u_1 \in D(D) \cap \ker B = D(D) \cap \operatorname{im} A = D(D) \cap (\ker A^*)^{\perp}$$

 $u_2 \in D(D) \cap (\ker B)^{\perp} = D(D) \cap (\operatorname{im} A)^{\perp} = D(D) \cap \ker A^*.$

Hence $Du = AA^*u + B^*Bu = AA^*u_1 + B^*Bu_2$ and

$$(Du, u) = (AA^*u_1, u) + (B^*Bu_2, u)$$

$$= ||A_1^*u_1||^2 + ||Bu_2||^2$$

$$\ge C_1 ||u_1||^2 + C_2 ||u_2||^2$$

$$\ge C\{||u_1||^2 + ||u_2||^2\} \quad C = \min(C_1, C_2) > 0$$

$$= C||u||^2 \qquad \text{for all} \quad u \in D(D).$$

This shows that im D is closed and also that D is bounded from below by C > 0. Hence also \overline{D} is bounded from below by C > 0. But then $\ker \overline{D} = \{0\}$ and $\operatorname{im} \overline{D} = H'$. But $\operatorname{im} D$ is dense in $\operatorname{Im} \overline{D}$ and closed. Thus we must have $\operatorname{im} D = H'$ and it follows that D is already selfadjoint. One sees easily that D^{-1} is bounded.

The question of the selfadjointness of D can often be settled by the following.

Theorem 2 (cf. [9], p. 88). Let G_1, \ldots, G_p be a finite set of selfadjoint operators such that G_1, \ldots, G_p commute pairwise (i.e. their spectral families commute). In addition, suppose that $G_i \ge 0$, $i = 1, \ldots, p$. Then $G = G_1 + \cdots + G_p$ is selfadjoint.

3. Doubly commuting systems

Let A_1, \ldots, A_N be an N-tuple of bounded linear operators on H.

Definition 3. $A = (A_1, ..., A_N)$ is called doubly commuting if $A_i A_j = A_j A_i$ and $A_i A_j^* = A_j^* A_i$ for all i, j = 1, ..., N. A is called weakly doubly commuting if, for all i = 1, ..., N

$$A_i A_j = A_j A_i$$
 and $A_i A_i^* = A_i^* A_i$ for $j \neq i$.

In particular, in a doubly commuting system all the operators A_1, \ldots, A_N are normal. The significance of these systems derive from the fact that all the Laplacians of the Koszul-complex are defined in terms of one single operator $D = A_1^*A_1 + \cdots + A_N^*A_N$. The dual complex also generates exactly the same Laplacians so that the complex is in some sense "self-dual".

Let $A = (A_1, ..., A_N)$ be a doubly commuting system. We now want to relate the spectral subspaces of H defined by the resolution of the identity belonging to D, to the operators $A_1, ..., A_N$.

First we notice that if μ is an eigenvalue of D and $E(\mu)$ is the corresponding eigenspace, then from the commutativity

$$(D-\mu)A_{i}x = A_{i}(D-\mu)x = 0,$$

$$(D-\mu)A_i^*x = A_i^*(D-\mu)x = 0,$$

for all $x \in E(\mu)$ and i = 1, ..., N. Hence $E(\mu)$ is invariant under all A_i and A_i^* . But then, if $x \in E(\mu)$, $y \in E(\mu)^{\perp}$,

$$(x, A_i y) = (A_i^* x, y) = 0$$

$$(x, A_i^*y) = (A_i x, y) = 0$$

so that all the operators $A_1, \ldots, A_N, A_1^*, \ldots, A_N^*$ are reduced simultaneously by $E(\mu)$.

It is now easy to show that the discrete subspace H_d of H corresponding to the spectral resolution of D is invariant under all of A_i and A_i^* . Hence the continuous subspace H_c is also invariant and all the operators $A_1, \ldots, A_N, \ldots, A_N^*$ are simultaneously reduced by H_d and H_c . It is obvious that there are no joint eigenvalues of A_1, \ldots, A_N nor of A_1^*, \ldots, A_N^* in H_c .

Let us now specialize further and assume that A_1, \ldots, A_N is a commuting set of selfadjoint bounded operators. Clearly, to every joint eigenvalue $(\lambda_1, \ldots, \lambda_N)$ to (A_1, \ldots, A_N) there is an eigenvalue $\mu = \lambda_1^2 + \cdots + \lambda_N^2$ to D. Conversely, if μ is an eigenvalue to D and $E(\mu)$ the eigenspace, then A_1, \ldots, A_N are commuting selfadjoint operators on $E(\mu)$ and hence they can be simultaneously diagonalized. In particular, if dim $E(\mu) < \infty$, then there is a basis of $E(\mu)$ consisting of joint eigenvectors to A_1, \ldots, A_N . This leads us to the following.

Theorem 3. Suppose A_1, \ldots, A_N are bounded commuting selfadjoint operators such that $D = A_1^2 + \cdots + A_N^2$ is compact. Then

- (i) if dim ker $D < \infty$ there is a complete system of joint eigenvectors of A_1, \ldots, A_N in H.
- (ii) if dim ker $D = \infty$ there is a complete system of joint eigenvectors to A_1, \ldots, A_N in $(\ker D)^{\perp}$.

Proof. D compact $\Rightarrow H_c = \{0\}$ if dim ker $D < \infty$, otherwise $H_c = \ker D$. Every non zero eigenvalue has finite multiplicity which means that there is a basis in the eigenspace consisting of joint eigenvectors. From this the theorem follows easily.

Remark. If μ is an eigenvalue of infinite multiplicity to D there need not be any joint eigenvectors to A_1, \ldots, A_N in the eigenspace as is shown by the following example.

Example 3. Let $E(\lambda)$ be a continuous spectral family. Define $A_1 = \int \cos \lambda \, dE(\lambda)$, $A_2 = \int \sin \lambda \, dE(\lambda)$. Then A_1 and A_2 are bounded selfadjoint commuting operators with continuous spectra only. But $D = A_1^2 + A_2^2$ is the operator

$$D = \int (\cos^2 \lambda + \sin^2 \lambda) dE(\lambda) = I,$$

which implies that D has eigenvalue 1 with infinite multiplicity.

In order to clarify the situation when D or D^{-1} is compact we prove

Theorem 4. Let $D = A_1^* A_1 + \cdots + A_N^* A_N$. Then

- (i) D is compact if and only if all the A_i are compact.
- (ii) If at least one of the A_i has compact inverse then D has compact inverse.

Proof. (i) Assume all A_i compact. Then trivially D is compact. Conversely, if D is compact, let x_n be a sequence such that $x_n \to 0$ weakly. Then $Dx_n \to 0$ strongly. But then

$$\sum_{i=1}^{N} ||A_i x_n||^2 = (Dx_n, x_n) \to 0.$$

Hence all $A_i x_n \rightarrow 0$ strongly as $n \rightarrow \infty$ which implies that all A_i compact.

(ii) Suppose A_1 has compact inverse. Then also A_1^* has compact inverse. Furthermore

$$(Du, u) = \sum_{i=1}^{N} ||A_i u||^2 \ge ||A_1 u||^2 \ge c||u||^2.$$

Hence D has a bounded inverse. If we now write

$$D = A_1^* A_1 \left(I + (A_1^* A_1)^{-1} \sum_{i=2}^N A_i^* A_i \right) = A_i^* A_i (I + C),$$

where C is a positive operator. But then $(I+C)^{-1}$ exists and

$$D^{-1} = (I+C)^{-1}A_1^{-1}A_1^{*-1},$$

which is compact.

4. Classification of the spectrum

 $A = (A_1, ..., A_N)$ is an N-tuple of bounded commuting linear operators on H. The following definitions are given by Dash [6].

Definition 4. $\lambda = (\lambda_1, \dots, \lambda_N) \in \mathbb{C}^N$ is in the joint approximate point spectrum $\sigma_{\pi}(A)$ if there is a sequence of unit vectors $x_n \in H$ such that

$$||(A_i - \lambda_i I)x_n|| \to 0$$
 as $n \to \infty$, $i = 1, ..., N$.

Definition 5. $\lambda = (\lambda_1, \dots, \lambda_N) \in \mathbb{C}^N$ is in the joint approximate compression spectrum $\sigma_o(A)$, if there is a sequence of unit vectors $x_n \in H$ such that

$$||(A_i - \lambda_i I)^* x_n|| \to 0$$
 as $n \to \infty$, $i = 1, ..., N$.

Let us furthermore introduce the joint spectrum

$$\sigma_p(A) = \{\lambda \in \mathbb{C}^N; \text{ there is a non-zero } x \in H, \text{ such that } \}$$

$$(A_i - \lambda_i I)x = 0, \quad i = 1, \dots, N$$

and the joint compression spectrum

 $\sigma_{ap}(A) = \{\lambda \in \mathbb{C}^N; \text{ there is a non-zero } x \in H, \text{ such that } \}$

$$(A_i - \lambda_i I)^* x = 0, i = 1, ..., N$$
.

If we now construct the Koszul-complex for the operators $A_i - \lambda_i I$, i = 1, ..., N we find easily that the Laplacians D_0 and D_N are given by

$$D_0 = \sum_{i=1}^{N} (A_i - \lambda_i I)^* (A_i - \lambda_i I)$$

and

$$D_N = \sum_{i=1}^{N} (A_i - \lambda_i I)(A_i - \lambda_i I)^*$$

respectively. From this it is follows easily that

$$\sigma_p(A) \subseteq \sigma_\pi(A) = \{\lambda \in \mathbb{C}^N; D_0 \text{ not boundedly invertible}\}$$

and

$$\sigma_{\rho\rho}(A) \subseteq \sigma_{\rho}(A) = \{\lambda \in \mathbb{C}^N; D_N \text{ not boundedly invertible}\}.$$

We now propose to classify the spectrum according to which Laplacians are boundedly invertible.

Definition 6. The joint discrete spectrum $\sigma_d(A)$ is defined as

$$\sigma_d(A) = \bigcup_{k=0}^N \sigma_d^k(A),$$

where

$$\sigma_d^k(A) = \{ \lambda \in \mathbb{C}^N; \ker D_k \neq \{0\} \}.$$

Note that the sets $\sigma_d^k(A)$ need not be disjoint.

Definition 7. The joint continuous spectrum $\sigma_c(A)$ is defined as

$$\sigma_c(A) = \sigma(A) \setminus \sigma_d(A)$$
.

We decompose this in the following (not necessarily disjoint) subsets

$$\sigma_c(A) = \bigcup_{k=0}^N \sigma_c^k(A),$$

where

$$\sigma_c^k(A) = \{ \lambda \in \sigma_c(A); D_k \text{ has an unbounded inverse} \}.$$

We see easily that if A_1, \ldots, A_N is a doubly commuting system then

$$\sigma_d(A) = \sigma_d^0(A), \quad \sigma_c(A) = \sigma_c^0(A).$$

This follows since all of the Laplacians can be expressed as direct sums of D_0 . Hence if $\lambda \notin \sigma_d^0(A) \cup \sigma_c^0(A)$, D_0 is boundedly invertible and then all D_j are boundedly invertible. Hence the complex is exact.

Example 4. Let us look at the case of a single operator. The Koszul-complex is

$$0 \to H \stackrel{\delta_0}{\underset{\delta_0^*}{\rightleftarrows}} H \to 0$$

where

$$\delta_0 x = (A - \lambda I)x, \quad \delta_0^* x = (A - \lambda I)^* x.$$

The Laplacians are

$$D_0 = (A - \lambda I) * (A - \lambda I)$$

$$D_1 = (A - \lambda I)(A - \lambda I)^*$$

Hence

$$\sigma_d^0 = \{\lambda \in \mathbb{C}; \ker(A - \lambda I) \neq \{0\}\} = \text{point spectrum of } A$$

$$\sigma_d^1 = \{\lambda \in \mathbb{C}; \ker(A - \lambda I)^* \neq \{0\}\} = \text{compression spectrum of } A$$

 $\sigma_c^0 = \{\lambda \in \mathbb{C}; \text{im}(A - \lambda I) \text{ dense in } H \text{ but not closed}\} = \text{approximate point spectrum.}$

Also $\sigma_c^1 = \sigma_c^0$ since im δ_0 is not closed if and only if im δ_0^* is not closed. This is the usual decomposition of the spectrum for a single operator.

Example 5. Two commuting operators A_1 and A_2 . The corresponding Koszul-complex is (cf. Example 2)

$$0 \!\rightarrow\! H \!\stackrel{\delta_0}{\rightleftarrows} \! H \!\oplus\! H \!\stackrel{\delta_1}{\rightleftarrows} \! H \!\rightarrow\! 0$$

$$\delta_0^* \qquad \delta_1^*$$

 $\sigma_d^0 = \{\lambda; \ker \delta_0 \neq \{0\}\} = \text{joint point spectrum}$

$$\sigma_d^1 = \{\lambda; \ker D_1 = \ker \delta_0^* \cap \ker \delta_1 \neq \{0\}\}$$

 $\sigma_d^2 = {\lambda; \ker \delta_1^* \neq \{0\}} = \text{joint compression spectrum}$

 $\sigma_c^0 = \{\lambda; \operatorname{im} \delta_0^* \text{ not closed}\}$. But then $\operatorname{im} \delta_0$ is not closed which implies that $\sigma_c^0 \subseteq \sigma_c^1$. Similarly $\sigma_c^2 \subseteq \sigma_c^1$.

Conversely, if $\lambda \in \sigma_c^1$ then either im δ_0 or im δ_1^* is not closed and hence $\lambda \in \sigma_c^0$ or $\lambda \in \sigma_c^2$. Hence

$$\sigma_c^1 = \sigma_c^0 \cup \sigma_c^2$$

and we get the following decomposition of the joint spectrum

$$\sigma(A) = \sigma_d^0 \cup \sigma_d^1 \cup \sigma_d^2 \cup \sigma_c^0 \cup \sigma_c^2.$$

This contains the results of lemma p. 867 in [3].

Example 6. In case the underlying Hilbert space is finite-dimensional we clearly have

$$\sigma_c = \emptyset$$
.

Also for the case of two operators in a finite-dimensional Euclidean space we have the relation

$$\sigma(A_1, A_2) = \sigma_d^1(A_1, A_2)$$
 (which implies that $\sigma_d^0 \cup \sigma_d^2 \subseteq \sigma_d^1$).

This can be seen as follows: $(\lambda_1, \lambda_2) \notin \sigma_d^1$ if and only if $\ker D_1 = \{0\}$, equivalently $\ker \delta_0^* \cap \ker \delta_1 = \{0\}$. Hence $\ker D_1 = \{0\}$ if and only if the system

$$(A_1 - \lambda_1 I) * x_1 + (A_2 - \lambda_2 I) * x_2 = 0$$
 (i.e. $\delta_0^*(x_1 \oplus x_2) = 0$)

$$-(A_2-\lambda_2I)x_1+(A_1-\lambda_1I)x_2=0$$
 (i.e. $\delta_1(x_1\oplus x_2)=0$)

has only the zero solution. But then the operator

$$\alpha(A) = \begin{pmatrix} (A_1 - \lambda_1 I)^* & (A_2 - \lambda_2 I)^* \\ -(A_2 - \lambda_2 I) & (A_1 - \lambda_1 I) \end{pmatrix}$$

is invertible on $H \oplus H$. Hence by Theorem 1.1 in Vasilescu [11], $A - \lambda I$ is non-singular, that is $\lambda \notin \sigma(A)$.

We will here also give a proof of Theorem 3.1 in [11] based on the methods developed here.

Let $A_1: H_1 \to H_1$ and $A_2: H_2 \to H_2$ be bounded linear operators with spectra $\sigma(A_1)$ and $\sigma(A_2)$ respectively. In $H = H_1 \otimes H_2$ we can construct two commuting operators

$$B_1 = A_1 \otimes I_2$$
 and $B_2 = I_1 \otimes A_2$.

Let $\sigma(B)$ denote the joint spectrum of B_1 and B_2 in H.

Theorem 5. $\sigma(B) = \sigma(A_1) \times \sigma(A_2)$.

Proof. We have the complex

$$0 \rightarrow H \xrightarrow{\delta_0} H \oplus H \xrightarrow{\delta_1} H \rightarrow 0$$

where $\delta_0 x = B_1 x \oplus B_2 x$, $\delta_1(x_1 \oplus x_2) = B_1 x_2 - B_2 x_1$. Note that it is enough to consider the point (0,0) since

$$B_1 - \lambda_1 I = (A_1 - \lambda_1 I_1) \otimes I_2$$
 and $B_2 - \lambda_2 I = I_1 \otimes (A_2 - \lambda_2 I_2)$.

The Laplacians for the complex are calculated to be

$$D_0 = (A_1^* A_1) \otimes I_2 + I_1 \otimes (A_2^* A_2)$$

$$D_1 = [(A_1 A_1^*) \otimes I_2 + I_1 \otimes (A_2^* A_2^*)] \oplus [(A_1^* A_1) \otimes I_2 + I_1 \otimes (A_2 A_2^*)]$$

$$D_2 = (A_1 A_1^*) \otimes I_2 + I_1 \otimes (A_2 A_2^*).$$

Assume now that $(0,0) \notin \sigma(A_1) \cup \sigma(A_2)$. Then at least one of A_1 and A_2 , say A_1 , is non-singular, so $\ker A_1 = \{0\}$ and $\operatorname{im} A_1 = H$. But then $\operatorname{im} A_1$ is closed and consequently $\operatorname{im} A_1^*$ is closed and we have

im
$$A_1^* = (\ker A_1)^{\perp} = H_1$$
, $\ker A_1^* = (\operatorname{im} A_1)^{\perp} = \{0\}$.

Hence A_1^* is also non-singular. Now D_0 , being the sum of two positive operators, one of which is invertible, is boundedly invertible. Using the remark above about A_1^* we can use the same kind of argument to show that D_1 and D_2 are boundedly invertible. Hence $(0,0) \notin \sigma(B)$.

Conversely, if $(0,0) \notin \sigma(B)$, then D_0 is boundedly invertible. Hence, if $w = u \otimes v$

$$(D_0 w, w) = ||A_1 u||^2 ||v||^2 + ||u||^2 ||A_2 v||^2 \ge C ||u||^2 ||v||^2.$$
 (*)

But then at least one of A_1 and A_2 must be boundedly invertible, for suppose A_2 is not. Then $0 \notin \sigma(A_2)$ and either

(i) 0 is an eigenvalue of A_2 which implies that there is a v such that ||v|| = 1, $A_2v = 0$. (*) then gives

$$||A_1u||^2 \ge C||u||^2$$
 which implies that $0 \notin \sigma(A_1)$

or

(ii) 0 is in the approximate point spectrum of A_2 which implies that there is a sequence v_n such that $||v_n|| = 1$, $A_2 v_n \rightarrow 0$. But then (*) gives

$$||A_1u||^2 \ge (C - ||A_2v_n||^2)||u||^2 \ge \frac{C}{2}||u||^2$$

if n is large enough, implying $0 \notin \sigma(A_1)$

or

(iii) 0 is in the compression spectrum of A_2 which implies that there is a v such that ||v|| = 1, $A_2^*v = 0$. But then from (*) on using the Laplacian D_2 instead we have

$$||A_1^*u||^2 \ge C||u||^2$$
.

Hence $0 \notin \sigma(A_1^*)$ and so $0 \notin \sigma(A_1)$. Consequently if A_2 is not boundedly invertible, then A_1 must be and it follows that $(0,0) \notin \sigma(A_1) \times \sigma(A_2)$. From this follows that $\sigma(B) = \sigma(A_1) \times \sigma(A_2)$.

5. An example by Dash

In this section we will show that it is possible for a point (λ_1, λ_2) to be in σ_d^1 but not in $\sigma_d^0 \cup \sigma_d^2$. The example is given by Dash in [7] in order to disprove a certain conjecture.

Let $H = \bigoplus_{n=1}^{\infty} l^2$ so that each element $X \in H$ is a sequence of elements $X_n \in l^2$, n = 1, 2, ...If each X_n is given by $X_n = (x_{n1}, x_{n2}, ...)$ then the norm in H is

$$||X||^2 = \sum_{n=1}^{\infty} ||X_n||^2 = \sum_{n,k=1}^{\infty} |x_{nk}|^2.$$

Define the operators A_1 and A_2 in H by the matrices

where I is the identity operator in l^2 , 0 the zero operator and V the unilateral shift. Clearly A_1 and A_2 commute. Also A_1 and A_2 commute so that A_1 and A_2 form a weakly doubly commuting system.

We find for the Laplacians of the corresponding complex

$$(D_0 f, f) = ||A_1 f||^2 + ||A_2 f||^2 \ge ||A_2 f||^2$$
$$= \sum_{i=1}^{\infty} ||V f_i||^2 = \sum_{i=1}^{\infty} ||f_i||^2 = ||f||^2.$$

This shows that D_0 is boundedly invertible and so $(0,0) \notin \sigma_d^0$. Also

$$(D_2 f, f) = ||A_1^* f||^2 + ||A_2^* f||^2 \ge ||A_1^* f||^2 = ||f||^2$$

which implies that D_2 is boundedly invertible and consequently

$$(0,0) \notin \sigma_d^2$$
.

However ker $D_1 \neq \{0\}$ as the following shows:

$$D_1: H \oplus H \rightarrow H \oplus H$$
. Let $f = X \oplus Y \in \ker D_1$. Then

$$A_1Y - A_2X = 0$$

$$A_1^*X + A_2^*Y = 0.$$

Choose X = 0 which implies that

$$A_1 Y = 0$$
 and $A_2^* Y = 0$.

If $Y = (Y_1, Y_2,...)$ then

$$A_1Y = 0$$
 if and only if $Y_2 = Y_3 = \cdots = 0$ with Y_1 arbitrary.

Now $A_2^*Y=0$ if and only if $V^*Y_1=0$ which is satisfied for $Y_1=\{1,0,0,\ldots\}\in l^2$. Hence $(0,0)\in\sigma_d^1$.

In the same paper Dash makes the following conjecture

$$(0,0) \notin \sigma(A_1, A_2) \Leftrightarrow$$
 there is an $\varepsilon > 0$ such that

- (i) $||A_1f||^2 + ||A_2f||^2 \ge \varepsilon ||f||^2$
- (ii) $||A_1^*f||^2 + ||A_2^*f||^2 \ge \varepsilon ||f||^2$
- (iii) $||A_1^*f||^2 + ||A_2f||^2 \ge \varepsilon ||f||^2$
- (iv) $||A_1 f||^2 + ||A_2^* f||^2 \ge \varepsilon ||f||^2$

If it is easily seen that (i) holds if any only if D_0 is boundedly invertible, and that (ii) holds if and only if D_2 is boundedly invertible.

The Laplacian D_1 is in general given by a matrix operator in $H \oplus H$

$$D_1 = \begin{pmatrix} A_1 A_1^* + A_2^* A_2 & A_1 A_2^* - A_2^* A_1 \\ A_2 A_1^* - A_1^* A_2 & A_1^* A_1 + A_2 A_2^* \end{pmatrix}.$$

In the case of a weakly doubly commuting system the off-diagonal operators are both

zero and we get

$$D_1 = \begin{pmatrix} A_1 A_1^* + A_2^* A_2 & 0 \\ 0 & A_1^* A_1 + A_2 A_2^* \end{pmatrix}.$$

For this Laplacian (iii) and (iv) hold if and only if D_1 is boundedly invertible.

Hence Dash's conjecture holds if A_1, A_2 are weakly doubly commuting. In the general case, however, D_1 has the following structure

$$D_1 = \begin{pmatrix} P & Q \\ Q^* & R \end{pmatrix}$$

where $P = A_1 A_1^* + A_2^* A_2$, $R = A_1^* A_1 + A_2 A_2^*$ are positive operators and $Q = A_1 A_2^* - A_2^* A_1$. If $u = f \oplus g$ is a general vector in $H \oplus H$, D_1 is boundedly invertible if and only if there is an $\varepsilon > 0$ such that $(D_1 u, u) \ge \varepsilon ||u||^2$ or equivalently

(v)
$$(Pf, f) + 2\text{Re}(f, Qg) + (Rg, g) \ge \varepsilon \{ ||f||^2 + ||g||^2 \}.$$

If g=0 this is inequality (iii) and if f=0 it is inequality (iv). Hence (iii)—(iv) are necessary for $(0,0) \notin \sigma(A_1,A_2)$. However, without further conditions on the operator Q it is not known whether conditions (iii)—(iv) imply (v).

6. Connections with [11]

In [11] Vasilescu proves the following theorem.

Theorem. $(0,0) \notin \sigma(A_1,A_2) \Leftrightarrow the operator$

$$\alpha(A) = \begin{pmatrix} A_1^* & A_2^* \\ -A_2 & A_1 \end{pmatrix}$$

is boundedly invertible on $H \oplus H$.

We give another proof. A simple calculation shows that

$$\alpha(A)^* = \begin{pmatrix} A_1 & -A_2^* \\ A_2 & A_1^* \end{pmatrix}$$

and that

$$\alpha(A)^*\alpha(A) = D_1 \tag{7}$$

$$\alpha(A)\alpha(A^*) = \begin{pmatrix} D_0 & 0\\ 0 & D_2 \end{pmatrix} \tag{8}$$

where D_0, D_1, D_2 are the Laplacians of the complex for A_1 and A_2 . Hence

$$(D_1u, u) = ||\alpha(A)u||^2$$
 and

$$(D_0 f, f) + (D_2 g, g) = ||\alpha(A)^*(f \oplus g)||^2.$$

From this follows that if $\alpha(A)$ boundedly invertible and consequently also $\alpha(A)^*$. Then all of D_0, D_1 and D_2 are boundedly invertible which implies that $(0,0) \notin \sigma(A_1, A_2)$.

Conversely $(0,0) \notin \sigma(A_1, A_2)$ implies that all three Laplacians have bounded inverses. Hence

$$||\alpha(A)u||^2 \ge C||u||^2$$

which implies that $\ker \alpha(A) = \{0\}$ and $\operatorname{im} \alpha(A)$ is closed. Also $\ker \alpha(A)^* = \{0\}$ and hence

im
$$\alpha(A) = (\ker \alpha(A)^*)^{\perp} = H$$
.

Consequently $\alpha(A)$ is boundedly invertible.

From (7) and (8) follows also an interwining property of the Laplacians. By evaluating $\alpha(A)\alpha(A)^*\alpha(A)$ in two different ways according to (7) and (8) we find

$$\alpha(A)D_1 = \begin{pmatrix} D_0 & 0 \\ 0 & D_2 \end{pmatrix} \alpha(A). \tag{9}$$

We can also easily show the equivalence of our approach with that of Vasilescu in [12]. He defines the operators δ_A and δ_A^* on $\bigoplus_{k=0}^N E_k^N(H)$ by

$$\delta_{A} = \begin{pmatrix} 0 & 0 & \dots & \dots \\ \delta_{0} & 0 & & \dots \\ 0 & \delta_{1} & & \dots \\ \dots & 0 & & 0 \\ \dots & \dots & \delta_{N-1} & 0 \end{pmatrix}, \quad \delta_{A}^{*} = \begin{pmatrix} 0 & \delta_{0}^{*} & \dots & \dots \\ 0 & 0 & \delta_{1}^{*} & & \dots \\ \dots & \dots & & \delta_{N-1}^{*} \\ 0 & \dots & 0 & 0 \end{pmatrix}$$
(10)

and $\delta = \delta_A + \delta_A^*$. Clearly δ is a selfadjoint operator. The main theorem in [12] is that the complex is exact if and only if δ is boundedly invertible.

We notice that $\delta_A^2 = \delta_A^{*2} = 0$ because of the properties $\delta_{i+1}\delta_i = 0$ and $\delta_i^*\delta_{i+1}^* = 0$. Hence $\delta^2 = \delta_A \delta_A^* + \delta_A^*\delta_A$, which has the same structure as a Laplacian. A simple computation shows that

$$\delta^2 = \operatorname{diag}(D_0, \dots, D_N)$$
 (diagonal matrix) (11)

where $D_0, ..., D_N$ are the Laplacians of the complex. From this it follows immediately that δ is boundedly invertible if and only if all the Laplacians $D_0, ..., D_N$ are boundedly invertible.

The intertwining property (9) follows in this case by evaluating δ^3 in two ways as

$$\delta \operatorname{diag}(D_0,\ldots,D_N) = \operatorname{diag}(D_0,\ldots,D_N)\delta.$$

REFERENCES

- 1. R. Arens and P. Calderón, Analytic functions of several Banach algebra elements, Ann. Math. 62 (1955), 204-216.
- 2. M. Cho and M. Takaguchi, Identity of Taylor's joint spectrum and Dash's joint spectrum, Stud. Math. 70 (1982), 225-229.
- 3. M. Cho and M. Takaguchi, Boundary of Taylor's joint spectrum for two commuting operators, Rev. Roum. Math. Pures et Appl. 27 (1982), 863-866.
- **4.** R. E. Curto, Fredholm and invertible *n*-tuples of operators. The deformation problem, *Trans. Amer. Math. Soc.* **266** (1981), 129–159.
- 5. R. E. Curto, On the connectedness of invertible n-tuples, Ind. Univ. Math. J. 29 (1980), 393-406.
 - 6. A. T. Dash, Joint spectra, Stud. Math. 45 (1973), 225-237.
 - 7. A. T. Dash, On a conjecture concerning joint spectra, J. Func. Anal. 6 (1970), 165-171.
 - 8. T. KATO, Perturbation Theory for Linear Operators (Springer-Verlag (2nd ed.), 1976).
- 9. C. R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics. (Springer-Verlag, 1967).
- 10. J. L. TAYLOR, A joint spectrum for several commuting operators, J. Func. Anal. 6 (1970), 172-191.
 - 11. F. H. Vasilescu, On pairs of commuting operators, Stud. Math. 62 (1978), 203-207.
- 12. F. H. VASILESCU, A characterization of the joint spectrum in Hilbert spaces, Rev. Roum. Math. Pures et Appl. 22 (1977), 1003-1009.

UPPSALA UNIVERSITY
DEPARTMENT OF MATHEMATICS
THUNBERGSVÄGEN 3
S-752 38 UPPSALA
SWEDEN

DEPARTMENT OF MATHEMATICAL SCIENCES THE UNIVERSITY DUNDEE DD1 4HN SCOTLAND, U.K.