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ABSTRACT. Measurement of glacier surface velocity provides some constraint on
glacier flow models used to date ice cores recovered near the flow divide of remote high-
altitude ice caps. The surface velocity is inferred from the change in position of a network
of stakes estimated from the least-squares adjustment of geodetic observations — terres-
trial and/or spaced-based — collected approximately 1year apart. The lack of outliers in
and the random distribution of the post-fit observation residuals are regarded as evidence
that the observations contain no blunders. However, if the network lacks sufficient geo-
metric redundancy, the estimated stake positions can shift to fit erroneous observations.
To determine the maximum size of these potential undetected shifts, given the covariance
of the observations and the approximate network geometry, expressions are developed to
analyze a network for redundancy number and marginally detectable blunders (internal
reliability), and the position shifts from marginally detectable blunders (external reliabil-
ity). Two stake networks, one on the col of Huascaran (9°07' S, 77°37" W; 6050 m a.s.l)) in
the north-central Andes of Peru and one on the Guliya ice cap (35717" N, 81°29' E; 6200
ma.s.l) on the Qinghai-Tibetan Plateau in China, are examined for precision and
internal and external reliability.

INTRODUCTION successive passes of the satellite that occur within a span of a
few days. After a few days the images decorrelate because the
surface features change, so annual velocity must be extra-
polated from the rate determined over a few days, increasing
the uncertainty to 0.6-1.0ma ! (Goldstein and others, 1993;

Ice cores recovered near the flow divide of four high-altitude
ice caps (Fig. 1) in equatorial and mid-latitude regions are
valuable sources of climatic records (Thompson and others
" s S g . : Rienot and others, 1996). While the field measurements
1986, 1989, 1995a, 1997). The ice has thinned and stretched 5 ¢ ) ; .
ot : 5 g 2 . between stakes are labor-intensive, they are a cost-effective
with time due to the force of the Earth’s gravity acting on h i ] ; ial d d s
; ; . approach providing adequate spatial coverage and precision
the glacier. Measurements of surface velocity are needed to pp PrOVICIRE 8] pa 5 P
i to measure surface velocity on remote small ice caps.

construct accurate numerical models of ice flow, which aid
in dating the ice with depth (Thompson and others, 1982).

The surface velocity is measured by observing the change

To capture the spatial variation in non-uniform surface
flow near the flow divide on typical ice caps, a network of
connected chains of stakes is used. Nye (1939) implemented
repeated direct measurements of the distance and horizon-
tal angle of five stake networks to determine the principal

in position between two surface stakes over time using geo-
detic techniques. The observed velocity is non-uniform and

ranges from 1 to 20ma ', within a few hundred meters of - gy = s
ang ek ' A strains. MacAyeal (1985) introduced an additional refine-
the flow divide.

ment showing that in parallel and nearly uniform flow fields

On high-altitude ice caps the position of a surface stake g R ; : .
the precision of the principal strain estimates can be im-

network measured during periodic visits within the 1 -3 years
of an active field program with conventional geodetic obser-
vations (electronic distance measurement (EDM), and hori-

proved by using multiple-center-stake rosettes. In a non-

zontal and vertical directions) and/or space geodetic
observations (the global positioning system (GPS)) is an
effective approach to measure the surface velocity, because it
is desirable the uncertainty in the surface velocity measure-
ment be within a few per cent of the velocity magnitude (i.e.

<+ 10cma '). Remote-sensing techniques that register

sequential visible and near-infrared imagery taken from

satellite, aerial and terrestrial platforms all rely on tracking
the motion of an identifiable surface feature, typically lacking

in the accumulation zone enclosing the flow divide, and have Fig. 1. Global map showing location of four surface strain net-
uncertainties of 1-20ma ' (Bindschadler and others, 1991; works established as part of the recavery of cores from high-alti-
Brecher and Thompson, 1993; Fastook and others, 1995). Satel- tude ice caps. Solid triangles show location of the Huascardn
lite radar interferometry (ISAR) can sense the mm-range and Guliya strain networks examined in Uhis paper. Solid
change along the line of sight from the satellite to the foot- circles show location of Quelccaya and Dunde surface strain
print of the radar signal on the glacier surface between two nelworks.
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uniform flow field a typical network should consist of a grid
of stakes separated horizontally by one ice thickness, and
with a lateral extent at least five ice thicknesses downstream
of the divide, and at least two ice thicknesses perpendicular
to the downstream direction (Whillans and Van der Veen,
1989; Van der Veen and Whillans, 1992). If desired, the prin-
cipal strains at locations within the network can be com-
puted from the velocity gradients of the surrounding stakes
(Brunner, 1979; Paterson, 1994),

With the stakes placed to enclose the general flow pat-
tern, designing a geodetic observation plan for the stake net-
work begins with predicting, to first order, the anticipated
magnitude and direction of the surface motion and the un-
certainty in the surveyed stake positions. A mathematical
model of glacial flow is used to predict the approximate
motion (e.g. Thompson and others, 1982). The a priori geo-
detic observation precision estimates are typically available
for the common geodetic observation techniques developed
for purposes other than glaciology. However, the extreme
cold and high-latitude/altitude environments may introduce
systematic errors that are less significant in more benign en-
vironments (Tseng and others, 1989). The primary design
criterion is the position uncertainty that must be achieved
for surveys separated by 1 or 2 yvears to determine the actual
surface motion with a level of confidence. Specifically, the
uncertainty in the measured velocity should be within a
few per cent of the velocity magnitude. This criterion relies
on the assumption that all geodetic observations are col-
lected with their assumed random errors. If the geodetic
observations contain blunders or systematic errors, then
the velocity estimates are not of this quality.

Several steps are taken to minimize systematic errors
and to guard against introducing blunders while simultan-
cously increasing the precision of the stake coordinate esti-
mates. Systematic crrors in distance observations are
controlled by comparing EDM observations at a calibration
range before and after field measurements (Fronezek, 1977)
and by measuring the ambient air temperature and pres-
sure to compute the refractive index. Systematic errors in
direction observations are controlled by adjusting the verti-
cal index of the theodolite and taking the mean of angles
measured in both direct and reversed telescope orienta-
tions. Systematic errors in GPS observations are controlled
by forming a linear combination of the two signals broad-
cast by the GPS satellites that is free of the first-order eflects
of the ionosphere, and by using a priori post-fit satellite
orbits, modeling receiver clock drifts, and tropospheric re-
fraction during data reduction (c.g. Leick, 1995),

Blunders are controlled by repeated observations and
localized geometric checks. Repeated observations (e.g,
measuring the distance between two points several times
from both ends of a line) can identify blunders. In addition,
taking the mean value of the repeated observations reduces
the random error, which in turn improves the precision of
the estimated position coordinates. Localized geometric
checks (e.g. the sum of the observed internal horizontal
angles of a plane triangle must equal 180°) can also identify
a blunder.

In general, a geometric constraint on coordinates is
increased by each observation type that involves a unique
combination of stake coordinates. For example, measuring
the length of all three sides and all three interior angles of a
triangle provides more geometric redundancy than measur-
ing only the length of all the sides. Various investigators have
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exploited these ideas by combining redundant heteroge-
neous geodetic observations in a least-squares adjustment
to simultaneously increase the precision of the estimated
stake position and provide some ability of the geodetic net-
work to indicate observations that do not fit the model in the
form of outlying residuals (Chapman, 1966; Drew, 1983;
Hinze and Seeber, 1988).

The ability of the model to reject blunders rather than
deform the coordinates to accommodate the incorrect
observations is related to the number of geometric con-
straints, ie. unique observations that form overlapping
functional relationships among the unknown coordinates
and the statistical tests adopted to identifly residual outliers.
This so-called internal reliability (Barrada, 1968), which is
related to data resolution analysis (Menke, 1989), can be
quantified. In fact, it can be performed as part of the pre-
analysis along with evaluation of the precision criterion. In
addition, the network can be analyzed for external reliabil-
ity (Barrada, 1968), which is related to model resolution
(Menke, 1989). This analysis involves computing the erro-
neous coordinate shifts that result from each undetected
blunder whose magnitude falls just below the rejection
threshold. Evaluation of network design should include the
three criteria of precision and internal and external reliabil-
ity. These criteria can be balanced using a trial-and-error
approach or using a generalized optimization of geodetic
networks considering all three simultancously (Kuang,
1993). Analyzing all three criteria increases the confidence
in the derived estimated positions and, in turn, the velocity
estimates.

In this paper, common conventional and space geodetic
observations and appropriate coordinate systems for para-
meterizing these observations are reviewed. The problem
of defining and then maintaining a common coordinate
system (datum definition) for the initial and all subsequent
measurement epochs is addressed. An iterative least-squares
algorithm for non-linear functions is developed to simultan-
eously accommodate the redundant observations, provide a
unique estimate of the stake coordinates and define a com-
mon coordinate system. Matrix relations to compute the
propagated coordinate and residual precision are devel-
oped. A statistical analysis of the least-squares adjustment
residuals is reviewed. The matrix relations and statistical
test for internal and external reliability are given.

Finally, the tools to evaluate the three design criteria of
precision and internal and external reliability are applied to
two different surface stake networks. One is in the col of
Huascaran in the north-central Andes of Peru (Thompson
and others, 1995a), measured in September 1991 and 1992
using conventional geodetic observations of slant distance
and vertical directions. The other is on the Guliya ice cap
on the Qinghai- Tibetan Plateau in China (Thompson and
others, 1997), measured in May 1991 using slant distance and
vertical directions and in September 1992 using slant dis-
tances and vertical and horizontal directions.

COORDINATE SYSTEMS AND OBSERVATIONS

The stake positions are described with coordinates, and thus
the surface velocities are just changes in the stake coordin-
ates with time. These coordinates are not measured directly,
but are computed, in the case of conventional surveying,
from distance, vertical and horizontal angle observations
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using trigonometric relationships (e.g. the laws of sines and
cosines), and in the case of GPS, by differencing satellite
signal phase observations recorded at two points giving the
coordinate differences directly (e.g. Leick, 1995).

The selection of the coordinate system in which to des-
cribe the stake positions is dictated to some extent by the
observation types employed and the lateral extent of the net-
work. GPS observations are best described in an Earth-
centered-Earth-fixed (ECEF) frame, shown in Figure 2.
This global frame is defined with origin at the center of mass
of the Earth, the X axis through Greenwich, the Z axis
aligned with the rotation (north) pole and the Y axis in
the equatorial plane forming a righthand system (e.g. Leick,
1995). The GPS phase data, collected simultaneously at two
stakes, are processed to estimate the ECEF coordinate dif-
ferences between the two stakes as

A_X";k X — )(J
AYp | = | Y |- (1)
AZj 2k —Z;

The ECEF coordinates (X, Y, Z;) are functions of the
geodetic latitude (¢;), longitude (A;) and ellipsoid height
{hj] b}’

X5 (N + h)cosg;cos A
Y; | =| (N+ h)cosg;sin; (2)
Z; [N(1 + €*) + h]sin ¢;

where N is the radius of curvature in the prime vertical

a

N= (3)

where @ is the semi-major axis of the ellipsoid and € is the
eccentricity (e.g. Vanicek and Krakinsky, 1986).
“onventional geodetic observations of distance, vertical
and horizontal directions between stakes measured with
EDM and theodolite are best referenced to the local horizon
because the instruments are leveled perpendicular to the
geoid normal at each stake. Thus, conventional geodetic
observations are most easily described in a local-horizon co-

geoid normal

North Pole .

South Pole

Fig. 2. The relationship between the global ECEF coordinates
(X, Y}, Zj ), the geodetic coordinales ( @;, Aj, h; ), the local-
horizon system defined at point j, the geowd normal, the conven-
tional geodetic measurements of distance Lt ), horizontal dir-
ection (dji) and vertical direction (vjy) from point j to k
and the local-horizon system coordinates (€ji, Wjg, Wj) of
point k.
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ordinate system, east (e), north (n) and up (u), also shown
in Figure 2. The local-horizon system at any stake is defined
with the origin at the stake, with the e axis in the east direc-
tion, the n axis in the north direction and the u axis aligned
with the local ellipsoid normal. The € and n axes define the
local-horizon plane which is perpendicular to the ellipsoidal
normal. The angular separation between the geoid and
ellipsoid normals is the deflection of the vertical (€) (e.g
Vanicek and Krakinsky, 1986). In general, the deflection of
the vertical must be estimated (e.g. from gravity measure-
ments) and used to align conventional geodetic obser-
vations, measured relative to the geoid normal, to the
ellipsoid normal.

The conventional geodetic observations can be ex-
pressed as functions of ¢, n and u coordinates where the dis-
tance between Py and P is

Lig = \/(Bk = ej)‘.! + (g — N.J)? + (up — !LJ‘}Q, (4)

the horizontal direction is

(ex — ;)
(ng —n;)

(5)

dj, = arctan

and the vertical direction is

(ur — uj) . (6)
\/(c;,. —e;)% + (g — ny)*

Because the Earth has a curved surface the horizontal
plane tangent to each surface point is unique. Thus each
stake has a unique local-horizon system. In general, these

ik = arctan

individual local-horizon systems must be transformed into
a single common coordinate system for simultaneous adjust-
ment of all the data. It is possible to describe conventional
observations as functions of global coordinates because each
local-horizon system can be transformed into the ECEF
global frame by

AX
AYg | =
AZJ"
—singjcos \; —sing; cos@;cosi; ek
—sing;sinA; cos)\; cosg;sinl; wax | (M)
cos 0 sin o] ik

where ¢; and A; are the geodetic latitude and longitude of
the point defining the origin of the local-horizon system.

For small networks of | km x 1 km, the computations can
be simplified by adopting the €,n and u local-horizon
system at a single point to use for the entire network, thereby
ignoring Equation (7), by applying a correction for Earth
curvature to the wvertical directions (e.g. Vanicek and
Krakinsky, 1986) and by assuming a constant value of the
deflection of the vertical throughout the network. These ap-
proximations result in mm-level errors in coordinates for a
network 1 km »x 1 km.

DATUM DEFINITION

The datum for the adopted coordinate frame is defined by
seven parameters: three translational components, three
rotational components and scale. o correctly compute the
surface velocity the observations in cach separate survey
must be in the same coordinate frame, or the change in the
seven parameters must be known to transformation from
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one frame to the other. The measurements themselves may
be sensitive to some of the seven datum parameters and
implicitly and consistently define that part of the datum
(Caspray, 1988). For example, in conventional geodetic net-
works, distance measurement by EDM provides the scale.
Height-difference measurements by vertical angle or differ-
ential leveling, between points that are not collinear,
provide the two orientations about the two orthogonal axes
(e and n) in the horizontal plane. Solar or stellar obser-
vations of the astronomical azimuth between any two stakes
in the network provide the azimuthal orientation about u.
Horizontal direction measurements between any two stakes
provide no datum information.

A stake network measured with distances, vertical and
horizontal directions has four ambiguous datum parameters,
three translational components (e, n and u) and the orienta-
tion about u. These must be consistently defined to link
together the coordinate system from year to year. If one net-
work point is on local bedrock, the three translational com-
ponents of this network can be defined by the adopted e, n
and u coordinates of the bedrock point. If a second point
can be located on bedrock then the orientation about u can
be defined as the adopted direction of the line hetween the
two points on bedrock. Then the glacier surface velocity is
monitored relative to the surrounding local bedrock.

If the network cannot be extended to nearby bedrock,
then some alternative definition of the origin and azimuthal
orientation is needed. One approach is to adopt a single
stake as the origin and observe the astronomic azimuth to
another stake or simply adopt the direction from the origin
stake to the other as the orientation. This approach is less
desirable than fixing to bedrock, because all stake velocities
are relative to the origin stake and do not include the motion
of the origin stake relative to local bedrock. Likewise, the
precision estimates of the velocity are arbitrary zero at the
origin stake and increase with distance from it. A second,
possibly better approach is to define the origin at the center
of mass of all stake coordinates. For a stake network with
uniform coverage of the ice-cap flow divide, this center
point should be near the source and reasonably stable rela-
tive to the stakes in the network. The sum of relative dis-
placements and orientation change about this point can be
forced to be zero by adopting a free network, also called
inner constraint approach (Welsch, 1979), to be discussed in
the next section. A third alternative is to constrain the esti-
mated motion to the direction and magnitude predicted by
a glacier flow model. All these techniques to constrain the
datum when it is not possible to establish an external refer-
ence to bedrock or global frame should be used with caution
because they have been shown to complicate the interpreta-
tion of measured crustal deformation near strike slip faults
(Prescott, 1981; Segall and Matthews, 1988).

GP5s observations of the stake positions in a global frame
have a clear advantage over conventional observations re-
gardless of whether the network extends to bedrock, because
all seven parameters can be defined consistently by the GPS
measurements. The three translation components of the net-
work are measured by observing the global position (X, Y
and Z) of at least one stake in the network with a precision
of £1.5 em using a dual-frequency GPS receiver and the pre-
cise positioning technique (Zumberge and others, 1997). The
GPS-derived coordinate differences hetween this stake and
all others define the three orientations and scale.

Also, one problem that frequently arises on larger sur-
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face stake networks is that the field time required to com-
plete all measurements is such that significant motion has
occurred in the part of the network measured first before
measurements have been observed in the remaining net-
work. Two approaches are used to solve this problem. (1)
The measurements observed at widely separate times (c.g.
the distance between stakes i and j in year one and year
two) can be interpolated to one common day in year one
and another common day in year two. This approach suffers
somewhat since if a measurement cannot be repeated (e.g.
the original stake is not recovered in year two) then the
measurement cannot be used sinee it cannot be interpolated
to the common time in year one, even though if it were avail-
able it could be used to strengthen the year one network
solution. (2) An alternative approach 1s to parameterize the
stake positions in time as a position at an initial epoch and a
velocity component. This approach can use all measure-
ments, accommodating different measurement types or en-
tirely different schemes (e. g, conventional measurements in
year one and GPSin year two). Either approach can be used
in the formulations discussed in this paper.

LEAST-SQUARES ESTIMATION

The overdetermined system of observation coordinate
functional relationships (Equations (1) and (4-6)) is com-
bined in a least-squares approach to obtain a unique esti-
mate of the coordinates while also providing precision
estimates of the coordinates and residuals, and permitting
specification of a unique datum. In general, the obser-
vations (Q), with a priori covariance X, and the coordin-
ates (X)) are related through a non-linear function

f(0.X)=0 (8)
where f is simply Equations (1) and (4-6) recast by moving
the observed quantity to the righthand side of the equation.
Additionally, a set of functions between parameters is
required to add constraints to define the datum parameters
not defined by the observations

9(c.X)=0 (9)
with a priori covariance 3., Explicit examples of ¢ will be
given later.

These functions are linearized by expanding as a Taylor
series about the observations (O) and the approximate
values of coordinates (X), and truncated after the first
derivative

Vo +AAX+L+...=0 (10)
V.+GAX +W+..=0 (11)

where L = f(0,X) and W = g(c,X) are the functions
evaluated with O and X; A =39f/0X and G = dg/dX
are the derivatives of the respective functions evaluated at
X; df/00 = I and dg/00 = I, are the derivatives of the
functions evaluated at O; AX are the corrections to the ap-
proximate coordinate values, the quantity to be estimated;
and Vj and V., are the residuals.

The least-squares solution is derived by minimizing La-
grange’s function (@) which is the weighted sum of squared
residuals subject to the constraints given by Equations (10)
and (11) given as

BV, Ve, ki, by, AX) = WiV 4 VRS IY,
-2k} (Vo + AAX + L) — 2k(V. + GAX + W) (12)
where ki and ky are the Lagrange multipliers. This function
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is minimized by taking the partial derivatives of ® with re-

spect to each of V. V.. ki, ko and AX and setting each of

these equal to zero:

S(3&) ==i'Vo-ki=0 (13a)
%(gg’c)tzzglvc—kg:o (13b)
%(g—l‘z)tzvl,+AAX+L=0 (13¢)
%(%)tzv‘.+GAX+W:0 (13d)
%(B“K‘?X)t oAM= O =0, [138)

Examples of this approach are given in Mikhail (1976),
Caspray (1988) and Leick (1995). This system of five equa-
tions is reduced by solving Equation (13a) for Vj, substitut-
ing this into Equation (13¢) and solving for k; and
substituting this into Equation (13¢). Next, Equation (I3b)
is solved for V. and substituted into Equation (13d). These
steps which eliminate Vy, V. and k; reduce the original
cquations o

A'S'A G\ (AX) | (-A'S'L) gy
G -3, —k> -W '
The solution for the unknowns can be written as
(AX _ (9 Qe —AtEn‘L) (15)
—ky Q) Qa -W
where the Q;; matrices satisfy the relationship
Atz,‘,lA Gt \(Qu ng) _ (L 0) (16)
G -2 /\ Qa1 Qn 0 L/
Multiplying the matrices in Equation (16) gives four equa-
tions that can be solved for Q;; (Leick, 1995):

A'SAQ; +G'Qy =T (17a)
GQ; —XQ; =0 (17b)
A'E'AQ;; +G'Qyu =0 (17c)
GQ, — Z.Qy = L. (17d)
Since E;l exists Lquation (17h) can be written as

Qu = EF_IGQN- (18)

This expression is substituted into Equation (17a) to give
Oy = (A8E SR G (19)

In a similar manner, an expression for Q5 is found by re-
versing the order of the two matrices on the left side of Equa-
tion (16) and multiplying the matrices to form four
equations which can be rearranged to give

Qe =QuG's; (20)
The expressions for Q;; and Q5 are substituted into Equa-
tion (15) to give
AX = (A'S;'A + G2 Q) AN, 'L + GPECW).
(21)
The updated a posteriori coordinates are
X =X, + AX] (22)

where X; are the a priori coordinates, AX; are the esti-
mated corrections, and the dependence on iterations i and
i + 1is shown explicitly. The functionals given in Equations
(8) and (9) can be relinearized about the updated coordin-
ates (X, 1) and the corrections re-estimate A X, 1. This se-
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quence of iterations can be repeated until the system
converges. Noting that the initial coordinate values can be
computed from a linear independent subset of the obser-
vations and using this approach, the system typically con-
verges in two to four iterations, For clarity the subscripts i
are omitted, but it should be understood that all matrices
involving the coordinates are updated with each iteration.

For the case when two points of the network lie on bed-
rock, the most common approach to define the datum is to
withhold the e, n and u coordinates of one hedrock point
from the estimated coordinates, thereby constraining the
translation, and to withhold the e or n coordinate ot'a second
bedrock point to constrain approximately the orientation of
the network about u. To compute the snlullon for AX in
Equation (21) the inverse of the (AtZ“ A+ GE1G) must
exist, which implies the matrix is of full rank. In general,
AtEEIA is not full rank and is made so by defining the
datum through the constraints G. Alternatively, by not esti-
mating the e, n and u coordinates of one bedrock point, and
the e or n of a second hedrock point, the column space of A
is reduced by four, the size of the rank defect, and A‘EJIA
has full rank and can be inverted. This approach is often
used because it does not require introducing the G matrix
and the additional computational burden required to imple-
ment the constraints. However, this approach cannot be
used to apply constraints involving more general functions
(c.g. Equation (24)) of the coordinates.

A more general approach for the case when two points of
the network lie on bedrock defines the datum using Equa-
tion (21) and the weighted constraints of Equation (9). Io
constrain the estimated coordinates ¢;, n; and u; of point i
to a priori values of €f, nf, and uf Equation (9) is

glef,e)=e—ei =0 (23a)
gl m) = n — nf = (23b)
gluf,u) = u—uj =0. (23c)

“[o constrain an azimuth of the line between points 7 and jto
an a priori value of AZ[; Equation (9) is

eime) _4ze. (o)
(s —my)

For the case when no points lie on bedrock the free
network or inner constraint least-squares algorithm is
developed again with Equations (14-16) recognizing that
the previously weighted constraints are enforced rigorously
s0 =B, =0 and W =0 (Caspray, 1988). Thus Equations
(17) become

o(AZ;, eiy i€, n;) = arctan

AtESlAQu +G'Q, =1 (25a)
GQ]] == 0 (25}))
A'T,'AQ;; + G'Qy =0 (25¢)
GQp =L. (25d)

Since X!
ferent approach by first introducing the non-unique matrix
E* that forms the null space (e.g. Strang, 1988) of A so that

no longer exists the solution is derived using a dif-

AE* = 0. (26)
Premultiplying Equation (25a) by E gives
Q, = (EG") 'E. (27)

Postmultiplying Equation (27) by G* gives
=8 %
Q;, Gt = (EG') EG*=I= GQ:,. (28)
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Comparison of Equations (27) and (25d) shows
Q, = Q}, = E(GE') . (29)

Premultiplying Equation (28) by G* along with Equation
(29) gives

G' = G'GQ,, (30)
which with Equation (26) can be recast as
Qi = (A'S;'A +G'G) "G (31)

Because of Equation (25b) Equation (25a) can be written as
=,
(A'S) A+ G'G)Q; =L - G'Qy,. (32)
The inverse of (A'E;'A + G'G) ' has rank (A)+e,
where ¢ is the number of datum constraints, so its inverse
exists. Premultiply Equation (32) by (A*3, 1A + GtG)_]
and with Equation (31), then
= 1
Qi = (A'S;' A+ G'G) ' - QuQy.
From Equations (27) and (29), Equation (33) is
Q. = (A'S;' + G'G)™! - EY(GEY) ' (EGY)'E.
(34)
Substituting Qy; from Equation (34) into Equation (15) and
noting Equation (26) and that =%, = 0 and W = () gives
AX = (A0 K+ GG AL (35)
The selection of G is arbitrary, with specific selections giv-
ing the solution different properties (Segall and Matthews,

1988).

The inner constraint approach provides a convenient

(33)

formulation to compute bhoth the G and E matrices
required to implement Equation (35). T'he inner constraint

5).
computes coordinate estimates with the property that the
net translation and rotation about the center of mass of the
coordinates is zero while minimizing the displacements
AXTAX. The net translation is constrained to zero by

9(AX;) = ZAef =) (36a)
glAX;) = Zhnf=10 (36h)
g(AX;) = XAuf = 0. (36¢)

The net rotation is constrained to zero by
g(X;, AX;) = B(w;An; — mpAu;) =0 (37a)
9(X;, AX;) = E(e;Au; — uilde) =0 (37h)
9(X;, AX;) = Z(n;Ae; —e;An;)) = 0. (37¢)

The scale is constrained with

9(X;, AX;) = E(e;Ae; — niAn; — u;Aw;) = 0. (38)

For the three-dimensional Cartesian coordinate systems
(e.g. e,n,u, or X, Y, Z) the elements of the G matrix are

+1 0 0 =il 0 0
0 +1 0 0 el 0
0 0 +1 0 0 +1
0 4w —ny 0  4us —no

—U 0 +e — Uy 0 +e9

4+ —e 0 +ns  —e 0
= O R ) +es  +ns  +us

(39)
Rows [-3 constrain the translation of ¢, n and wu, respective-
ly. Rows 4-6 constrain the rotations about the e, n and u
axes, respectively. Row 7 constrains the scale. Tt turns out
that these elements form the null space components of the
common three-dimensional geodetic coordinate systems
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(Blaha, 1971; Leick, 1995). Thus E = G. Also, Equation (35)
and Matrix (39) compute the equivalent pseudo-inverse
solution as do other forms of' a generalized inverse (Caspray,
1988; Leick 1995). However, through Matrix (39), Equation
(35) permits more explicit definition of which constraints to
implement and which stake coordinates to include to define
the datum.

Because the elements in Matrix (39) involve the most
recent updated coordinate estimates, the datum defined for
each iteration is unique. Each subsequent solution defines a
slightly different datum. All solutions must be transformed
to a common datum via a similarity transformation before
the positions can be differenced for the velocity. The coordi-
nate estimates and the covariances can be transtormed to a
common datum by adopting the G = E matrix defined for
onc particular iteration and transforming the results from
all other iterations to the adopted datum using the relation-
ships (Leick, 1995)

AXiy =T AX; (40a)
Qaxiy = Tt Qaxi Tin (40D)
T, =I— EYEEY'E. (40c)

STATISTICAL ANALYSIS

The least-squares algorithms provide a convenient formula-
tion to compute the covariance matrices of the estimated
coordinates and the covariance of the observation residuals,
These computations require the covariance of the obser-
vations, something fairly well known from experience, but
only an approximate knowledge of the network geometry
which is relatively insensitive to the actual magnitude of
the observations. The matrix products that define these are
referred to as cofactor matrices (Mikhail, 1976) and once
scaled by the appropriate variance of unit weight are the co-
variance matrices. The coordinate cofactor matrix is simply
Q. For the weighted constraint approach Equation (19)
gives
Qax = (A'Z,'A + G'E'G) (41)
Likewise for the inner constraint approach, Equation (33)
gives
Qax = (A*S;'A + E'E) ' + EY(EE'EE!) 'E. (42)
The observation residual cofactor matrix is formed by
propagating the parameter uncertainty in Equation (41) or
(42) through Equation (11). Again for the weighted con-
straint approach

Qo) = By — AA'E A + G5 "G A8, (49)
and from the inner constraint approach
Qu(0) = =) - A(A'S, A + E'E) ‘At (44)

These matrices will be used to normalize the residuals to
create the standardized residuals for statistical analysis.

For pre-analysis and prior to the adjustment of obser-
vations, an a priori variance of unit weight of =1 is
assumed. This reflects that initially the adopted covariance
matrix of observations and the geometric model are
assumed to be correct. The a priori parameter and obser-
vation residual covariances are

EAK — UﬁQAX (45)
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and
By =070y (46)

where Qax is from Equation (41) or (42) and Qy is from
Equation (43) or (44). After observations are collected and
adjusted, the a posteriori variance of unit weight is given by

=1 =
., L'S L+W'E W

g =

v n—R(A)—c

where n is the number of observations, R(A) is the rank of

A, and ¢ is the number of applied constraints. The a pos-
teriori parameter covariance is

(47)

= )
EAX = U[;QAX- (18)
The a posteriori observation residual covariance is
" 3 )
o= J()Qv (“19)

where again Qax is from Equation (41) or (42) and Qs i3
from Equation (43) or (44).

It is assumed that the observations contain no un-
modeled systematic errors or blunders. If this is correct,
then the post-adjustment residuals contain no individual
outliers and are normally distributed, and the observations
fit the model, Several statistical tests are available to analyze
to what significance level these three results are obtained
(Mikhail, 1976). Of primary interest to the pre-analysis of
reliability is a local test to detect individual residual outliers.

Barrada (1968) data-snooping test is based on the stan-
dardized residual. In general, the residuals have dillerent
variances, and thus different normal distributions. The re-
siduals are transformed to a consistent distribution by divid-
ing by their standard deviation, giving the standardized
residuals

= (50)

where ;) are the diagonal elements of the covariance
matrices given in Equations (48) and (49).

To establish the statistical test, Barrada (1968) defines the
null hypothesis (Hy) as the model being correct and com-
plete and the alternative hypothesis (H,) as one blunder
having caused the rejection of Hy. The null hypothesis is re-
jected if

?7'.: - “‘ﬂ(m (51)

where 1, is a critical value calculated by Barrada based
upon x° distribution. This critical value is a balance
between the two errors, (1) Hy is rejected when true, and
(2) H, is true but the blunder goes undetected because it
does not reach the critical value in Relation (51). The first
case is a so-called type I error with a probability c. It im-
plics that if 77 reaches the critical value and is rejected, the
probability that it was a good observation is a. The second
casc is a so-called type TI error with probability & It implies
il 7 reaches the critical value, the probability it is the single
blunder is 1 — 3. The balance arises because decreasing «
and 3 values increases the critical value so that once 77
reaches the critical value it is correctly identified as a blun-
der with a high probability. However, setting the threshold
high can admit blunders that could have been identified,
although with a higher probability that a good observation
is rejected and the single blunder is not isolated.

Typical values are o = 0.1% and 3 = 20%, which gives
g0y = 4.1 (Caspray, 1988). The 3 value must have much
higher probability because a single blunder tends to get
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smeared into the residuals of several observations and is dif=
ficult to detect. Also, in general, there may be more than one
blunder in the data, though experience (Kok, 1984; Caspray,
1988) has shown that removing the worst violator, comput-
ing the new parameter estimates and residuals then re-eval-
uating Equation (50) and Relation (51) is a practical
approach for eliminating the blunders.

Prior to the actual collection of observations, with the
ohservation covariance and the approximate network geo-
metry, U, gy can be used to access a priori the magnitude of
a blunder that can be detected. This permits pre-analysis of
the internal and external reliability.

INTERNAL AND EXTERNAL RELIABILITY

Small residuals alone are not a good indicator of the model
fit to the data. If the total set of observations lacks sufficient
overlapping redundant functional relationships (Equations
(1) and (4-6)), the coordinates are [ree to shift to fit the erro-
neous data. Internal reliability is a measure of the control
imposed on a single observation by all other observations
in the network. Clearly, the rejection threshold depends on
the number of independent functional relationships and the
uncertainty of the observations. Constructing more func-
tional relationships and decrcasing the measurement uncer-
tainty improve the self-checking ability of the network. The
mathematical formulation of internal reliability follows that
of Barrada (1968) and Kok (1984) for geodetic applications,
and Wiggins (1972) for internal reliability for geophysical
applications.

The concept of redundancy numbers can be developed
by first substituting Fquation (35) or (21) into Equation (14)
o give

Vo= -ANSA e AT 1L, (B2

Next the observation blunders are modeled as the combina-
tion of L and a perturbation vector AQ,

L=L+AO (53)
where A O are erroneous shifts in the observations. Next the
residuals containing the blunders are

o —A[(AtE,;IA +ite At 1| (L + AQ).
(54)
This is reduced to
AV =V, -V, =Q,Z;'A0 (55)
by recognizing I = EUZ(',] and substituting for Qy from
Equation (44).
Because QVE,]l is idempotent, i.e. QVE(IIQvﬂal =
QVZ,_;l the rank of this matrix is equal to its trace (e.g.
Strang, 1988), the sum of the diagonal elements,

mn

Tr(QvE;") =) rdi=n— R(A) (56)

1

where rd; are the diagonal elements of QuX; ! nis the
number of observations and R(A) is the rank of the matrix
A. The trace of QV)ZJI plus the datum constraint ¢ is the
degrees of freedom of the adjustment.

The rd;, associated with each observation 7, is referred to
as a redundancy number or data resolution parameter
(Caspray, 1988; Menke, 1989). A number close to 1 indicates
that the gain to the adjustment, in terms of degree of free-
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dom, is high, implying that the functional relationship
among the redundant observations is strong. If the redun-
dancy number is near zero, the observation contributes less
to the degree of freedom, i.e. the functional relationship of
this observation to others is not strong. In this case, coordin-
ates arce free to deform to fit the erroneous observation, and
a small residual is not necessarily an indication of agree-
ment between data and model. For geodetic networks,
values of rd; < 0.3 are to be avoided (Caspray, 1988).

For pre-analysis, these redundancy numbers can be in-
corporated with the statistical test for outlier detection to
compute for each planned observation the maximum size
of the error in that observation which can be detected as an
outlier. This marginally detectable blunder (mdb) is com-
puted from Relation (51), replacing 77 with residual defined
by the right side of Equation (35) divided by standard devi-
ation computed from Equation (46) or (49),

ivm |:_>

U (0)
T
\/T_'rf,

where u, ) is a critical value in Relation (51). Analyzing the

(57)

marginally detectable blunder for each observation of a
planned-network geometry and observation scheme depicts
the internal reliability of the network. The occurrence of a
high mdb indicates an unreliable region of the network. A
modification to the planned network to enhance the geo-
metry and/or incorporate more observations can be investi-
gated to improve the internal reliability.

The external reliability analysis determines the impact
on the coordinate estimates of each mdb. For the weighted-
constraints approach the effect of each mdb on all the coord-
inates is

o -1
VuX=(A'mA+atn'e) A%V, (8)
and for the inner constraints approach is
= -1 =
o (A“E“ 'A+ EtE) AV (59)

where V,; X are the shifts to all coordinates due to the mdb
Vai of a single observation i. The computation in Equation
(58) or (59) is performed for the mdb of each observation.
The coordinate shifts can be plotted to allow an easy graphi-
cal assessment of the external reliability.

APPLICATION

The techniques developed in the preceding sections are now
applied to two different stake networks. ‘The Huascaran net-
work is an example where the local coordinate system of one
stake was adopted for the entire network and where the
translation and azimuthal orientation of the datum was
defined by inner constraints because the network was not
connected to bedrock. The Guliya network is an example
where the global frame was required because of the 4 km
extent of the network and where the translation and azi-
muthal orientation of the datum were defined by points on
bedrock.

Figure 3 shows a 200 m x 500 m stake network at the col
of Huascaran (9°07' S, 77°37' W; 6050 m a.s.l) in the north-
central Andes of Peru. The network enclosed two drill sites
from which ice cores of 1604 and 166.1 m were recovered in
1993 (Thompson and others, 1995a). 'To provide adequate
spatial coverage of the surface motion, the array grid was
spaced at approximately 150 m, one ice thickness, and was
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Fig. 3. Stake network at the col of Huascardn (9°07' S,
7737 W 6048 m a.s.l.) in the north-central Andes of Peru
( Thompson and others, 1995a ). Bold lines with solid arrows
are the stake horizontal displacements from September 1991 to
September 1992. Displacements are relative to the center of
mass of the 1991 positions of the 13 stakes common lo the sur-
veys in both years. Because the network could not be connected
to bedrock, the motion of the entire array relative lo bedrock
remains unknown. Ellipsis at end of solid arrows shows the
95% confidence-level ervor in the displacements. End of the
thin lines al base of displacement shows the coordinate shifts
that result from marginally detectable blunders in the 1991
observations. Thin lines at tip of displacement arrows show
coordinate shifts from meb in the 1992 observations. Note that
one scale is used for the displacement, and another for the el-
lipsis and shifls from marginally detectable blunders.
Locations of cores Cl and €2 are shown as solid triangles. In-
sels show the stake network in both years where lines represent
vectors along which the slant distance and vertical direction
relative to adjacent stakes were measured. Solid stake symbols
show the stakes common to both surveys.

two ice thicknesses wide and five ice thicknesses long in the
downstream direction. Near the flow divide, adjacent stakes
were intervisible with a stake spacing of approximately one
ice thickness. Intervisibility between stakes separated by
more than one and a half ice thicknesses was not typical.
This array was representative of ones used on other ice caps
insouthern Peruand in China (Thompson and others, 1986;
Chadwell, 1989).

The stake positions were measured in September 1991
and 1992 using conventional geodetic observations of slant
distance and vertical direction from both ends of each line
between any two adjacent stakes. These observations were
sufficient to determine redundantly the stake positions. To re-
flect realistic uncertainties for observations collected in the
extreme environment of high-altitude ice caps, the assumed
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observation standard deviations were £ (3 mm + 3 ppm) for
distances and %1 em for instrument heights and centering. In
1991 a subsequent test of the theodolite revealed a £4.5" of arc
uncertainty in the vertical directions. In 1992 the instrument
was replaced and the vertical directions were observed with
a more typical uncertainty of £20" of arc.

In neither year could the stake positions be located rela-
tive to bedrock, because of a lack of local outcrops. The
datum scale and the two orientations in the horizontal plane
were defined by the slant-distance and vertical-direction
observations, The remaining four datum parameters of azi-
muthal orientation and three translation components were
defined by adopting an inner constraint approach using
Equations (35), (39) and (40). Because two of the stakes were
not recovered in 1992, the datum for both years was defined
by the September 1991 position of the 13 stakes observed in
both years.

Figure 4 shows a 600 m x 800 m stake network on the

1992

SCALE
Om 1000m

NETWORK
Om 2m
ELLIPSE/DISPLACEMENT

s R,

Fig. 4. Stake network on the Guliya ice cap (35717 N,
81°29' E; 6200 m a.s.l) on the Qinghai—Tibetan Plateau.
Bold lines with solid arrows are the stake horizontal displace-
ments, May 1991 Fuly 1992. Displacements are relative to
bedrock paints shown as solid squares. Ellipsis at end of solid
arrows shows the 95% confidence-level error in the displace-
ments. End of the thin lines at base of displacement shows the
coordinate shifts that result from marginally detectable blun-
ders in the 1991 observations. Thin lines with arrows show
shifts that exceed 2 m. These resull because one diagonal line
was not observed in the second quadrilateral west of the bed-
rock points. Thin lines at tip of displacement arrows show co-
ordinate shifts from mdb in the 1992 observations. Location of
the care (C) is shown as a solid triangle. Insets show the stake
network in both years where lines represent vectors along which
the slant distance, vertical direction and additionally in 1992
the horizontal divection were measured relative to adjacent
stakes. Solid stake symbols show the stakes common to both
Surveys.
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Guliyaice cap (35717' N, 81°29" E; 6200 m a.s.1) on the Qing-
hai-Tibetan Plateau that is connected to bedrock through a
chain of four braced quadrilaterals that extend about
3.5 km. The network enclosed one drill site from which an
ice core of 308.6 m was recovered in 1992 (Thompson and
others, 1995b, 1997). The dense grid at the drill site was
spaced at approximately 250 m, and was originally two ice
thicknesses wide and five ice thicknesses long. In 1991, 28
stakes were established of which 19 were recovered in 1992,
The stake positions were measured in May 1991 using con-
ventional geodetic observations of slant distance and verti-
cal direction from both ends of each line between any two
adjacent stakes and additionally with horizontal directions,
with an uncertainty of + 15" of arc, inJuly 1992. T he network
extended to bedrock, so the three translational components
and the azimuthal orientation were constrained to the e, n
and u position of one bedrock point and the azimuth to the
other bedrock point.

lor each of the four observation sets the stake positions, a
posteriori coordinate and residual covariances and 6% were
computed (see Table 1). The stake positions were estimated
using Equations (35) and (39) at Huascaran, and (21), (23)
and (24) at Guliya. The 67 was computed using Equation
(47), with W = 0 at Huascaran. The a posteriori covariance
of the stake-position estimates was computed at Huascaran
using Equations (42) and (48) and at Guliya using Equa-
tions (41) and (48). The a posteriori covariance of the re-
siduals was computed at Huascaran using Equations (44)
and (49) and at Guliva using Equations (43) and (49). In all
four adjustments, observations were rejected and removed
from the solution if they exceeded the outlier test given by
Equation (51).

The displacement vectors were computed by differenc-
ing the coordinate estimates from 1991 and 1992 and are
shown in Figures 3 and 4. The a posteriori displacement co-
variance was computed from the coordinate covariances of
each annual survey. The 95% confidence level uncertainty
of cach displacement estimate is plotted as an ellipse at the
tip of the displacement vector in Figures 3 and 4.

The redundancy numbers were computed from Equa-
tion (56), the mdb using Equation (57) and coordinate shifts
using Equation (59) at Huascaran and (58) at Guliya. For
the 1991 epochs the coordinate shifts at each stake that result
from the mdb of each observation are plotted as rays from
the 1991 stake location, i.e. the base of the displacement vee-
tor. For the 1992 epochs the shifts are plotted as rays from the
1992 stake location, i.e. the tip of the displacement vector.
The end-points of the rays represent the location to which
the estimated stake location, and thus the base or tip of the
displacement vector, could shift due to the mdb.

DISCUSSION

The precision and reliability of surface stake displacements
at the Huascaran and Guliya networks are now examined.
Two somewhat arbitrary, but reasonable, criteria are
adopted to evaluate the precision and reliability. The preci-
sion criterion is that the 95% confidence-level uncertainty in
the displacement estimate be less than 10% of the magnitude
of the displacement estimate. The reliability criterion is that
the potential shifts in the displacement caused by the mdb
not exceed the 95% confidence-level uncertainty or be less
than 10% of the magnitude of the estimated displacement.
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Number wsed Number rejected r;‘;'l
Numberof  Slant Tertical  Horizontal — Slant Vertical — Horizental
Site Date unknowns  distance  direction  direction  distance  direction  divection
Huascaran Sept. 1991 45 37 38 1 11
Sept. 1992 39 30 27 1 + 09
Guliva May 1991 84 68 67 3 1 0.5
July 1992 51 10 10 38 5 09

The Huascaran displacement estimate (Fig. 3) at the
stake near the center of the network does not meet the pre-
cision criterion, but at all other stakes the displacement does
meet the precision criterion. From September 1991 to 1992
the estimated displacements range from 0.6 =03 m (20)
near the center of the network to 220 £0.5m (20) at the
northeast and southwest ends of the network. The displace-
ments are relative to the center of mass of the 1991 positions
of the 13 stakes common to the surveys in both years. The
relatively large uncertainty in the displacement estimates is
due primarily to the £4.5" of arc uncertainty in the 1991 ver-
tical direction observations.

The Huascaran displacement estimate (Fig. 3) at the
stake near the center of the network does not meet the reli-
ability criterion, but at all other stakes the displacement
does meet the reliability eriterion. The potential shifts, due
to mdb, in the displacement exceed the 95% confidence-
level uncertainty at all stakes, although the potential shifts
are less than 10% of the displacement at all stakes except at
the center stake. The impact of the mdb on the displacement
vector is visualized by recognizing that the base of the dis-
placement vector is free to shift anywhere along the rays
plotted at the base. Likewise the tip is free to shift anywhere
along the rays plotted at the tip. In 1991, the potential unde-
tectable shifts in estimated positions are as large as £1 m due
primarily to the £4.5" of arc uncertainty in the 1991 vertical
directions. This clearly exceeds the 95% confidence-level
uncertainty in the displacement. In 1992, the shifts rarely
exceed 20 em, reflecting the improved precision of the 1992
vertical directions.

The Guliya displacement estimates (Fig. 4) at the stakes
near the drill site meet the precision criterion in the east dir-
ection, the predominant direction of motion, but fail in the
north—south direction. The 95% confidence-level uncer-
tainty in the displacement is computed relative to the bed-
rock points. At the drill site the 95% confidence-level
uncertainty in the displacement approaches 41 m in the
north—south direction. This reflects the degrading of preci-
sion with distance away from the bedrock points, and is pre-
dominately in the north-south direction because the
geometry and observations control the uncertainty better
in the east—west direction, along the main axis of the net-
work, The uncertainty in the east-west is about £0.25m
and the average displacement approaches 2.7 m, so the pre-
cision criterion along the direction of motion is met.

The displacement estimates at the stakes near the drill
site do not meet the reliability criterion. Potential coordi-
nate shifts in 1991 from undetected blunders exceed the
95% confidence-level uncertainty. In the second quadrilat-
cral west of the bedrock points, the slant distance and verti-
cal and horizontal direction along one diagonal line were
not observed (Fig 4, inset). This weakens the geometric re-
dundancy of the network. This is only partially reflected in
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the rather low value 7 = 0.5 because the usual precision
analysis does not sharply depict the lack of geometric redun-
dancy. However, the external-reliability analysis clearly ex-
poses a defect in the network. The small thin lines with
arrows plotted from the base of the displacement vectors in
Figure 4 show the coordinate shifts that exceed 2 m. In fact
some are 10-20 m. Clearly, the farther the points are from
the bedrock, the more small errors near the bedrock points
arc amplified into meter-level errors in the positions of the
drill-site network some 3.5 km away. In 1992, inclusion of the
missing line and the addition of horizontal directions im-
proved the reliability. Most of the 1992 potential coordinate
shifts are within the 95% confidence-level ellipses, but the
potential shifts in the displacement are dominated by the
1991 marginally detectable blunders.

In general, the Huascaran and Guliya displacements
are perpendicular to the contours of the surface topography.

'Io the northeast and southwest of the Huascaran net-
work the ice surface slopes downward. To the north and
south the surface slopes upward towards the north and
south peaks of Huascaran. Inflow from the higher regions
and outflow to the lower regions appear to explain the gen-
eral flow pattern seen in the stake displacements. One
exception is the castward motion of one stake on the cast
side of the network. The precision and reliability analyses
indicate there is nothing amiss in the survey observations
to explain this motion. Also, the 15-20m displacements at
the northeast and southwest ends of the network are larger
than would be expected from the 3.3 m of snow accumula-
tion measured at the stakes from 1991 1o 1992 (Thompson
and others, 1995a). The ice dynamics are more complicated
than at the dome of a typical ice cap.

At Guliya, the surface slopes gradually upward just west
of the bedrock points. The stake displacement from May
1991 to July 1992 varies from approximately 0.15 4+ 0.05m
(20) at 750 m west of the bedrock points to an average dis-
placement of 2.7 £0.5m (20) at the drill site, 3.5 km west of
the bedrock points. These results represent an improved
analysis of the 1991 data using the modeling and statistical
tests described in this paper. These results differ from the
average of 4.8 m reported in Thompson and others (1995b).
For comparison, the accumulation measured during the
1991 and 1992 field studies at drill-site stakes was 32 ma '
(14ma "water equivalent).

CONCLUSIONS

The two examples given used conventional geodetic meas-
urement types in a chain of braced quadrilaterals. At both
networks, while the 95% confidence-level uncertainty of the
displacement was less than 10% of the displacement, the po-
tential coordinate shifts, due to mdb, exceeded the 95% con-
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fidence-level uncertainty of the displacement. At Huascaran
this was primarily due to a =4.5" of arc uncertainty in the
1991 vertical directions. At Guliya this was primarily due
to a lack of observations along one line. In 1992, at both net-
works the reliability was significantly improved.

In general, it is possible to meet the precision criterion
but have undetected blunders that cause velocity (displace-
ment in time) errors two or more times the magnitude of the
velocity precision. 'Io more correctly state the quality of the
velocity estimates, the analysis and design should include
both precision and internal and external reliability analysis.
Fortunately, like precision propagation, the reliability cal-
culations are insensitive to the actual observations, requir-
ing only accurate knowledge of the observation covariance
and the approximate geometry permitting a priori analysis.

The GPS observation type was also given and the
matrix equations are applicable to GPS observations. The
advantage of GPS in defining the network datum, its robust

operation in most environments, and the development of

small, easy-to-use receivers should eventually replace con-
ventional observations of stake networks accompanying
drilling programs on high-altitude remote ice caps.
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