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Abstract
Flagellated bacteria propel themselves by rotating flexible flagella driven by independent motors. Depending on
the rotation direction of the motors and the handedness of the helical filaments, the flagella either pull or push the
cell body. Motivated by experimental observations of Magnetococcus marinus, we develop an elastohydrodynamic
model to study the locomotion of a bi-flagellated bacterium with one puller flagellum and one pusher flagellum.
In this model, the boundary integral technique and Kirchhoff rod model are employed respectively to calculate
the hydrodynamic forces on the swimmer and model the elastic deformations of the flagella. Our numerical
results demonstrate that the model bacterium travels along a double helical trajectory, which is consistent with the
experimental observations. Varying the stiffness, orientations or positions of the flagella significantly changes the
swimming characteristics. Notably, when either the applied torque is higher than a critical value or the flagellum
stiffness is lower than a critical stiffness, the pusher flagellum exhibits overwhirling motion, resulting in a more
complicated swimming style and a lower swimming speed. For a moderate flagellum stiffness, the swimming speed
is insensitive to the rest configuration orientation over a wide range of orientation angles as the flagella deform to
maintain alignment with the swimming direction.

Impact Statement
A deep understanding of bacterial morphology and behaviour is crucial to minimize undesirable and max-
imize beneficial effects of microorganisms on human health and welfare. Interestingly, functionalities and
mechanisms of some microrobots with promising biomedical applications are motivated by flagellated bac-
teria; therefore, investigating influences of different types of flagella (puller/pusher) and their arrangement
on the microrobots’ locomotion paves the way to optimize and enhance the performance of the robots. By
simulating the locomotion of a bi-flagellated bacterium in Newtonian viscous fluid, we show that, depending
on the flagellum arrangement, a bacterium morphologically like Magnetococcus marinus (MC-1) moves on
a double helical trajectory with different sizes. This outcome is consistent with some experimental obser-
vation of MC-1 locomotion. Moreover, we quantitatively demonstrate the importance of a puller flagellum
in the bacterial locomotion and examine the effect of an overwhirling pusher flagellum on swimming of a
bi-flagellated model bacterium.
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1. Introduction

The locomotion of microorganisms, such as bacteria, has been a topic of a lot of research and mathe-
matical analysis in recent decades (Higdon, 1979; Shum & Gaffney, 2015b; Taylor, 1951). Bacteria play
a vital role in the ecosystem and have a lot of applications in human life, from medicine to industry and
agriculture (Amarger, 2002; Felfoul et al., 2016; Sengun & Karabiyikli, 2011). Some kinds of bacteria
swim though a fluid by rotating flexible flagella to generate a propulsive force. The swimming mecha-
nisms vary among the species; some species, such as Escherichia coli, form a flagellar bundle (Flores,
Lobaton, Méndez-Diez, Tlupova, & Cortez, 2005), whereas others, such as Vibrio alginolyticus, are
propelled by a single flagellum. These differences in morphology give rise to different patterns of motil-
ity and reorientation, including run-and-tumble (Berg, 1975) and forward–reverse flick (Jabbarzadeh
& Fu, 2018; Xie, Altindal, Chattopadhyay, & Wu, 2011).

In addition to the interest in fundamental knowledge about the morphology of bacteria and their inter-
action with the environment, interest in using bacteria or fabricating bacterium-mimicking microrobots
has grown in recent years (Felfoul et al., 2016; Li, de Ávila, Gao, Zhang, & Wang, 2017). In this regard,
magnetotactic bacteria (MTB) are of particular interest since they can be steered by applying an exter-
nal magnetic field. Among the magnetotactic bacteria, Magnetococcus marinus (MC-1) is commonly
studied and its biomedical applications for drug delivery have already been examined (Felfoul et al.,
2016). However, these applications are not limited to MTB; naturally, non-magnetic microorganisms
can also be directed by magnetic field after incorporation of magnetic particles (Park, Zhuang, Yasa,
& Sitti, 2017).

One of the striking differences between the MC-1 and widely studied bacteria, such as E. coli, is that
MC-1 has two sheathed bundles of flagella on one side of the cell body. Each bundle is composed of
seven flagellar filaments and many fibrils enveloped in a sheath. This structure of two bundles allows
the bacteria to swim at speeds of up to 500 μm s−1 (Bente et al., 2020). Magnetosomes, intracellular
structures containing iron sulphide or iron oxide nano-particles, allow MC-1 to navigate by the Earth’s
magnetic field (Mohammadinejad, Faivre, & Klumpp, 2021).

Whereas the locomotion of uni-flagellated bacteria has been well studied and, in many cases, a uni-
flagellated model adequately reproduces behaviour in experiments even with multi-flagellated bacteria
(Park, Kim, & Lim, 2019a, 2019b; Shum & Gaffney, 2015a; Tokárová et al., 2021), more specialized
models are required to understand bundling, wrapping and other complex phenomena with multiple
flagella (Constantino et al., 2018; Flores et al., 2005; Nguyen & Graham, 2018). The unusual morphology
and swimming style of MC-1 warrants further study. In earlier theoretical studies of MC-1, it was
assumed that the two flagellar bundles are behind the cell body and their synchronous rotations push the
cell forward. Based on this assumption, the model bacterium swims in a relatively straight trajectory
in the absence of a magnetic field; it exhibits helical motion when a magnetic field is applied (Shum,
2019; Yang, Chen, Ma, Wu, & Song, 2012). These results are inconsistent with some experimental
observations (Bente et al., 2020), indicating that MC-1 travels along a double helical trajectory in the
absence of magnetic field effects. Numerical simulations based on the Stokesian dynamics simulation
method showed that such a double helical trajectory can be produced if one of the flagellar bundles
pushes the cell while the other pulls.

Yang et al. (2012) numerically and experimentally studied the effects of an external magnetic field on
the locomotion of MC-1. In their model, two rigid helical flagella push forward a prolate spheroidal cell
body containing a magnetosome chain in a specific alignment. They employed resistive force theory to
model the hydrodynamic interactions and showed that there is a good agreement between the numerical
and experimental results as they apply a wide range of magnetic fields for different inclinations of
magnetic moment.

Shum (2019) used a boundary element method (BEM) to simulate the motion of a model bacterium
with two rigid pusher flagella near a surface. He found that placing the two flagella far apart reduces
the cell body rotation rate. This could help the bacterium to move faster and achieve a better alignment
with an external magnetic field. In addition, he showed that position and orientation of the flagella are
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two main factors which determine the bacterium behaviour in remaining trapped at a solid surface or
escaping back to the bulk fluid.

Mohammadinejad et al. (2021) developed a model based on Stokesian dynamics and Kirchhoff’s
rod model to investigate the locomotion of a MTB with a flexible pusher flagellum and spherical cell
body in the presence of an external magnetic field. They focused on the response of MTB to reversal of
the external magnetic field and found that the diameter of the U-turn and the turning time are smaller
for stronger magnetic fields. Moreover, they noted that the model bacterium undergoes a double helical
motion when, simultaneously, the magnetic field is strong and the angle between the flagellum axis and
the magnetic moment is large enough.

Several studies have specifically focused on motions of a rotating elastic filament in a viscous fluid
to understand the dynamics of bacterial flagellar hooks and filaments (Jabbarzadeh & Fu, 2020; Lee,
Kim, Olson, & Lim, 2014; Lim & Peskin, 2004; Wolgemuth, Powers, & Goldstein, 2000). In one of the
recent studies, Park, Kim, Ko, and Lim (2017) showed that a rotating flexible helical filament exhibits
three regimes of dynamical motion: twirling and overwhirling motions which are stable and an unstable
whirling motion. The type of motion that emerges depends on the physical parameters of the fluid, the
rotation frequency and the elastic properties of the filament. At a constant rotation frequency, if the
stiffness of a helical filament is above a critical value then the filament rotates about its straight rotation
axis; this is called stable twirling motion. If the stiffness is below a critical value then twirling becomes
unstable and motion transitions to stable overwhirling, which is characterized by a curved axis such that
the free end of the filament is close to the driven end. Between the twirling and overwhirling regimes,
the filament exhibits unstable whirling motion, in which the axis of the filament is slightly curved and
rotates about the motor axis.

In the present work, we first develop an elastohydrodynamic model to study the locomotion of a bi-
flagellated bacterium with one puller and one pusher flexible flagellum. The pusher and puller flagella
are both right-handed helices but rotate in the clockwise (CW) and counterclockwise (CCW) directions,
respectively (viewed with the flagellum between the cell body and the observer), and hence apply
‘pushing’ and ‘pulling’ forces, respectively, on the cell body. Generally, the bacterium then swims with
the pusher flagellum at the rear of the cell body and the puller flagellum in front of the body. Such a
morphology is inspired by the observations of Bente et al. (2020), in which they concluded that MC-1
most likely swims with one puller and one pusher flagellar bundle. Here, we use a regularized Stokes
formulation (Olson, Lim, & Cortez, 2013) in conjunction with a BEM (Pozrikidis, 2002) to model
the hydrodynamic interactions of the model bacterium components. We assume that the two flexible
filaments, which represent the two flagellar bundles in MC-1, are inextensible and unshearable and only
allowed to bend and twist, following a discretization of the Kirchhoff rod model (Lim, Ferent, Wang,
& Peskin, 2008). Since each bundle of flagella is modelled by a single flexible filament, wherever we
refer to a flagellum or flexible filament in our results, it should be interpreted as a sheathed flagellar
bundle in MC-1. In the next step, the proposed model is validated and the swimming styles of three
model bacteria (pusher, pusher–pusher, puller–pusher) are compared. Finally, the influence of various
parameters including the flagellar stiffness, position, orientation and the ratio of the two motors’ torques
on swimming characteristics of puller–pusher bacterium is studied in more detail.

2. Modelling and methods

2.1. Geometric model

The model bacterium consists of one rigid spherical cell body, one puller flagellum (dark slate grey)
and one pusher flagellum (grey), as shown in figure 1. The cell body has centroid position denoted by
X (B) and orientation described by the basis {e(B)1 , e(B)2 , e(B)3 }. The pusher flagellum has position X (1) and
basis {e(1)1 , e(1)2 , e(1)3 }, and the puller flagellum has position X (2) and basis {e(2)1 , e(2)2 , e(2)3 }. All of the
aforementioned bases are right-handed and orthonormal. In this study, it is assumed that the two flagella
have identical physical and elastic properties and their initial and rest configurations are right-handed
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Figure 1. A schematic view of the model bacterium in which different bases and vectors are used to
describe the position and orientation of the components. Here, the 𝛼 and 𝛽 angles represent the position
and orientation of the rotors on the cell body, defined with respect to e(B)1 . The internal moment between
the nth and (n+1)th segments is denoted by N (i)n+1/2. Note that the thickness of the flagella in the figures
does not reflect the actual thickness of the flagella in the model bacterium.

helices with centrelines given by

𝜦 (i) (𝜉) = X (i) + 𝜉e(i)1 + 𝛯 (𝜉) cos (2π𝜉/p)e(i)2 + 𝛯 (𝜉) sin (2π𝜉/p)e(i)3 , (2.1)

where i = 1, 2 for the pusher and the puller flagella, respectively; the variable 𝜉 parameterizes the
distance along the axis of the helix with 0 � 𝜉 � LF, 𝛯 (𝜉) = a(1−exp(−(kE𝜉)2)) is the helix amplitude
function and a, p and kE represent the maximum helix amplitude, the helix pitch and the amplitude
growth rate (the amplitude grows from zero to a over a region of length roughly 2/kE), respectively.
The position and orientation of the puller flagellum is specified by two angles 𝛼 and 𝛽 defined on the
e(B)1 –e(B)3 plane through the centre of the cell body. The pusher flagellum is placed symmetrically on the
other side of the cell body with the same acute angles as the puller flagellum (figure 1). In all simulations,
except one set of simulations where we specifically study the influence of the angle 𝛽, we assume that
the rotors are normal to the cell membrane (i.e. 𝛽 = 𝛼). In studying the influence of 𝛽, the angle 𝛼 is
constant and |𝛼 − 𝛽 | represents how much the rotors deviate from being normal to the cell membrane.

The experimental observations have shown that the cell body of MC-1 is approximately spherical
(Bente et al., 2020; Tokárová et al., 2021). Based on the measurements for MC-1, the cell body diameter
is 1.3±0.1 μm and the flagellum length is 3.3±0.4 μm (Bente et al., 2020). We are unaware of any study
that measures the flexibility of the flagella or flagellar bundles in MC-1. Recalling that a filament in our
model represents multiple flagella in a bundle, we use values of the rigidity approximately 1.5–11 times
that of a flagellum in E. coli (3.5 pN μm2 Darnton & Berg, 2007). Other parameters in this study, such as
the motors’ torques, helical pitch and amplitude are chosen from the values given by Bente et al. (2020),
Mohammadinejad et al. (2021) and Shum (2019). Here, these parameters are non-dimensionalized by
the averaged cell body radius 0.65 μm (Bente et al., 2020), MC-1’s motor torque which is approximately
12 pN μm (Bente et al., 2020) and the swimming fluid viscosity 𝜇 = 10−3 Pa s.

2.2. Hydrodynamic interactions

In modelling of bacterial locomotion, the Reynolds number is very small and so the hydrodynamic
interactions are governed by the incompressible Stokes equations

−∇p + 𝜇Δu + Fb = 0, ∇ · u = 0, (2.2a,b)
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where 𝜇 is the fluid viscosity, p is the fluid pressure, u is the fluid velocity and Fb is the force per unit
volume applied to the fluid by the immersed body. The model bacterium exerts a distribution of viscous
stress f head over the surface S of the cell body (three-dimensional spherical cell body) and distributions
of the viscous stress f fla and viscous torque n along the centrelines of the flagella 𝛤 (i) . We use the
superscript (i) to distinguish the pusher flagellum (i = 1) from the puller one (i = 2). Since both flagella
are right-handed, the rotors in the pusher and puller flagella rotate in −e(1)1 and e(2)1 directions, respec-
tively, to provide propulsion. In a Lagrangian description, the elastic filaments 𝛤 (i) , which rotate and
deform in time, and the cell body S can be represented by a three-dimensional space curve 𝜸(s, t) and
surface 𝜳 (𝜃, 𝜙, t), respectively. The variables s, 𝜃 and 𝜙 are material coordinates along the filament
(initialized as arclength) and the cell body surface, respectively, and t is time. To ease the presentation,
we let the variables f fla(s, t), n(s, t) and 𝜸(s, t) denote the respective quantities for both flagella with the
understanding that the integral over 𝛤 (i) (i = 1, 2) involves the variables associated with the respective
flagellum. The body force can be written as

Fb(x, t) =
∮

S
f head (𝜃, 𝜙, t)𝛿(x −𝜳 (𝜃, 𝜙, t)) dA +

2∑
i=1

∫
𝛤 (i)

f fla(s, t)𝛿(x − 𝜸(s, t)) ds

+
2∑

i=1

1
2
∇ ×

∫
𝛤 (i)

n(s, t)𝛿(x − 𝜸(s, t)) ds. (2.3)

The evaluation point x can be anywhere in R3 including the model bacterium surface. To represent the
flagellum thickness and avoid the singularity and also to enhance the stability of the solution, we use
a regularized Stokes formulation for the flagella. Therefore, we replace the delta function (𝛿) by a cut-
off function 𝜓𝜖 in the second and third integrals. The radially symmetric cutoff function approximates
the delta function in three dimensions. Following previous studies using the method of regularized
stokeslets (Cortez, Fauci, & Medovikov, 2005; Olson et al., 2013), we choose the cutoff function as

𝜓𝜖 (x) = 15𝜖4

8π(‖x‖2 + 𝜖2)7/2 , (2.4)

where we assume that 𝜖 = d/2 to represent the filament radius. The solution for the flow field satisfying
(2.2a,b) and (2.3) can be written as the boundary integral equations (Cortez et al., 2005; Olson et al.,
2013)

u(x, t) =
∮

S
f headJ3 + [ f head · (x −𝜳 )] (x −𝜳 )J4 dA +

2∑
i=1

∫
𝛤 (i)

f flaJ1 + [ f fla · (x − 𝜸)] (x − 𝜸)J2 ds

+
2∑

i=1

1
2
∇ ×

∫
𝛤 (i)

[n × (x − 𝜸)]P1 ds; (2.5)

in this regard, the angular velocity can be expressed as

𝝎(x, t) = 1
2
∇ × u(x, t) = 1

2

∮
S
[ f head × (x −𝜳 )]P2 dA +

2∑
i=1

1
2

∫
𝛤 (i)

[ f fla × (x − 𝜸)]P1 ds

+
2∑

i=1

1
4

∫
𝛤 (i)

[nK1 + n · (x − 𝜸)(x − 𝜸)K2] ds, (2.6)

where J1, . . . , J4, P1, P2, K1 and K2 are defined in terms of the distances between the points, the
regularized parameter (𝜖) and the viscosity, and are given in the supplementary material, § S1, available
at https://doi.org/10.1017/flo.2022.34.
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Figure 2. (a) Distribution of stokeslets and rotlets over the curved triangular elements and along the
connected straight rods. (b) Discretization of the flagellum into Nfl segments. The triads locations and
orientations are shown on two successive segments.

To evaluate these integrals, a finite number (Nhead) of triangular elements is generated on the cell
body surface and each flagellum is discretized into Nfl connected equal-length straight rods. To yield a
better accuracy, a tessellation of curved triangles is used to cover the cell body surface, where six nodes
are required on the surface to construct an element. Three nodes are vertices and other three nodes are
at the middle of the three edges (see figure 2a). Then, by following the scheme presented by Pozrikidis
(2002), the surface of a curved triangle is mapped into a right-angle isosceles flat triangle. In the next
step, Gauss–Legendre quadrature method with 12 Gauss points is implemented to evaluate the integrals
over the standard triangles. The stokeslets (red points) are calculated by using cardinal interpolation
functions and interpolating the nodal force densities in the evaluation points (black points) (Shum,
2011). The integrals along segments of the flagella are evaluated by employing 8 Gauss points. In this
regard, a second-order polynomial function is used as an interpolant to calculate the stokeslets along
the segments. The evaluation points on the flagella are located at the middle and ends of each segment.
Below, we let NEPH denote the number of evaluation points on the cell body and NEPF = 2Nfl + 1 denote
the number of evaluation points on each flagellum. By applying the presented scheme to (2.5) and (2.6)
and satisfying the no-slip boundary condition on the model bacterium, a linear relationship between the
nodal force and torque densities and the translational and angular velocities of the evaluation points is
constructed. The relationship can be summarized in the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
...

uNEPH+2NEPF

𝝎1
...

𝝎2NEPF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
A1
A2

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f 1
...

fNEPH+2NEPF

n1
...

n2NEPF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.7)

where ui is the translational velocity of the ith evaluation point on the cell body and the flagella, and 𝝎j
is the angular velocity of jth evaluation point on the flagella. Here, A1 and A2 are dense matrices with
dimensions of 3(NEPH + 2NEPF) × 3(NEPH + 4NEPF) and 3(2NEPF) × 3(NEPH + 4NEPF) constructed by
using the coefficients in (2.5) and (2.6), the mapping and the interpolation matrices.

2.3. Kinematics

In the proposed model, the flagella complexes are driven by constant-torque motors. Let U (B) and 𝜴 (B)

denote the translational and rotational velocities of the cell body, respectively. Let 𝝎 (i)1
s denote the
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angular velocity vector of the first segment of the ith flagellum relative to the cell body and let 𝝎 (i)n
s

denote the angular velocity of the nth segment of the ith flagellum with respect to the (n−1)th segment,
for n = 2, 3, . . . ,Nfl. Then, the overall instantaneous translational velocity of any given evaluation point
XE on the swimmer can be written as

U(XE) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

U (B) + 𝜴 (B) × (XE − X (B) ), XE on cell body,

U (B) + 𝜴 (B) × (XE − X (B) ) +
m∑

n=1
𝝎 (i)n

s × X (i)n
rel , XE on mth segment of ith flagellum,

(2.8)
where

X (i)n
rel = XE − X (i) − 𝜸 (i)n−1/2 n = 1, 2, . . . ,Nfl, (2.9)

and 𝜸 (i)n−1/2 is the position vector of the nth joint with respect to the ith flagellum fixed frame (as shown
in figure 1). The angular velocity of any given point XE on the flagella can be written as

𝝎(XE) = 𝜴 (B) +
m∑

n=1
𝝎 (i)n

s , XE on mth segment of ith flagellum. (2.10)

Following (2.8) and (2.10), the translational velocities at the NEPH evaluation points on the cell body and
the translational and rotational velocities at the 2NEPF evaluation points on the flagella can be expressed
in terms of 𝝎 (i)n

s , U (B) and 𝜴 (B) in the form

⎡⎢⎢⎢⎢⎢⎣
u1
...

uNEPH+2NEPF

⎤⎥⎥⎥⎥⎥⎦ = A3

[
U (B)

𝜛

]
,

⎡⎢⎢⎢⎢⎢⎣
𝝎1
...

𝝎2NEPF

⎤⎥⎥⎥⎥⎥⎦ = A4𝜛, 𝜛 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜴 (B)

𝝎 (1)1
s
...

𝝎
(1)Nfl
s
𝝎 (2)1

s
...

𝝎
(2)Nfl
s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.11a,b)

The matrices A3 and A4 are determined by using the position vectors employed in (2.8) and (2.10).
Since the position vectors vary as the model bacterium makes the progress, these matrices are updated
at each time step.

2.4. Elasticity

The hydrodynamic forces exerted on the flagella deform the flagella out of their static equilibrium
configurations. To model the deformations, we use the standard Kirchhoff rod model and assume that the
flagella are inextensible, unshearable and only allowed to bend and twist. The centrelines of the flagella
at the initial/rest configurations are represented by the space curve 𝜸(s, t). Right-handed orthonormal
frames {D(i)

1 (s, t),D(i)
2 (s, t),D(i)

3 (s, t)} are introduced to describe the orientation of the material points
in the cross-section of the flagella at s. To simplify the model, we assume that D(i)

3 (s, t) is always tangent
to the curve 𝜸(s, t) i.e. D(i)

3 (s, t) = 𝜸′(s, t). Based on the linear theory of elasticity, the internal moments
N(s, t) transmitted along the flagella can be computed by (Goriely & Tabor, 1997)

N(s, t) = EI [(𝜅1 (s, t) − 𝜅1(s))D1(s, t) + (𝜅2 (s, t) − 𝜅2 (s))D2(s, t) +𝛶(𝜅3 (s, t) − 𝜅3(s))D3(s, t)], (2.12)
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where 𝜿(s, t) = (𝜅1, 𝜅2, 𝜅3) is the twist vector at point s and time t, 𝜿(s) is the rest twist vector and
𝛶 = GJ/EI is the ratio of twisting stiffness GJ to bending stiffness EI. In this study, we assume that the
flagella are homogeneous, isotropic and 𝛶 = 1 (Park et al., 2019a, 2019b).

Spatial discretization of each flagellum into Nfl segments is done by introducing uniform intervals
Δs of the Lagrangian variable s. In our numerical scheme, as shown in figure 2(b), the triads D(i)n

î
are

placed at the middle of each segment with positions 𝜸 (i)n and are updated over time as the segments
rotate. To compute the twist vectors at the joints, an interpolation of two successive triads D(i)n+1/2

î
is

required. In this regard, the principal square root of the rotation matrix M that maps the triad D(i)n
î

to
the triad D(i)n+1

î
is used to interpolate the triads

M =
3∑

î=1

D(i)n+1
î

(D(i)n
î

)T, D(i)n+1/2
î

=
√

MD(i)n
î

. (2.13a,b)

Following the scheme from Lim et al. (2008), the discretized form of (2.12) is written as

N (i)n+1/2
î

= EI ���
D(i)n+1

ĵ
− D(i)n

ĵ

Δs
· D(i)n+1/2

k̂
− 𝜅 (i)n+1/2

î
��� , N (i)n+1/2 =

3∑
î=1

N (i)n+1/2
î

D(i)n+1/2
î

, (2.14a,b)

where (î, ĵ, k̂) is any cyclic permutation of (1, 2, 3), N (i)n+1/2 is the internal moment transmitted from
the nth to the (n + 1)th segment of the ith flagellum, n = 0, 1, . . . ,Nfl − 1 for both pusher and puller
flagella and 𝜅 (i)n+1/2

î
represents the twist vector components in the rest configuration. Also, N (i) (1/2) is

the internal moment transmitted from the rotor to the first segment of the ith flagellum. In the present
scheme, the magnitude and direction of N (i) (1/2) are determined by an iterative method to impose the
motor torque and satisfy the Kirchhoff rod model, simultaneously. This method is further explained in
supplementary material § S2.

2.5. Torque and force balance equations

Since bacteria swim at low Reynolds number, the inertial term is neglected and it is assumed that the
total torques and forces acting on a bacterium complex are zero (Shum, 2019; Shum, Gaffney, & Smith,
2010) i.e.

Nhead∑
n=1

∫
Sn

f head dAn +
2∑

i=1

Nfl∑
n=1

∫
𝛤 (i)n

f fla dsn = 0. (2.15)

In our model, the total force balance equation (2.15) includes the integrals of viscous force densities
over the triangular curved elements and along the straight segments of the flagella. By applying the
Gauss–Legendre quadrature method, these integrals are expressed in terms of the nodal force densities
at the evaluation points (i.e. f 1, . . . , fNEPH+2NEPF

).
In the torque balance equation (2.16), the integrals represent the total viscous torques about the cen-

tre of the cell body. Like the force balance equation, the torque balance equation is also written in terms
of the nodal force and torque densities at the evaluation points (i.e. f 1, . . . , fNEPH+2NEPF

, n1, . . . , n2NEPF )

Nhead∑
n=1

∫
Sn

(𝜳 − X (B) ) × f head dAn +
2∑

i=1

Nfl∑
n=1

∫
𝛤 (i)n

n dsn +
2∑

i=1

Nfl∑
n=1

∫
𝛤 (i)n

(X (i) + 𝜸 − X (B) ) × f fla dsn = 0.

(2.16)
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To complete the system of equations, we balance the viscous torques about each joint of the flagellum
chain with the transmitted internal moment, expressed as the equations

Nfl∑
n=m

(∫
𝛤 (i)n

(𝜸 − 𝜸m−1/2) × f fla dsn +
∫
𝛤 (i)n

n dsn

)
+ N (i)m−1/2 = 0, (2.17)

where m = 1, . . . ,Nfl and i = 1, 2 for the pusher and the puller flagella, respectively. In fact, the torque
balance equation (2.17) is written for all the joints and so 2Nfl equations are obtained in total. These
equations are also written in terms of the nodal force and torque densities at the evaluation points on
the flagella.

2.6. Overview

Before solving the equations, we apply the motors’ torques to their respective flagella. In our model, the
orientation of the rotor is determined by the axial directions e(i)1 , i = 1, 2, which are fixed relative to the
cell body frame. The transverse direction vectors e(i)2 and e(i)3 also rotate with the cell body and have an
additional rotation about the e(i)1 axis. At the joint connecting the flagellum to the rotor, the projection
of the internal moment onto e(i)1 is equal to the motor torque, i.e.

N (i) (1/2) · e(i)1 = Ti, i = 1, 2. (2.18)

In this equation, e(i)1 and Ti are known, and N (i) (1/2) is determined by employing a sub-iterative method.
In this method, the orientation of the rotor (specifically e2 and e3) is adjusted iteratively at each time step
to satisfy the motor torque condition (2.18) and the Kirchhoff rod model (2.14a,b) (see supplementary
material § S2). This method is used because the prescribed motor torque condition would generally not
be satisfied if the rotor were updated with an explicit time-stepping scheme.

In this study, we characterize the flexibility of the flagella by a relative stiffness defined as

kf =
EI
T̄R

, (2.19)

where E is the Young’s modulus of the material, I is the moment of inertia of the flagellum cross-
section, T̄ = (T1 + T2)/2 is the averaged motor torque and R is the radius of the cell body. By (2.19), the
dimensionless relative stiffness value kf = 1 is achieved for the motor torque T̄ = 12 pN μm, cell body
radius R = 0.65 μm and flexural rigidity EI = 7.8 pN μm2, which is 2.2 times the rigidity of an E. coli
flagellum.

To sum up, substituting (2.11a,b) into (2.7) gives 3(NEPH + 4NEPF) linear equations in which the
unknowns are the components of the nodal force and torque densities at the evaluation points,
the components of the angular velocities of the segments (3(2Nfl) unknowns) and the components of
the cell body’s angular and translational velocities (six unknowns). By adding (2.15), (2.16) and (2.17),
a system of linear equations is constructed. In our study, linsolve solver in Matlab is used to evaluate the
system of the equations and determine the unknowns.

We use quaternions to represent orientations and rotations between frames of reference. As a brief
introduction, a quaternion q has four components and is defined as the sum of a scalar part and a vector
part

q = q0 + q = q0 + q1 î + q2 ĵ + q3k̂. (2.20)

Only four of the nine components of a rotation matrix are independent and, in fact, the four components
of a quaternion are sufficient to represent a rotation matrix. More details about the quaternion algebra
and their relationships with rotation matrices are available in Sarabandi and Thomas (2018); Shepperd
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(1978) and Horn (1987). If the connections between the frames are established by quaternions, the state
of the microswimmer at each time step can be represented by a state vector Q defined as

Q =
[
X (B) , q(B) , q(1)1, . . . , q(1)Nfl , q(2)1, . . . , q(2)Nfl ,

]
(2.21)

where q(B) represents the orientation of the cell body with respect to the global frame and q(i)j,
i = 1, 2, j = 1, 2, . . . ,Nfl represent the orientations of the segments of the flagella with respect to
the body frame. The state vector Q evolves over time according to the system of ordinary differential
equations (ODEs)

�X (B)
= U (B) , �q(B) = 1

2 W (q(B) )𝜴 (B) , �q(i)n = 1
2 W (q(i)n)

n∑
j=1
𝝎 (i)j

s , n = 1, 2, . . . ,Nfl, i = 1, 2,

(2.22a–c)
where

W (q) =
⎡⎢⎢⎢⎢⎢⎢⎣
−q1 −q2 −q3
q0 q3 −q2
−q3 q0 q1
q2 −q1 q0

⎤⎥⎥⎥⎥⎥⎥⎦
(2.23)

and U (B) , 𝜴 (B) and 𝝎 (i)n
s have already been determined by solving the system of linear equations.

Combining a BEM with a Kirchhoff rod model to simulate the dynamics of a flexible filament
in viscous fluid leads to a stiff set of ODEs that is computationally expensive to solve using general
implicit schemes. Instead, we use an explicit multirate time integration scheme, as suggested by Bouzarth
and Minion (2010) (without implementing their proposed spectral deferred corrections). In this approach,
we update the nodal force densities and the angular and translational velocities of the cell body on coarse
time steps while nodal force and torque densities and angular velocities of the flagellar segments are
updated on finer time steps (100 fine time step per coarse time step).

This splitting procedure significantly decreases the computational cost because the non-stiff cell
body portion is solved less frequently. Depending on the flagellar stiffness, the fine time step varies
from 𝛿t = 5 × 10−5 to 𝛿t = 3 × 10−4 in our simulations. Comparing the multirate method with simply
using a single (fine) time step in test simulations, we found a 55 % reduction in computational time and
a 0.85 % difference in the computed net displacement.

3. Results

3.1. Swimming style

We first compare the swimming trajectories and speeds of three model bacteria with one pusher
flagellum, two pusher and puller–pusher flagella. In this regard, all physical parameters of the models
are as listed in supplementary material table S1 and only the number of flagella and the motors’ rotation
direction differ between the cases. As shown in figure 3, when the model bacterium has one or two
pusher flagella and the position and orientation of the flagella are symmetric, it approximately swims
in a straight line. Closer inspection indicates a wiggling of the cell body about the swimming line. In
fact, the trajectories are actually helical with very small amplitudes and pitches induced by the flagellum
rotations. In general, the rotating flagellum produces thrust that is not precisely aligned with its axis
and therefore the instantaneous swimming velocity is not perfectly parallel to the flagellum axes. As
presented in table 1, comparing the averaged swimming speed (Ū), calculated as the norm of the average
of the instantaneous velocity vector over an integer number of periods of the trajectory, indicates that the
pusher–pusher model bacterium swims approximately 60 % faster than the pusher model bacterium. We
note that this is less than the 85 % speed increase reported in a previous numerical study (Shum, 2019),
where the flagella were rigid and the motors were aligned with the swimming direction (𝛽 = 0). In our

https://doi.org/10.1017/flo.2022.34 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2022.34


Flow E4-11

y

x

z

1 0–1 –20

–15

–10

–5
0

5

10

–18

–16

–14

–12

–10

–8

–6

–4

–2

0

Pusher–pusher

Puller–pusher

Pusher

–2 –3

Figure 3. Swimming trajectories of three cases which differ in number and types of flagella. All physical
parameters are chosen according to supplementary material table S1 and the initial conditions and
orientations are set to be equal for three cases (see Movie 1).

Table 1. Comparing the swimming features (average swimming speed Ū and average rotation rate �̄�
of the cell body) of three model bacteria which differ in terms of number and types of the flagella.

Case Ū × 103 �̄� × 103

Pusher 14.2 36.15
Pusher–pusher 23.1 36.19
Puller–pusher 20.9 34.05

simulations, we use 𝛽 = 45◦, which means that the motor torques are not aligned with the swimming
direction. More significantly, the flexibility of our flagella allows them to bend under viscous stresses,
altering the propulsion efficiency. The flexibility is particularly consequential when the rest orientations
of the two flagella are not symmetrical. In such a configuration, the bundling effect of two pusher
flagella decreases the degree of asymmetry and helps the bacterium to move on a smooth trajectory. In
particular, the bacterium exhibits a kind of a double helical trajectory with small amplitude and long
pitch (see supplementary material § S4).

Unlike the swimming speed, the rotation rate of the cell (�̄�, calculated as the norm of the average
of the instantaneous angular velocity vector) does not differ significantly between the pusher cases. In
other words, increasing the number of flagella from one pusher to two with 𝛽 = 45◦ and 𝛼 = 45◦,
the swimming speed increases whereas the rotation rate of the cell body is not significantly changed.
Adding a flagellum increases the total torque on the cell body from the motors so one might expect the
body rotation rate to increase. Placing the motors far apart, as in the present case, reduces the rotation
rate necessary to balance the increased torque. A reduced body rotation rate could have a beneficial
effect on the propulsive thrust because the cell body rotation diminishes the net rotation of the flagella
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with respect to the ambient fluid.The puller–pusher bacterium has a qualitatively different swimming
style from the pusher and pusher–pusher cases (figure 3). The difference in average swimming direction,
compared with a pusher–pusher bacterium with the same initial configuration, is due to an inversion of
the propulsion direction of the puller flagellum. The puller–pusher bacterium swims with the pulling
flagellum in front and the pushing flagellum at the rear. The asymmetric distributions of propulsive
forces and torques from the two flagella cause the model bacterium to move on a double helix trajectory.
The helical form with longer pitch and larger amplitude corresponds to the slow rotation of the cell
body about the swimming direction while the smaller pitch, smaller amplitude oscillations are due to
the revolutions of the flagella. Moving on such a trajectory decreases the model bacterium displacement
and leads to a smaller averaged translational speed than the pusher–pusher case.

To characterize the locomotion of the bi-flagellated bacteria with puller–pusher flagella, we study
the influences of different physical parameters, including the flagellum stiffness (kf ), position (𝛼 angle),
orientation (𝛽 angle) and the motor torque ratio (RT ), on the swimming characteristics of the model
bacterium. In the presented trajectories, the initial orientation of the model bacterium is as shown
in figure 1 and the physical parameters are according to supplementary material table S1 except a
parameter studied specifically. One of the aims of this study is to compare the properties of the swimming
trajectories with the experimental measurements to shed light on the morphology of MC-1. It is worth
mentioning that we do this comparison by assuming that the bacterium has puller–pusher flagella and the
cell body is approximately spherical. The measurements of Bente et al. (2020) have demonstrated that
MC-1 cells move on a large helix with dimensionless pitch 8.1±2.0, diameter 2.6±0.3 and instantaneous
speed (3.5–17.6) ×10−3. Since changing the motor torque ratio or the arrangement of the flagella mainly
affects the size of the large helices, our focus is on comparing the size of the large helices in this study.

We characterize the orientations of the cell body, the puller and pusher flagella with respect to the
swimming direction (axis of the large helix) by introducing the acute angles 𝜂Cell, 𝜂Puller and 𝜂Pusher. In
this regard, 𝜂Cell represents the time averaged (over one complete turn on the large helix) angle between
−e(B)1 and the swimming direction. We also calculate 𝜂Puller and 𝜂Pusher by time averaging the acute
angle between the line connecting the driven ends of the flagella to their free ends and the swimming
line. Variations of these angles with respect to the studied parameters are presented in figure 4. We will
refer back to this figure in each of the following subsections.

3.1.1. Flagellum stiffness
Forces and torques from hydrodynamic interactions and the flagellar motors deform the flagella out
of their initial equilibrium configuration. These deformations are significant if the flagella have a low
relative stiffness and negligible if the flagella have a high stiffness. We varied the relative stiffness kf
from 0.7 to 5, as listed in table 2, using the same stiffness for the puller and pusher flagella in each
case. Our simulations demonstrate that the pusher flagellum reaches a stable overwhirling state Park
et al. (2017) when its relative stiffness is kf = 0.75 or lower; the rotation is stable twirling for all of the
higher values of kf . We observed stable twirling motion of the puller flagellum in all the studied cases.
As shown in figure 5, the overwhirling motion of the pusher flagellum significantly affects the small
helices of the trajectory and decreases the pitch of the large helix.

It is also evident that the axis of the twirling pusher flagellum is approximately aligned with the
swimming direction whereas the overwhirling pusher flagellum is not aligned with the swimming direc-
tion. This is shown quantitatively in figure 4(a), where we plot the orientation angles between the axes
of the flagella and the average swimming direction. The pusher flagellum orientation angle changes
from almost parallel to the swimming direction (𝜂Pusher ≈ 23◦) for twirling motion at kf = 0.85 to
almost perpendicular (𝜂Pusher ≈ 77◦) for overwhirling motion at kf = 0.7. The overwhirling flagel-
lum is therefore unable to effectively propel the cell body, leading to a significant drop in swimming
speed at the onset of the overwhirling regime (see table 2). Since we prescribe a rest orientation angle
𝛽 = 45◦ between the axes of the flagella and the body direction, the flagella are not well aligned with
the swimming direction if the relative stiffness kf is high. Therefore, the cell body moves on larger
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Figure 4. The time averaged orientations of the cell body (𝜂Cell), puller (𝜂Puller) and pusher (𝜂Pusher)
flagella with respect to the time averaged direction of the swimming. These plots are presented for
(a) different flagellum stiffnesses. (b) Different flagellum orientations. (c) Different motor torque ratios.
(d) Different flagellum positions.

Twirling Overwhirling

Figure 5. Influences of the pusher flagellum overwhirling motion on the swimming trajectory of the
model bacterium. In this motion, the flagellum experiences large deformations and the free end of the
flagellum is close to the driven end (see Movie 2).

Table 2. Comparing the swimming features of puller–pusher model bacterium for different flagellum
stiffnesses.

Stiffness Pitch Diameter Ū × 103 �̄� × 103 Û × 103

0.70 1.58 1.09 9.3 34.6 20.1
0.75 2.11 1.19 11.3 33.6 19.2
0.85 4.05 1.07 20.6 33.7 26.7
1.00 3.91 1.08 20.9 34.1 27.0
1.50 4.17 1.32 20.2 30.0 28.8
3.00 6.22 2.39 16.1 16.6 24.7
5.00 6.81 2.83 14.7 13.5 23.3
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Figure 6. The swimming trajectory of the model bacterium projected on XY and XZ planes at different
flagellum stiffnesses (kf ) (see Movie 3).

helices and exhibits larger oscillations (figure 6) that result in smaller averaged translational and rota-
tional speeds. For lower relative stiffnesses, provided the flagellum remains in the twirling regime,
the flagella bend more and align better with the swimming direction (as illustrated in figure 5). Thus,
the model bacterium undergoes less wiggling and travels on helical trajectories with smaller pitches
and diameters. The reported results in table 2 indicate that the instantaneous speed changes much
less than the averaged speed at the transition between twirling and overwhirling motion of the pusher
flagellum. This suggests that the overwhirling flagellum still produces thrust but a large component
of this thrust is in the lateral direction. The maximum instantaneous speed is attained at intermediate
values of relative stiffness, around kf = 1.5. In this study, the instantaneous speed (Û) is calculated
by dividing the arclength of one turn of the large helix by the time period for completing one turn.
Comparing the obtained results with the experimental measurements (dimensionless pitch 8.1 ± 2.0,
diameter 2.6 ± 0.3, speed (3.5–17.6) × 10−3) indicates that, for high flagellum stiffnesses (kf = 3, 5),
the diameters and the pitches of the swimming trajectories are within the range measured experi-
mentally, whereas the simulated instantaneous speeds are approximately 40 % higher than the high
end of the experimental range. The obtained results, presented in figure 4(a), indicate that the swim-
ming direction is well aligned with the puller flagellum, but this tendency slightly decreases at higher
stiffnesses.

3.1.2. Flagellum orientation
The orientation of the flagella relative to the cell body is an important aspect of the bacterial morphology
but accurate experimental measurement of the orientations could be quite challenging. We numerically
investigate the sensitivity of swimming features to this parameter. By fixing 𝛼 = 45◦ and varying 𝛽
from 0◦ to 75◦, we note that the pitches and diameters of the helical trajectories strictly increase with
𝛽, as shown in supplementary material figure S5. Closer inspection indicates that the diameter grows
faster than the pitch, so the helix angle (angle between axis direction and helix tangent) increases by 𝛽.
Consequently, the projection of the bacterium displacement on the helical axis decreases; this explains
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Table 3. Comparing the swimming features of puller–pusher model bacterium at different flagellum
orientations with 𝛼 = 45◦.

𝛽 Pitch Diameter Ū × 103 �̄� × 103 Û × 103

0◦ 2.26 0.25 21.9 60.7 23.0
15◦ 2.63 0.47 22.1 54.4 26.4
30◦ 2.96 0.73 21.9 45.5 26.9
45◦ 3.91 1.08 20.9 34.1 27.0
60◦ 5.45 1.79 17.4 20.4 24.4
75◦ 5.86 3.37 8.9 9.7 17.6

the inverse correlation between 𝛽 and the averaged translational speed. Investigation of the flagellum
orientations with respect to the swimming direction (figure 4b) can also justify the smaller swimming
speeds for larger 𝛽 (𝛽 > 45◦) in which both puller and pusher flagella do not effectively propel the cell
body in the swimming direction. Moreover, the reported results in figure 4(b) demonstrate that 𝜂Pusher
and 𝜂Puller are insensitive to 𝛽 when 𝛽 < 45◦ and hence the averaged swimming speed is expected
to remain constant in this range. This sensitivity analysis shows that population variability and errors
in measurement of 𝛽 should not significantly affect predictions of swimming speeds of bi-flagellated
bacteria as long as 𝛽 is within the given range. As reported in table 3, the simulations show that the
instantaneous swimming speed Û becomes maximum when the flagella are perpendicular to the cell
body (i.e. 𝛽 = 45◦).

Since the cell body rotates to balance the vector sum of the two motor torques, changes in the motor
torque directions can directly affect the cell body’s rotation speed. Larger 𝛽 leads to smaller magnitudes
of the total torque from the puller and pusher motors; therefore, an inverse correlation is seen between
the rotational speed of the cell body and 𝛽. Our results indicate that the angle between the swimming
direction and the cell body orientation indicator (𝜂Cell) becomes maximum when 𝛽 is approximately
60◦.

3.1.3. Flagellum position
Hydrodynamic behaviours of multi-flagellated bacteria are mainly determined by the number, type and
distribution of flagella on the cell body. In the case of MC-1, we are unaware of any precise experimental
characterization of the relative positions of the flagellar bundles on the cell body. Therefore, different
possibilities for the positions of the flagella on MC-1 are considered by varying 𝛼 and keeping the
flagella perpendicular to the cell body. We found that both pitch and diameter of the helical trajectories
increase as the two flagella are placed closer together. For 𝛼 = 0◦, the two flagella extend from opposite
poles of the cell body and share a common axis, resulting in a relatively straight trajectory, as shown
in Supplementary Information figure S6. In this state, the instantaneous and the averaged velocities are
almost aligned and the averaged speed reaches its maximum. In contrast, the maximum instantaneous
speed is achieved by the model bacterium when there is a small angle, 𝛼 = 15◦, between the flagella and
the cell body axis (see table 4). The averaged cell body rotation rate reaches its maximum at 𝛼 = 0◦,
which is the configuration that maximizes the magnitude of the vector sum of the two motor torques.
As shown in figure 4(d), the position of the flagella strongly affects the averaged swimming direction as
well; particularly, the angle between −e(B)1 and the averaged swimming direction increases by placing
the flagella close together.

Comparing the experimental measurements with the obtained results in tables 3 and 4, we see that the
pitches and diameters of the large helices are almost all smaller than the experimental ranges (8.1 ± 2.0
and 2.6 ± 0.3, respectively, in dimensionless units). Recall that in § 3.1.1, we showed that the pitch and
diameter of the large helix are closest to experimental values if the flagellum stiffness is approximately
kf = 3. Simulations for varying 𝛼 and 𝛽 were carried out with the lower stiffness of kf = 1, which
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Table 4. Comparing the swimming features of puller–pusher model bacterium at different flagellum
positions, keeping 𝛽 = 𝛼 in each case.

𝛼 Pitch Diameter Ū × 103 �̄� × 103 Û × 103

0◦ NA NA 23.0 71.7 23.0
15◦ 2.25 0.34 22.9 66.1 28.0
30◦ 2.77 0.67 22.5 51.6 26.8
45◦ 3.91 1.08 20.9 34.1 27.0
60◦ 5.47 1.90 15.4 17.3 22.1

Table 5. Comparing the swimming features of puller–pusher model bacterium at different motor torque
ratios.

RT Pitch Diameter Ū × 103 �̄� × 103 Û × 103

0.2 3.19 0.95 19.1 38.7 25.7
0.5 3.34 0.95 20.3 38.7 28.2
1.0 3.91 1.08 20.9 34.1 27.0
2.0 1.59 1.26 6.67 27.2 35.9
5.0 0.49 1.64 1.56 20.7 40.2

is roughly the value used in the simulations of Bente et al. (2020). We expect that closer matching to
experiments could be achieved by simultaneously varying all three parameters, kf , 𝛼, 𝛽. Nevertheless,
our results demonstrate the sensitivity to the configuration of puller and pusher flagella; we obtain
pitches varying by more than a factor of 2.5 and helical diameters varying by more than a factor of 13
as 𝛼 and 𝛽 are varied (excluding 𝛼 = 𝛽 = 0◦).

3.1.4. Motor torques
Depending on the external load and environmental stimuli like nutrient concentration, pH, etc., the
flagellar motors can generate different torques in both directions (CW/CCW) in many kinds of
flagellum-driven bacteria (Nakamura & Minamino, 2019; Sowa, Hotta, Homma, & Ishĳima, 2003).
In all simulations thus far, it is assumed that the puller and pusher motors generate equal torques;
however, some experimental observations have shown that bacterial flagellar motors are not necessar-
ily symmetric (Yuan, Fahrner, Turner, & Berg, 2010). To study the effects of the motor torques on the
hydrodynamic behaviour, we fix the sum |T1 | + |T2 | = 2 of absolute values for the two dimensionless
torques about their respective axes and distribute the torques between the two motors with the ratio
RT = |T1 |/|T2 |. When less or equal torque is applied to the pusher flagellum (RT � 1), our results indi-
cate that both flagella exhibit stable twirling rotations, and the cell body moves normally on a double
helical trajectory; see Supplementary Information figure S7. Quantitative comparison of these cases in
table 5 indicates that the swimming characteristics are relatively insensitive to the motor torque ratio as
it varies from 0.2 to 1. Increasing RT to 2 causes the pusher flagellum to transition to the overwhirling
state as the pusher motor torque exceeds a critical value. In this state, the flagellum is oriented almost
perpendicular to the direction of swimming (figure 4c), which means that, rather than contributing
propulsive thrust, it acts as a brake. Further increase of the torque ratio decreases the total propulsion
and leads to smaller averaged translational speed. Moreover, the pusher flagellum rotation frequency
increases and so it completes each cycle of the overwhirling rotation in a shorter time period. This
results in a higher number of small loops in the trajectory for RT = 5 in comparison with the case RT = 2
(see supplementary material figure S7).

https://doi.org/10.1017/flo.2022.34 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2022.34


Flow E4-17

4. Discussion and conclusion

The aim of this study is to model and analyse the motion of a bacterium with two flagella or flagellar
bundles. Experimental observation of MC-1 locomotion and its double helical trajectory in unbounded
fluid inspired us to focus on different aspects of such a motion, including a comparison between
propulsion by two pusher flagella and by a pusher–puller combination. The results presented can be
interpreted to understand the morphology of MC-1 as a MTB and to design of microrobots with specific
characteristics. Furthermore, the presented scheme can be used to model the motion of other kinds of
microorganisms in viscous fluid.

We confirm that the model bacterium with one puller and one pusher flagella moves on a double
helical trajectory in which the small helices are due to the revolutions of the flagella and the large
helices are the result of the cell body rotation. The amplitudes and pitches of the small helices are
smaller in our results than in those reported by Bente et al. (2020). The difference is likely due to the
choice of flagellum shape, which we did not vary in our study. In practice, the size of the small helices
changes if a different pitch, amplitude and length are chosen for the flagellum. Apart from this, some
quantitative discrepancy with experiments can be expected as we make simplifying assumptions about
the morphology and swimming mechanisms of MC-1 in our model.

We have focused on reporting the diameter and pitch of the larger helix as well as the averaged trans-
lational and rotational speed, the instantaneous speed and the swimming orientation. These swimming
features are strongly dependent on the positions, orientations, and stiffnesses of the flagella and are less
sensitive to the ratio of motor torques. The motor torque ratio becomes important when it causes the
pusher flagellum to enter the overwhirling state. In this state, the pusher flagellum exhibits large defor-
mations and does not effectively propel the cell body. The result is lower translational speed and some
sharp turns in the swimming trajectory. Decreasing the pusher flagellum stiffness below a critical value
(in our study kf ≤ 0.75) can also put the pusher flagellum in the overwhirling state.

We note that the diameters and pitches of the helical trajectories increase with the parameters kf , 𝛼
and 𝛽, whereas the averaged translational and rotational speeds vary inversely with these parameters.

In all the studied cases, the puller flagellum has better alignment with the swimming direction
(figure 4) than the pusher flagellum and exhibits twirling rotation. One interpretation is that the generated
thrust by the puller flagellum is more effectively used to propel the bacterium in the swimming direction.
These results reveal the importance of the puller flagella in propelling the cell body and stabilizing the
microorganism’s locomotion.

In our simulations, the pitch and diameter of the large helices are closest to experimentally observed
values when the flagella are stiff (kf ≥ 3) and the angles 𝛼 and/or 𝛽 are large specific ranges. We expect
greater sensitivity to the 𝛽 parameter when the stiffness is higher because for low stiffnesses, the flagella
tend to align with the swimming direction rather than maintaining the orientation defined by 𝛽. We
note that kf = 3 corresponds to a flexural rigidity approximately seven times as high as that of a single
E. coli flagellum, which is reasonable given that the flagellar bundle of MC-1 contains seven flagella.
Interestingly, the average swimming speed is maximized by having low stiffness (while still avoiding
overwhirling) and small 𝛼, 𝛽, which are the opposite requirements from matching the observed large
helical trajectories. This suggests that the locomotion of MC-1 is not optimized purely for average speed;
the large amplitude helical motion could serve other purposes.

Experimental observations of helically swimming organisms indicate that they mainly orient the
axis of the helical trajectory with the direction of the stimulus (Crenshaw, 1993; Foster & Smyth,
1980). It is hypothesized that moving on a helical trajectory could be a sampling strategy in some
microorganisms. In particular, if there is a gradient in a background stimulus field, then this motion
modulates the stimulus intensity encountered by the microswimmer and allows the microorganism to
respond to the gradient. Investigation of the sampling mechanism in phototactic and chemotactic free-
swimming microorganisms have shown that the properties of helical trajectory including its radius,
pitch angle, etc., play an important role in detecting the chemical concentration gradient and the light
direction (Crenshaw, 1993).
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Future studies could examine how an organism with puller and pusher flagella can adjust its direction
of travel by controlling the independent motor speeds. We note that abrupt changes in direction of
over 90◦ have been observed for MC-1 (Bente et al., 2020). Reorientation was reportedly an order
of magnitude faster than in other bacteria and is likely a result of brief reversals in the rotation direction
of one of the two flagellar bundles. Further investigation is required to better understand this mechanism
and how it differs from other methods of bacterial reorientation.

Our results demonstrate that the properties of the helix are determined not only by static geometric
and material parameters but also by the motor torques, which can be adjusted dynamically to give time
dependent trajectory characteristics. Specifically, for lower motor torques (equivalent to higher relative
stiffnesses of the flagella according to (2.18)), the flagella do not deform enough to become aligned with
the swimming direction, leading to helical motion with a larger radius. At higher motor torques, the
flagella are better aligned and the trajectory becomes more linear. We note that this torque dependent
alignment is due to the arrangement of the puller and pusher flagella on the same side of the cell
body (𝛼, 𝛽 ≈ 45◦). Axisymmetric configurations (𝛼, 𝛽 ≈ 0◦) would give rise to approximately linear
trajectories and be less sensitive to changes in motor torque.

It would be interesting to determine experimentally whether MC-1 or similar bacteria exhibit helical
trajectories that vary consistently with our simulations and whether these bacteria modulate their motor
torques under different conditions. As an application to microrobotic swimmers, the simulation results
suggest that the swimmer can switch between a fast, linear mode for ballistic motion and a slower,
helical mode for sensing gradients.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/flo.2022.34.
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