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Perturbed cone theorems for proper har-
monic maps
Renan Assimos, Balázs Márk Békési and Giuseppe Gentile

Abstract. Inspired by the halfspace theorem for minimal surfaces in R3 of Hoffman-Meeks, the half-
space theorem of Rodriguez-Rosenberg, and the classical cone theorem of Omori in R𝑛 , we derive
new non-existence results for proper harmonic maps into perturbed cones in R𝑛 , horospheres inH𝑛 ,
culminating in a generalisation of Omori’s theorem in arbitrary Riemannian manifolds. The technical
tool proved here extends the foliated Sampson’s maximum principle, initially developed in the first
author’s PhD thesis, to a non-compact setting.

1 Introduction

The analysis of harmonic maps has a central role in Riemannian geometry. The reason
for such a centrality is due to the fact that several interesting objects in Riemannian
geometry are harmonic. For instance, minimal submanifolds are immersed submanifolds
so that the immersion 𝑢 : 𝑀 → (𝑁, ℎ) is harmonic with respect to the induced metric
𝑔 = 𝑢∗ℎ. Geodesics are yet another prominent example of harmonic maps. Indeed,
𝛾 : 𝐼 → (𝑁, ℎ), where 𝐼 is an interval in R, is a geodesic if and only if 𝛾 is a harmonic
map. Similarly, one has closed geodesics as harmonic maps 𝛾 : 𝑆1 → (𝑁, ℎ). These are
just a few examples showing that, knowing the existence of harmonic maps as well
as their behaviour, allows for applications to several other problems in Riemannian
geometry.

One of the first systematic approaches to the construction of harmonic maps between
manifolds can be traced back to the groundbreaking work of Eells and Sampson in
1964 [14]. There, the authors describe a deformation method for producing harmonic
maps between closed manifolds, the so-called harmonic map flow. The harmonic map
flow allows for the conclusion of several existence results for harmonic maps in
interesting settings, the most classical one being the existence of harmonic maps into
Riemannian manifolds with non-positive sectional curvature. Once the existence of
harmonic maps between Riemannian manifolds is given, a naturally arising question is
the following:

Which obstructions would prevent the existence of a harmonic map?

To the best of our knowledge, the first ever attempt to this question, although with a
slightly different flavour, is the analysis performed by Omori in 1967. In [21] the author
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shows that the second fundamental form of an isometric immersion inside a non-
degenerate cone in R𝑛 is positive definite at some point. Less than twenty years later,
in [4] the authors generalise Omori’s work and gain a result about the non-existence of
harmonic maps mapping entirely into a non-degenerate cone in R𝑛, see [4, corollary 4].
Related to the previously formulated question are several very interesting results and
conjectures, mostly formulated in terms of minimal hypersurfaces. In 1966 Eugenio
Calabi [11] proposed the following conjecture:

Calabi conjecture
(i) Complete (not necessarily proper) minimal hypersurfaces in R𝑛 are unbounded.

(ii) Non-flat complete minimal hypersurfaces in R𝑛 have unbounded projection in
any codimension 2 hyperplane.

We will not dive into the details of the Calabi conjecture. Nonetheless, it is important
to point out that the conjecture, in its full generality, has been proven wrong by some
counterexamples.
Historically, the first counterexample to the Calabi conjecture is due to Jorge and
Xavier in [17] where they disproved claim (ii). For (i) a counterexample has been given
by Nadirashvili in [20] where he constructs a minimal hypersurface entirely contained
in a ball. In particular, the above counterexamples show that the Calabi conjecture
cannot hold in full generality. Later on, in [12] Colding and Minicozzi showed that the
Calabi conjecture is true if one requires embeddedness. Moreover, their work displays
a deep connection between the Calabi conjecture and properness. We take this as an
inspiration for assuming our harmonic maps to be proper as well.

As previously mentioned, in [4] the authors proved a non-existence result for harmonic
maps into non-degenerate cones in R𝑛. How wide can such a cone be? There are several
answers to this question (see e.g. [18]). Nonetheless, we would like to recall a very
interesting result in the theory of minimal surfaces due to Hoffman and Meeks.

Theorem 1 in [15] A connected, proper, possibly branched, non-planar minimal surface 𝑀
in R3 is not contained in a halfspace.

In particular, this shows that for a special class of harmonic maps (proper minimal)
into R3 the cone can be as wide as the whole halfspace. Interestingly enough, Hoffman
and Meeks’ result is extremely powerful and holds only for R𝑛 with 𝑛 = 3; indeed, for
𝑛 > 3 the generalised catenoids in [9] are minimal hypersurfaces inside a slab.

It is important to notice that the Hoffman and Meeks’ halfspace theorem as well
as Calabi’s conjecture relate to minimal submanifolds of codimension 1, that is
hypersurfaces.
Here is where our work finds its place; that is, providing answers to the following
question.

Can we characterize regions 𝑅 inside the target manifold which would prevent the
existence of proper harmonic maps, possibly of higher codimension, mapping
entirely inside them?
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1.1 Statement of the main results

Our work is based on the extension of the maximum principle in [23] and [2], which we
refer to as the Foliated Maximum Principle, which we now state and prove in Section 2.

Theorem 2.2 (Foliated Maximum Principle) Let (𝑁, ℎ) be a complete Riemannian manifold,
F a strictly convex foliation, and 𝑢 : (𝑀, 𝑔) → (𝑁, ℎ) a non-constant proper harmonic map.
Let 𝑞 = 𝑢(𝑝) ∈ F be a point inside the foliation. Then one of the following holds.

(a) The image of 𝑢 leaves the foliation on the concave boundary 𝑢(𝑝∗) = 𝑞∗ ∈ 𝜕F>𝑞 within
finite distance 𝑑 (𝑞, 𝑞∗) < ∞, where the metric 𝑑 is induced by the Riemannian metric
ℎ|F .

(b) There is a sequence 𝑢(𝑝𝑛) = 𝑞𝑛 ∈ F>𝑞 with lim𝑛→∞ 𝑑 (𝑞, 𝑞𝑛) = ∞. In this case, F
is necessarily unbounded.

We refer the reader to the definitions of the objects cited in the statement in Section 2.

With this powerful tool at our disposal, we prove results, such as nice obstructions for
the existence of harmonic maps into R𝑛.

Theorem 3.2 (Perturbed Cone Theorem) Let𝐶 be a perturbed cone in R𝑛. Then every proper
harmonic map from a complete Riemannian manifold (𝑀, 𝑔) inside a cone region of 𝐶 is
constant.

The notion of a perturbed cone in this paper is vastly more general than in the known
literature, where only cones with solid angle smaller than 𝜋 are considered. Details
are in Definition 3.2, but we can motivate the reader with an illustrative example: The
graph of 𝑓 : R −→ R; 𝑓 (𝑥) = log(𝑥 + 1) for 𝑥 ≥ 0 and 𝑓 (𝑥) = 0 for 𝑥 < 0 will be a
perturbed cone in R2 with our generalised definition, while the part of R2 above this
graph is going to be called a cone region, whose convex hull is the upper halfspace.

By looking at the bare minimum needed to prove Theorem 3.2, we give a definition for
a perturbed cone in generic Riemannian manifolds. With such a definition at hand, we
prove the following:

Theorem 4.2 (Perturbed Riemannian Cone Theorem) Let 𝐶𝛾,𝑟 be a perturbed Riemannian
cone inside the complete Riemannian manifold (𝑁, ℎ). Then every proper harmonic map into
𝐶𝑟 ,𝛾 \ 𝜕𝐶𝑟 ,𝛾 is constant.

The definition of such cone is given in Definition 4.2 and it is widely general. As-
sumptions on the curvature of the target manifold are very mild and when 𝑁 = R𝑛

our definition allows us to reconstruct several previously known cone theorems in
Euclidean spaces.
Our results parallel several non-existence results known for harmonic or minimal
immersions with their images contained in cones, wedges or (generalised) cylinders
[1, 4–8, 10, 16, 18, 21? ]
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1.2 Structure of the paper and notation

Section 2 reminds the reader of the definition of a harmonic map, and thereafter the
section is devoted to the proof of Theorem 2.2. As a simple application, a Liouville-type
property for R𝑛 is obtained.

Section 3 is where we move to generalised definitions of perturbed cones in the Euclidean
space and some more elaborated applications of the Foliated Maximum Principle
(Theorem 2.2). In Subsection 3.1 we prove our second main result, Theorem 3.2. In
Subsection 3.2 we employ the Theorem 2.2 to the case of the hyperbolic 𝑛-space H𝑛

resulting into a Horosphere Theorem 3.4.

Finally, in Section 4 we collect all the previously obtained results to formalize a defi-
nition of perturbed cones in a Riemannian manifold. In particular, here is where we
prove our last main result, namely Theorem 4.2.

Notation
From now on (𝑀, 𝑔) and (𝑁, ℎ) will be complete connected Riemannian manifolds of
dimensions𝑚 and 𝑛, respectively. Moreover, 𝑀 is always considered to be the domain
and 𝑁 the target of the smooth maps which we consider.

Acknowledgement
The authors would like to thank Bill Meeks and Laurent Hauswirth for their discussions
and Laurent Mazet for pointing out useful references. Moreover, the authors would
also like to thank the anonymous reviewer for their extensive comments and for
pointing out useful literature. This article is a part of the second author’s PhD thesis.

2 Strict convexity and the Foliated Maximum Principle

2.1 Harmonic maps and foliations

A smooth map 𝑢 : 𝑀 → 𝑁 is said to be harmonic if it is a critical point of the Dirichlet
energy

𝐸 [𝑢] = 1
2

∫
𝑀

∥𝑑𝑢∥2 𝑑Vol𝑔 .

Here, ∥·∥ represents the induced Hilbert-Schmidt norm on𝑇𝑀∗⊗𝑢∗𝑇𝑁 . An alternative
characterisation of the harmonicity of 𝑢 can be obtained through the first variation of
the Dirichlet energy, which leads to the elliptic partial differential equation Δ 𝑢 = 0.
Here, Δ 𝑢 = tr𝑔∇𝑑𝑢 is the tension field, where ∇ denotes the induced connection on
𝑇𝑀∗ ⊗ 𝑢∗𝑇𝑁 by the Levi-Civita connections of 𝑔 and ℎ. For more details, see [13].
Some of the most important examples of harmonic maps include harmonic functions,
harmonic forms, geodesics, totally geodesic immersions, minimal immersions, (anti)-
holomorphic maps between Kähler manifolds and special Lagrangians. It is worth
noting that any non-existence result proven for a harmonic map automatically holds
for the aforementioned examples.
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By a proper harmonic map 𝑢 : 𝑀 → 𝑁 we mean a harmonic map 𝑢 which is also
proper in the topological sense, that is, the preimage of compact sets is compact.1

Whenever 𝑀 is a compact manifold, properness of a harmonic map 𝑢 is automatic.
Clearly this is not true for non-compact manifolds, as an example one can consider a
geodesic from an open interval (𝑎, 𝑏).
Another important concept that plays a central role in our work is strict convexity
of a hypersurface 𝑆 ⊆ 𝑁 . That is, the second fundamental form 𝐴(𝑋,𝑌 ) := (∇𝑁

𝑋
𝑌 )⊥

of 𝑆 is positive definite. Taking a family of strictly convex hypersurfaces leads to the
following definition.

Definition 2.1 We define a strictly convex foliation in 𝑁 as an open, connected and
oriented subset F ⊆ 𝑁 which is a foliation whose leaves are connected, embedded,
and strictly convex hypersurfaces. Additionally, the foliation satisfies the separating
property: every non-boundary leafL separates the foliation into at least two connected
components.

For each leaf L of a strictly convex foliation F , the orientation determines the choice
of the unit normal vector 𝑁 such that the second fundamental form 𝐴(𝑋,𝑌 ) =

ℎ(∇𝑋𝑌, 𝑁) is positive definite. Thus, for any leaf we can talk about its convex and
concave sides.

Examples of foliations
The following are examples of strictly convex foliations.

(a) In R𝑛 define the annulus 𝐴𝑟 ,𝑅 = {𝑥 ∈ R𝑛 | 𝑟2 < ∥𝑥∥2 < 𝑅2} for 𝑟 < 𝑅. Take a
foliation F𝐴 whose leaves are spheres 𝑆𝜌 of radius 𝑟 < 𝜌 < 𝑅, with their interior
representing the convex side.

(b) Let 𝐸 be a fixed half equator in 𝑆2 with round metric, and Ω ⊂ 𝑆2 \ 𝐸 be an open
set with dist(𝜕Ω, 𝐸) > 0 . Define a foliation F𝑆2\𝐸 on Ω using the boundaries of
geodesic balls of radius (𝜋 − 𝜀)/2, where 0 < 𝜀 < dist(𝜕Ω, 𝐸), as follows. The
centres of these geodesic balls lie on the oriented great circle passing through the
midpoint of 𝐸 , its antipodal point, and intersecting 𝐸 orthogonally. The leaves of
the foliation F are the subset of the boundaries of these geodesic balls, whose
points have positive inner product with the velocity vector of the great circle
above. Each leaf is a connected, embedded and strictly convex hypersurface. The
separating property clearly holds for the foliation. For more details, see [3].

(c) A perturbed version of example (b) can be constructed as follows, see Fig 1. Let Γ
be a connected curve joining two antipodal points 𝐴 and −𝐴 on 𝑆2. Consider an
open subsetΩ of 𝑆2\Γ with dist(𝜕Ω, Γ) > 𝜀 for some 𝜀 > 0. We define a foliation
F𝑆2\Γ on Ω using the boundaries of geodesic balls of radius (𝜋 − 𝜀)/2 exactly like
in the above example. The reader can notice that, as in the case where Γ was a half
equator, the separation property also holds. This is because the foliation F𝑆2\Γ

1In some communities properness means that the image 𝑢(𝑀 ) has a compact intersection with compact
subsets of 𝑁 . We do not use this convention.
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𝐴

−𝐴

Figure 1: A perturbed half equator in 𝑆2

actually foliates 𝑆2 \ (𝐵𝜀 (𝐴) ∪ 𝐵𝜀 (−𝐴)), and as soon as we plug in a connected
curve from 𝐴 to −𝐴, the separation property automatically holds.

A partial order
In the presence of a strictly convex foliation F , one can introduce a relation 𝑝 < 𝑞
for points 𝑝, 𝑞 ∈ F if 𝑝 lies on the convex side of the leaf L𝑞 passing through 𝑞. The
relation 𝑝 ≤ 𝑞 denotes either 𝑝 < 𝑞 or 𝑝 and 𝑞 lying in the same leaf. These relations
do not define a (strict) partial order on F since 𝑝 ≤ 𝑞 and 𝑞 ≤ 𝑝 does not imply 𝑝 = 𝑞.
For 𝑞 ∈ F , we denote by

F>𝑞 =
⋃
𝑞<𝑟

L𝑟

the concave side of L𝑞 and by 𝜕F>𝑞 := 𝜕 (∪𝑞<𝑟L𝑟 ) \L𝑞 the concave boundary of F>𝑞 .

Leaf space
The notion of leaf space for a strictly convex foliation F can be viewed as a directed
graph𝐺 = (𝑉, 𝐸), where the vertices𝑉 correspond to

(a) separating leaves, i.e. the leaves that produce at least three connected components
due to the separating property or

(b) boundary components, i.e. for each separating leaf L as described in (a) insert a
vertex for each component of F \ L which does not contain a separating leaf.

By inserting directed edges 𝐸 from convex to concave leaves successively, a directed
graph is obtained. If there are no separating leaves, then the leaf space consists of two
vertices connected by an oriented edge.
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A strictly convex foliation The associated oriented graph

Figure 2: A foliation and its leaf space

The orders < and ≤ on F descend to𝐺 and define a strict partial order and a partial
order on𝐺 respectively. It is important to note that this graph does not contain any
cycles; otherwise, the separating property would not hold for those leaves.

2.2 The Foliated Maximum Principle

The maximum principle we prove is a foliated version of the Sampson’s maximum
principle and the original result appears in [2] for compact domains. Here we present
an improved version for the non-compact case. First, let us recall the statement of the
Sampson’s maximum principle.

Theorem 2.1 (Sampson’s maximum principle) Let 𝑢 : 𝑀 → 𝑁 be a non-constant harmonic
map, and let 𝑆 be a strictly convex hypersurface of 𝑁 passing through 𝑞 = 𝑢(𝑝). Then for every
open neighbourhood Ω of 𝑝 in 𝑀 , the image 𝑢(Ω) cannot lie entirely on the convex side2 of 𝑆.

Sketch of Proof. Let 𝑓 : 𝑉 → R be a convex function on the open subset 𝑉 ⊆ 𝑁 such
that 𝑞 ∈ 𝑓 −1 (0) = 𝑆 ∩𝑉 . The preimage of (−∞, 0) denotes the convex side of 𝑆 and
the preimage of (0,∞) its concave side. The composition formula for the Laplacian
(see, proposition 2.20 in [13]) implies

Δ𝑔 ( 𝑓 ◦ 𝑢) = 𝑑𝑓 (Δ𝑢) + tr𝑔∇𝑑𝑓 (𝑑𝑢, 𝑑𝑢) = tr𝑔∇𝑑𝑓 (𝑑𝑢, 𝑑𝑢) ≥ 0

where the last inequality follows by the strict convexity of 𝑆. Suppose there exists a
neighbourhood of 𝑝 that is mapped to the convex side of 𝑆, i.e. the inequality Δ𝑔 ( 𝑓 ◦
𝑢) < 0 is satisfied. If 𝑑𝑢𝑝 ≠ 0, we obtain that Δ𝑔 ( 𝑓 ◦ 𝑢) > 0 by the composition
formula, thus contradicting the classical maximum principle. For the case 𝑑𝑢𝑝 = 0, we
refer the reader to [23]. ■

2Note that the convention of the convex side and the concave side are reversed in Sampson’s paper
compared to ours.
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Theorem 2.2 (Foliated Maximum Principle) Let (𝑁, ℎ) be a complete Riemannian manifold,
F a strictly convex foliation, and 𝑢 : (𝑀, 𝑔) → (𝑁, ℎ) a non-constant proper harmonic map.
Let 𝑞 = 𝑢(𝑝) ∈ F be a point inside the foliation. Then either

(a) the image of 𝑢 leaves the foliation on the concave boundary 𝑢(𝑝∗) = 𝑞∗ ∈ 𝜕F>𝑞 within
finite distance 𝑑 (𝑞, 𝑞∗) < ∞, where the metric 𝑑 is induced by the Riemannian metric
ℎ|F or

(b) there is a sequence 𝑢(𝑝𝑛) = 𝑞𝑛 ∈ F>𝑞 with lim𝑛→∞ 𝑑 (𝑞, 𝑞𝑛) = ∞. In this case, F is
necessarily unbounded.

Proof The proof is an adaptation of Theorem 3.3 in [2]. Let 𝑞 = 𝑢(𝑝) be as stated.
Since 𝑞 lies on the leaf L𝑞 passing through 𝑞, we can apply the Sampson maximum
principle, which allows us to choose 𝑞1 = 𝑢(𝑝1) on the concave side of L𝑞 . We repeat
this process of applying Sampson’s theorem to each 𝑞𝑖 := 𝑢(𝑝𝑖) to find a point 𝑞𝑖+1 in
the concave side of L𝑞𝑖 . Thus, we obtain two sequences of points {𝑝𝑘} in 𝑀 and {𝑞𝑘}
in F .

• Assume that {𝑞𝑘} accumulates to a point 𝑞∗. Due to the completeness of 𝑁 we
conclude that {𝑞𝑘} converges to 𝑞∗ ∈ 𝑁 . Due to the properness of 𝑢, we conclude
that {𝑝𝑘} is a sequence contained in the compact set 𝑢−1 ({𝑞𝑘} ∪ {𝑞∗}). Due to
compactness, one can consider a convergent subsequence {𝑝′

𝑘
} of {𝑝𝑘} converg-

ing to some 𝑝∗. Finally, continuity of 𝑢 leads to 𝑢(𝑝∗) = 𝑞∗. Let now L𝑘 be the
leaf containing 𝑞𝑘 . The constructed sequence satisfies L1 < L2 < . . . . Set

L∗ = inf{L | L𝑘 < L for all 𝑘 ∈ N, Im 𝑢 ∩ L ≠ ∅},

where the infimum is taken with respect to the partial order ≤. Notice that
𝑞∗ ∈ L∗. If 𝑞∗ ∉ 𝜕F>𝑞 , we get a contradiction by another application of the
Sampson’s maximum principle. This implies (a).

• Assume that any sequence {𝑞𝑘} constructed via the iterative method above is not
convergent. Then the sequence {𝑞𝑘} is divergent and monotone with respect to
the order <. Thus, the only possibility is lim𝑛→∞ 𝑑 (𝑞, 𝑞𝑛) = ∞.

■

Comments on the Foliated Maximum Principle
Firstly, (a) does not automatically mean that 𝑢 has to leave the foliation. Only a part of
the harmonic map might leave and could even re-enter the foliation later.
Secondly, the completeness of 𝑁 and properness of 𝑢 are essential. By 𝑁 being non-
complete, the limit 𝑞∗ of the constructed sequence might not exist. An example violating
properness would be a small piece of a unit-speed geodesic 𝛾 : (−𝜀, 𝜀) → R2, which
can be included in any strictly convex foliationF . A more involved non-proper example
is given by the work of Nadirashvili in [20], where he constructs a non-proper bounded
complete minimal disk in R3.
Lastly, the Foliated Maximum Principle is valid in the context of harmonic sections 𝑠
of fibre bundles 𝐹 → 𝑀 . Here, the vertical Dirichlet energy 𝐸 [𝑠] :=

∫
𝑀

∥𝐷𝑉 𝑠∥𝑑Vol𝑔
with 𝐷𝑉 𝑠 being the vertical projection of the differential 𝐷 is used for the definition of
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harmonicity. In this case, the strictly convex foliation only needs to foliate the vertical
directions.

Liouville’s theorem
As a first illustration of the non-compact Foliated Maximum Principle, we prove a
version of Liouville’s theorem.

Corollary 2.3 (Liouville’s theorem) The only proper harmonic maps from a complete (not
necessarily compact) Riemannian manifold (𝑀, 𝑔) into a bounded open subset 𝐵 of R𝑛 for
𝑛 > 1 are the constant maps. In particular, there are no bounded, proper minimal hypersurfaces
in R𝑛.

Proof By translating 𝐵, we can assume that 𝑟 = inf𝑞∈𝐵 ∥𝑞∥ > 0. Let 𝑅 = sup𝑞∈𝐵 ∥𝑞∥
after a possible translation. Then, 𝐵 ⊆ 𝐴𝑟 ,𝑅 = {𝑥 ∈ R𝑛 | 𝑟2 < ∥𝑥∥2 < 𝑅2}, and
Theorem 2.2 (a) applies. ■

3 Perturbed cone and Horosphere theorems

In this section, we will prove the first two non-existence theorems for proper harmonic
maps into specific regions of the Euclidean space and the hyperbolic space.

3.1 Perturbed Cone Theorems in R𝑛

We consider the Euclidean space R𝑛 with its standard flat metric defined by 𝑑𝑠2 =

𝑑𝑥2
1 + · · · + 𝑑𝑥2

𝑛. Recall furthermore that geodesics in R𝑛 with the flat metric are given
by affine lines, i.e. 𝛾(𝑡) = 𝑝 + 𝑡𝑣 for 𝑝, 𝑣 ∈ R𝑛.

Perturbed cones in Euclidean spaces
The basic example for the definition of a perturbed cone is going to be the classical
cone 𝐶 defined by the graph of 𝑓 : R → R; 𝑥 ↦→ |𝑥 | inside R2, henceforth called
classical cones. The connected component 𝑅 of R2 \ 𝐶 containing (0, 1) has a special
property: any 𝑝 ∈ 𝑅 can be enclosed by the cone and a hyperplane, in this case a line. In
particular, there are no affine lines in 𝑅. Such a property seems to be very interesting
and, most importantly, crucial for the analysis of harmonic maps. Thus, we give an
appropriate definition for a set possessing such an enclosing property.

Definition 3.1 Let 𝑅 ⊆ R𝑛 be a connected open set. 𝑅 is said to possess the enclosing
property if, for every 𝑝 ∈ 𝑅, there is an affine hyperplane 𝐻 such that the connected
component 𝐵 of 𝑅 \ 𝐻 containing 𝑝 is precompact, i.e. 𝐵̄ is compact.

The blue horizontal lines in Figure 3 verify that the enclosing property holds for the
cone 𝐶. A non-example is the upper halfspace H2 = {(𝑥, 𝑦) ∈ R2 | 𝑦 > 0}. The
enclosing property allows us to extend the notion of a cone to one of a perturbed cone.

Definition 3.2 Let𝐶 be a closed, path-connected subset ofR𝑛 such thatR𝑛\𝐶 consists
of at least two connected components. Let 𝑅 be one of the connected components
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𝑥

𝑦

(0, 1)

Figure 3: The graph of 𝑓 (𝑥) = |𝑥 | and enclosing hyperplanes

of R𝑛 \ 𝐶. If 𝑅 satisfies the enclosing property, then 𝐶 is called a perturbed cone in
Euclidean space and 𝑅 a cone region.

Lemma 3.1 Let𝐶 be a perturbed cone and 𝑅 a cone region. Then 𝑅 cannot contain affine lines.

Proof Assume there is an affine line 𝐿 in 𝑅. Let 𝑝 ∈ 𝐿 and choose a separating
hyperplane 𝐻 and the region 𝐵 via the enclosing property of 𝑅. If 𝐿 is parallel to 𝐻
then it would be fully contained in 𝐵 and hence contradicting precompactness of 𝐵.
If 𝐿 intersects 𝐻 then an unbounded part of 𝐿 would be in 𝐵 again contradicting
precompactness of 𝐵. Since 𝐿 can either be parallel to 𝐻 or intersect it, we exhausted
all the possibilities. ■

The enclosing property can be weakened in such a way that the previous lemma does
not hold. In this case, the new notion of a perturbed cone needs the assumption of not
containing affine lines.

Examples of perturbed cones
The following are examples of perturbed cones in the Euclidean space.

(a) Let 𝐶 ⊆ R2 � C be defined by the union of the negative 𝑥-axis and the line
𝑒𝑖 𝜃R≥0 for some angle 𝜃 ∈ (0, 𝜋). Notice that for 𝜃 = 0 this is not a perturbed
cone, since there are geodesics in the upper half-plane.

(b) A family of perturbed cones inR2 can be defined by glueing the negative 𝑥-axis and
the graph of any continuous, injective, unbounded function 𝑓 : [0,∞) −→ [0,∞)
with 𝑓 (0) = 0. For example, 𝑓 (𝑥) = log(𝑥+1). This can be seen as a perturbation
of the cone defined in (a). Note that the example using the logarithm is not
contained in any classical cone with an angle smaller than 𝜋, since the convex
hull of the graph is the upper halfspace.

A three-dimensional version of this construction is the following: Equip R2

with polar coordinates (𝑟, 𝜃) and fix an angle 0 ≤ 𝜃0 < 𝜋. Now, the union
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𝑥

𝑦

𝑓 (𝑥) = log(𝑥 + 1)

𝑥

𝑦

𝑓 (𝑥) = 𝑥 sin(𝑥)

Figure 4: Examples of perturbed cones

gr ( 𝑓 ) ∪ 𝑆𝜃0 of the graph of the function

𝑓 (𝑟, 𝜃) =
{

log(𝑟 + 1) 𝜃 ∈ [0, 2𝜋 − 𝜃0]
0 𝜃 ∈ (2𝜋 − 𝜃0, 2𝜋)

and the sides 𝑆𝜃0 = {(𝑟, 𝜃, 𝑧) ∈ R3 | 0 ≤ 𝑧 ≤ log(𝑟 + 1), 𝜃 ∈ {0, 2𝜋 − 𝜃0}}
defines a perturbed cone. For 𝜃0 = 0 this recovers the rotational surface of
log(𝑟 + 1) and here the sides 𝑆𝜃0 are not needed.

(c) The graph of 𝑓 (𝑥) = 𝑥 sin(𝑥) in R2 is an example such that both components of
R2 \ gr ( 𝑓 ) are cone regions.

(d) Let 𝑝, 𝑣 ∈ R𝑛 with 𝑣 ≠ 0 and an angle 0 < 𝜃 < 𝜋/2. Then the boundary of the
cone

𝐶 (𝑝, 𝑣, 𝜃) = {𝑝 + 𝑥 | 𝑥 ∈ R𝑛, |⟨𝑥, 𝑣⟩| ≤ cos(𝜃)∥𝑥∥∥𝑣∥}

obviously defines a perturbed cone with its inside being the cone region.
(e) Let 𝐾 be a compact set with 𝐾◦ = 𝐾 \ 𝜕𝐾 ≠ ∅. Then 𝐾 is a perturbed cone with

cone region 𝐾◦.

Next, we prove the main theorem of this subsection.

Theorem 3.2 (Perturbed Cone Theorem) Let𝐶 be a perturbed cone in R𝑛. Then every proper
harmonic map from a complete Riemannian manifold (𝑀, 𝑔) inside a cone region of 𝐶 is
constant.

Proof Let 𝑢 : 𝑀 → R𝑛 be a non-constant proper harmonic map and a point 𝑝 ∈ 𝑀
chosen such that 𝑞 = 𝑢(𝑝) lies in a cone region of𝐶 . Take now the associated enclosing
compact set 𝐵 and the hyperplane 𝐻 such that 𝑞 ∈ 𝐵◦.
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Let 𝜈 be the unit normal with re-
spect to 𝐻 pointing inwards to 𝐵◦

and the half-sphere

𝑆 = 𝑆𝑛−1
𝑟 ∩ {𝑥 ∈ R𝑛 | 0 ≤ ⟨𝑥, 𝜈⟩}

where 𝑆𝑛−1
𝑟 is the sphere of radius

𝑟 = diam(𝐵). Then for 𝛾 : (−𝑟 −
𝜀, 𝑟 + 𝜀) → R𝑛 defined by 𝛾(𝑡) =
𝑞 + 𝑡 𝜈 for 𝜀 > 0, we obtain an
associated strictly convex foliation

F =
⋃

𝑡∈ (−𝑟−𝜀,𝑟+𝜀)
L𝛾 (𝑡 )

with leaves L𝛾 (𝑡 ) = 𝛾(𝑡) + 𝑆.

𝐶

𝐻

𝑞

𝜈

Figure 5: The constructed foliation

By definition, 𝑞 ∈ L𝛾 (−𝑟 ) and 𝜕𝐵 ∩ 𝐻 lies on the convex side of L𝛾 (−𝑟 ) . Hence, by
Theorem 2.2 (a) we obtain a contradiction of Im 𝑢 being contained in a cone region of
𝐶. ■

Local cones
A corollary derived from the proof of our main theorem, which can be interpreted as a
local manifestation of a cone theorem, goes as follows.

𝑦 = 𝑐

𝑞 ∈ 𝑢(𝑀)

𝑥

Figure 6: A local cone

Definition 3.3 A local cone 𝐶 in R𝑛 is a closed subset such that there is a hyperplane
𝐻 and a precompact connected component 𝐵 of R𝑛 \ (𝐶 ∪ 𝐻). 𝐵 is called the local
cone region.

Notice that a local cone can always be extended to a cone in several non-unique ways.

Corollary 3.3 (Local Cone Theorem) Let 𝐶 be a local cone with cone region 𝐵. Then a non-
constant proper harmonic map 𝑢 : 𝑀 → R𝑛 with 𝑢(𝑝) ∈ 𝐵 also possesses a point 𝑝′ ∈ 𝑀
such that 𝑢(𝑝′) ∈ 𝐶 . In other words, a harmonic map entering 𝐵 has to leave through 𝐶 .

2025/10/17 14:17
https://doi.org/10.4153/S0008439525101367 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525101367


“perturbedconeharmonicCM” — 2025/10/17 — 14:17 — page 13 — #13

Perturbed cone theorems for proper harmonic maps 13

Proof Since 𝐵 is an open set and 𝑝′ ∈ 𝐵, we can just repeat the construction in the
proof of Theorem 3.2. ■

3.2 The Horosphere Theorem

To further demonstrate the flexibility of our methods on obtaining Perturbed Cone The-
orems, we proceed to explore hyperbolic upper halfspaces. We exhibit a 1-parameter
family of hypersurfaces that foliates the space above a horosphere. More precisely
and with the nomenclature of our paper, we consider the upper halfspace model of
the hyperbolic space H𝑛+1 = {𝑥 ∈ R𝑛+1 | 𝑥𝑛+1 > 0} equipped with the metric
𝑑𝑠2 = 1

𝑥2
𝑛+1

(𝑑𝑥2
1 + · · · + 𝑑𝑥2

𝑛+1) of constant sectional curvature −1. We will show that a

cone in the region {𝑥𝑛+1 > 𝑐 > 0} in the hyperbolic space H𝑛+1 can be as wide as a
halfspace; that is, a cone with angle 𝜋.

Geometry of graphical hypersurfaces in H𝑛+1

We shall briefly discuss the geometry of hypersurfaces of H𝑛+1. Let 𝐹 : R𝑛 → H𝑛+1 be
a graphical hypersurface 𝐹 (𝑥) = (𝑥, 𝑓 (𝑥)) for some smooth 𝑓 : R𝑛 → R. The tangent
vectors are spanned by 𝐹𝑖 = 𝜕𝑖 + 𝑓𝑖𝜕𝑛+1. Denote by ∇ 𝑓 = ( 𝑓1, . . . , 𝑓𝑛) the Euclidean
gradient and by ∥∇ 𝑓 ∥ its Euclidean norm. Then we can choose the upward pointing
unit normal

𝑁 =
𝑓√︁

1 + ∥∇ 𝑓 ∥2

[
−∇ 𝑓

1

]
.

The covariant derivatives with respect to the ambient hyperbolic metric are

∇𝐹𝑖
𝐹𝑗 = 𝑓 −1 ((𝛿𝑖 𝑗 + 𝑓 𝑓 𝑗 − 𝑓𝑖 𝑓 𝑗 )𝜕𝑛+1 − 𝑓𝑖𝜕 𝑗 − 𝑓 𝑗𝜕𝑖)

which then implies that the second fundamental form is

𝐴 =
1

𝑓 2
√︁

1 + ∥∇ 𝑓 ∥2
(Id + ∇ 𝑓 ⊗ ∇ 𝑓 + 𝑓 Hess( 𝑓 )) (3.1)

where Hess( 𝑓 ) is the Euclidean Hessian and [∇ 𝑓 ⊗ ∇ 𝑓 ]𝑖 𝑗 = 𝑓𝑖 𝑓 𝑗 . Thus, for the con-
vexity of the hypersurfaces we only need to investigate the positive definiteness of 𝐴.

Spheres beyond infinity
Our aim is to construct a foliation of an open set in H𝑛+1. Such a foliation and the
Foliated Maximum Principle will lead to the Horosphere Theorem. Such a foliation will
consist of graphical hypersurfaces in H𝑛+1 whose convexity can be investigated by
making use of equation (3.1). Let 𝑓 : R𝑛 → R be given by 𝑓 (𝑥) =

√︁
4𝑞2 − ∥𝑥∥2 − 𝑞 for

some 𝑞 > 0. Consider the embedding 𝐹 : 𝑈 → H𝑛+1 where𝑈 = {𝑥 ∈ R𝑛 | 𝑓 (𝑥) > 0}
with 𝐹 (𝑥) = (𝑥, 𝑓 (𝑥)). The defined submanifold is the piece of the Euclidean sphere of
radius 2𝑞 and centre (0, . . . , 0,−𝑞) as a subset of H𝑛+1. The gradient is ∇ 𝑓 = −𝑥

𝑓 (𝑥 )+𝑞
and the Hessian is

Hess( 𝑓 ) = − Id
𝑓 (𝑥) + 𝑞 − 𝑥 ⊗ 𝑥

( 𝑓 (𝑥) + 𝑞)3
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𝑆

𝑥𝑛+1

Figure 7: 𝑆 defined by 𝑓 (𝑥) =
√︁

4𝑞2 − ∥𝑥∥2 − 𝑞

where [𝑥 ⊗ 𝑥]𝑖 𝑗 = 𝑥𝑖𝑥 𝑗 . A short computation shows that the second fundamental form
is

𝐴 =
1

2 𝑓 (𝑥)

(
Id + 𝑥 ⊗ 𝑥

( 𝑓 (𝑥) + 𝑞)2

)
.

The positive definiteness of 𝐴 follows by noticing that a matrix of the form Id +
𝛼2𝑥 ⊗ 𝑥 has the eigenvalue 1 + 𝛼2∥𝑥∥2 with multiplicity one and the eigenvalue 1 with
multiplicity 𝑛.

Theorem 3.4 (Horosphere Theorem) Let 𝐻 = {𝑥 ∈ H𝑛+1 | 𝑥𝑛+1 = 𝑐} for some 𝑐 > 0
be a horosphere in the hyperbolic space H𝑛+1. Then every proper harmonic map into the set
{𝑥 ∈ H𝑛+1 | 𝑥𝑛+1 > 𝑐}, known as the horoball, is constant.

Proof Let 𝑢 be a proper harmonic map and 𝑝 ∈ 𝑀 such that 𝑞′ = 𝑢(𝑝) lies above
the horosphere 𝐻. By a hyperbolic isometry, we can assume that 𝑞′ = (0, . . . , 0, 𝑞) for
some 𝑞 > 𝑐. Define the foliation F by the maps 𝑓𝑡 (𝑥) =

√︁
4𝑡2 − ∥𝑥∥2 − 𝑡 for 𝑡 ∈ [𝜀, 𝑞]

for some 0 < 𝜀 < 𝑐. By the previous discussion, F is a strictly convex foliation, hence
Theorem 2.2 applies, implying that 𝑢 needs to intersect the horosphere of height 𝜀 < 𝑐.
Thus, 𝑢 cannot lie above 𝐻. ■

The proof of Theorem 3.4 actually shows that if (0, . . . , 0, 𝑞) = 𝑞′ = 𝑢(𝑝) > 0 then
for every 𝑐 < 𝑞 there is a point 𝑝′ ∈ 𝑀 such that 𝑢(𝑝′) ∈ 𝐻𝑐 ∩ 𝐵2𝑞 (−𝑞′).

Let 𝑐 > 0 and 𝑓 : R𝑛 → R be a continuous function such that for all 𝑥 ∈ R𝑛 the
inequality −𝜀 ≤ 𝑓 (𝑥) holds for 0 < 𝜀 < 𝑐. Then the graph gr( 𝑓 +𝑐) in R𝑛−1× (0,∞) =
H𝑛+1 defines a perturbed version of the horosphere. The same conclusion holds for
this perturbed version as well.

2025/10/17 14:17
https://doi.org/10.4153/S0008439525101367 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525101367


“perturbedconeharmonicCM” — 2025/10/17 — 14:17 — page 15 — #15

Perturbed cone theorems for proper harmonic maps 15

Comments on the Horosphere Theorem
We would like to highlight two important theorems that influenced the statement of
Theorem 3.4. The first, by Rodriguez and Rosenberg [22], proves a halfspace theorem
for mean curvature one surfaces in the hyperbolic space H3, whose analogy with our
result is obvious.
The second, by Mazet [19], covers a general halfspace theorem for constant mean
curvature surfaces in 3-manifolds. This paper explores conditions allowing two surfaces
with equal mean curvature to coexist in the same 3-space. Specifically: If Σ𝐻 is a
parabolic constant mean curvature (CMC) surface with mean curvature 𝐻 and any
equidistant surface on the non-mean convex side has mean curvature less than 𝐻, then
any CMC 𝐻 surface on the non-mean convex side of Σ𝐻 is an equidistant surface to
Σ𝐻 . This general result, however, requires the target space to be three-dimensional
and the domain to be parabolic, which limits its application in higher dimensions; for
example, the Euclidean space R𝑘 with a flat metric is parabolic if and only if 𝑘 = 1 or
𝑘 = 2. In contrast, our weaker theorem applies to proper harmonic maps without any
restrictions on the dimensions of either the domain or the hyperbolic space target.

4 A Riemannian cone theorem

In this section, we move to the setting of Riemannian manifolds and prove a non-
existence result for perturbed Riemannian cones. Employing again a foliation argument,
we will prove that the only proper harmonic maps into 𝑅 are the constant ones.

Riemannian halfspaces
As a first step, we need a generalised definition of a halfspace in a Riemannian manifold.

Definition 4.1 Let (𝑁, ℎ) be a non-compact complete Riemannian manifold. A
Riemannian halfspace at 𝑝 ∈ 𝑁 in the direction 𝑣 ∈ 𝑇𝑝𝑁 is

𝐻𝛾 :=
⋃
0<𝑡

𝐵𝑡 (𝛾(𝑡)).

where 𝛾 : [0,∞) → 𝑁 is a unit-speed minimising geodesic ray 𝛾(𝑡) = exp𝑝 (𝑡𝑣)
starting at 𝑝 in the direction of 𝑣.

Actually, the completeness is not strictly necessary. Take for example R2 \ (0,−1)
with 𝑝 = (0, 0) and 𝑣 = (0, 1). Then we still obtain the usual halfspace, although
R2 \ (0,−1) is not complete with the Euclidean metric. Another example of a halfspace
is a horosphere inside hyperbolic space. For this purpose, take 𝑝 = (0, . . . , 0, 𝑐) ∈ H𝑛

and 𝑣 = (0, . . . , 0, 1).

Perturbed Riemannian cones
Perturbed Riemannian cones are going to be an abstraction of the idea of a cone being
a subset inside a halfspace defined by a point, a direction and a solid angle.

Definition 4.2 Let (𝑁, ℎ) be non-compact, 𝛾 : [0,∞) → 𝑁 a unit-speed min-
imising geodesic ray and 𝑟 : (0,∞) → (0,∞) a continuous function satisfying
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𝑟 (𝑡) < min{𝑡, 𝑟𝑐 (𝛾(𝑡))} where 𝑟𝑐 (𝑝) is the convexity radius of 𝑁 at 𝑝. The subset

𝐶𝛾,𝑟 :=
⋃
0<𝑡

𝐵𝑟 (𝑡 ) (𝛾(𝑡)).

is a perturbed Riemannian cone if the following separation property holds: For every
0 < 𝑡1 < 𝑡2 the condition 𝐵𝑟 (𝑡1 ) (𝛾(𝑡1)) ⊈ 𝐵𝑟 (𝑡2 ) (𝛾(𝑡2)) holds and 𝐶𝛾,𝑟 \ 𝐵𝑟 (𝑡 ) (𝛾(𝑡))
has two components for 𝑡 ∈ (0,∞). The function 𝑟 is referred to as the cone radius
function.

The property 𝑟 (𝑡) < 𝑡 assures that the perturbed Riemannian cone 𝐶𝛾,𝑟 is a subset
of the Riemannian halfspace 𝐻𝛾 and the property 𝑟 (𝑡) < 𝑟𝑐 (𝛾(𝑡)) is necessary for
𝑆𝑟 (𝑡 ) (𝛾(𝑡)) := 𝜕𝐵𝑟 (𝑡 ) (𝛾(𝑡)) being strictly convex. Thus, a perturbed Riemannian cone
intrinsically possesses a strictly convex foliation by the boundaries of geodesic balls.
Note that cones in Euclidean space are a canonical example of a perturbed Riemannian
cone, where in addition the radius function 𝑟 has constant derivative smaller than 1.
The following lemma characterises when geodesic balls along a minimising geodesic
rays are contained in each other, i.e. when the separating property of a cone fails. Since
the proof relies on the mean value theorem, we will assume differentiability for the
cone radius function.

Lemma 4.1 Let 𝛾 : [0,∞) → 𝑁 be a unit-speed minimising geodesic ray and 𝑟 : [0,∞) →
[0,∞) a continuously differentiable function satisfying 𝑟 (0) = 0 and 𝑟 (𝑡) < 𝑡. Fix an open
subset (𝑎, 𝑏) ⊆ (0,∞). The following are equivalent:

(a) 𝑟 ′ ≥ 1 on (𝑎, 𝑏) and
(b) 𝐵𝑡1 ⊆ 𝐵𝑡2 for all 𝑎 < 𝑡1 < 𝑡2 < 𝑏 where 𝐵𝑡 = 𝐵𝑟 (𝑡 ) (𝛾(𝑡)) is the closed geodesic ball

in 𝑁 .

Proof Assuming (a) the mean value theorem implies 𝑡2 − 𝑡1 ≤ 𝑟 (𝑡2) − 𝑟 (𝑡1). Let
𝑝 ∈ 𝐵𝑡1 , that is 𝑑 (𝑝, 𝛾(𝑡1)) ≤ 𝑟 (𝑡1). Now

𝑑 (𝑝, 𝛾(𝑡2)) ≤ 𝑑 (𝑝, 𝛾(𝑡1)) + 𝑑 (𝛾(𝑡1), 𝛾(𝑡2))
≤ 𝑟 (𝑡1) + 𝑡2 − 𝑡1
≤ 𝑟 (𝑡1) + 𝑟 (𝑡2) − 𝑟 (𝑡1)
= 𝑟 (𝑡2).

Notice that the second inequality follows by 𝛾 being a unit-speed minimising geodesic.
Hence, 𝑝 ∈ 𝐵(𝑡2) and (b) follows.
Assuming (b) we obtain 𝑑 (𝛾(𝑡2), 𝛾(𝑡1 − 𝑟 (𝑡1))) ≤ 𝑟 (𝑡2) and by the properties of 𝛾 we
get 𝑑 (𝛾(𝑡2), 𝛾(𝑡1 − 𝑟 (𝑡1))) = 𝑡2 − 𝑡1 + 𝑟 (𝑡1). Rearranging implies that,

1 ≤ 𝑟 (𝑡2) − 𝑟 (𝑡1)
𝑡2 − 𝑡1

and assertion (a) follows. ■
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Theorem 4.2 (Perturbed Riemannian Cone Theorem) Let 𝐶𝛾,𝑟 be a perturbed Riemannian
cone inside the complete Riemannian manifold (𝑁, ℎ). Then every proper harmonic map into
𝐶𝑟 ,𝛾 \ 𝜕𝐶𝑟 ,𝛾 is constant.

Proof The convexity radius assumption assures that the boundaries of the geodesic
balls are strictly convex. Hence, by the above remarks we know that there is a strictly
convex foliation present and Theorem 2.2 applies. ■

Applications of the Perturbed Riemannian Cone Theorem
There are many possible applications of Theorem 4.2 to obtain new cone-type theorems
for Riemannian geometry. We point out a couple of interesting ones to show the
generality of the theorem in the Riemannian setting.

(a) Let 𝑟 (𝑡) = cos(𝜃)𝑡 for a fixed angle 𝜃 ∈ (0, 𝜋/2) and 𝛾(𝑡) = (0, 𝑡) with 𝑡 ∈ [0,∞)
inside R2. Then 𝐶𝑟 ,𝛾 is a perturbed Riemannian cone and 𝜕𝐶𝑟 ,𝛾 is a perturbed
Euclidean cone. Thus, Theorem 4.2 recovers Theorem 3.2 for certain cones.

(b) In the case of hyperbolic spaces Theorem 4.2 is strictly weaker than Theorem 3.4
since in that case we can prove the theorem for the halfspace, i.e. for the radius
function 𝑟 (𝑡) = 𝑡.

(c) Let 𝑀 = H𝑘 ×R𝑙 equipped with the product metric. Since the convexity radius of
𝑀 is infinity, one can take any geodesic ray 𝛾 and a radius function 𝑟 (𝑡) = cos(𝜃)𝑡
with 𝜃 ∈ (0, 𝜋/2).

(d) Consider 𝑀 = (𝑆1)𝑛 × R as [−𝜋, 𝜋]𝑛 × R with opposite sides identified and
equipped with the flat metric. The diffeomorphism 𝜓 : R𝑛+1 → (−𝜋, 𝜋)𝑛 × R
given by

(𝑥1, . . . , 𝑥𝑛, 𝑠) ↦→ (2 arctan(𝑥1), . . . , 2 arctan(𝑥𝑛), 𝑠)

allows the definition of perturbed Riemannian cones in𝑀 via taking the image of a
cone inside R𝑛+1. For instance, let𝐶𝛾,𝑟 ⊆ R𝑛+1 be defined by 𝛾(𝑡) = (0, . . . , 0, 𝑡)
with 𝑡 ∈ [0,∞) and 𝑟 (𝑡) = cos(𝜃)𝑡 for 𝜃 ∈ (0, 𝜋/2). Then under 𝜓 the cone gets
mapped to 𝐶𝛾,𝑅 inside 𝑀 where 𝛾 is just like before and the transformed radius
function is 𝑅(𝑡) = 2 arctan(𝑟 (𝑡)) = arctan(cos(𝜃)𝑡).

(e) Let 𝑀 = 𝑆𝑛 × R be equipped with the product metric. Denote by 𝑆 the south
pole of 𝑆𝑛 and by 𝛾(𝑡) = (𝑆, 𝑡) with 𝑡 ∈ [0,∞) the minimising geodesic. Since
the convexity radius of 𝑆𝑛 is 𝜋/2 we need to stay below that value. Again, we
can take the radius function 𝑟 (𝑡) = arctan(𝑡) and define a perturbed Riemannian
cone inside 𝑀 .
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