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Abstract
Contemporary epidemiological models often involve spatial variation, providing an avenue to investigate the aver-
aged dynamics of individual movements. In this work, we extend a recent model by Vaziry, Kolokolnikov, and
Kevrekidis [Royal Society Open Science 9 (10), 2022] that included, in both infected and susceptible population
dynamics equations, a cross-diffusion term with the second spatial derivative of the infected population density.
Diffusion terms of this type occur, for example, in the Keller–Siegel chemotaxis model. The presented model
corresponds to local orderly commute of susceptible and infected individuals and is shown to arise in two dimen-
sions as a limit of a discrete process. The present contribution identifies and studies specific features of the new
model’s dynamics, including various types of infection waves and buffer zones protected from the infection. The
model with vital dynamics additionally exhibits complex spatio-temporal behaviour that involves the generation of
quasiperiodic infection waves and emergence of transient strongly heterogeneous patterns.

1. Introduction

In the context of epidemiological modeling, the population is commonly stratified into several compart-
ments representing distinct states with respect to a particular infectious disease. In susceptible-infected-
recovered (SIR)-type models, the compartments respectively include the susceptible (S), infected (I)
and recovered (R) classes. SIR models play a fundamental role in epidemiological research by allowing
to simulate the dynamics and estimate specific qualitative and quantitative characteristics of infectious
diseases within a given population. The specification of interplay between compartment dynamics over
time and external inputs is an essential part of modeling disease spread and understanding the impact
of interventions and control measures. Common epidemiological models assume a well-mixed popu-
lation and may have additional simplifying restrictions, such as constant population size, unchanging
disease transmission and removal rates, or lack of demographic dynamics (births or deaths). Kermack
and McKendrick’s paper that appeared in 1927 [1] is one of the earliest and most well-known attempts
to formulate an SIR model in terms of ordinary differential equations (ODE) to simulate the spread of
epidemics in a population with no specific structure and a constant total number of individuals. While
simple and lacking factors like age, sex, infectivity variations, or spatial considerations, this model laid a
foundation for numerous subsequent epidemic models which have been expanded and adapted in various
ways to better represent real-world disease dynamics. Modern studies, including Refs. [2–6], use exten-
sively modified SIR-based approaches to align with the specific characteristics of particular diseases,
including the recent COVID-19.
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Factoring in spatial dependence, one gains the ability to simulate the averaged dynamics of individual
movements and, consequently, to study how this mobility influences the geographic progression of the
disease. Early attempts to investigate epidemic models that considered the spatial diffusion of population
compartments involved versions of the Lotka–Volterra species interaction system, in which the diffusion
of species was incorporated; an example is provided by the model

ut = d1uxx − kuv,

vt = d2vxx + kvu − λv

of Ref. [7], where the compartments u and v depend on spatial variables, d1 and d2 are different diffusion
coefficients, kuv denotes the infection term and λv is the death term. Webb [8] proposed a similar SIR
model one space dimension,

St = D1Sxx − βSI,

It = D2Ixx + βSI − γ I,

Rt = D3Rxx + γ I

with S, I and R depend on (x, t), Di are diffusion coefficients, β is the rate of infection when suscep-
tible and infected individuals meet and γ is the removal rate for the infected population. It has been
shown that for Dirichlet homogeneous boundary conditions and non-negative and continuous initial
conditions, this system has a positive solution if the initial condition is positive. If diffusion coeffi-
cients are equal, the infected class dies out, and susceptible population tends to a spatially uniform
steady state.

In addition to simple diffusion of individuals, spatial models can capture different contact patterns.
For instance, in Ref. [9], an SIR model was modified by the assumptions that the motion of susceptible
individuals away from higher concentrations of infected ones took place and that infected individuals
moved away from overcrowded regions.

In the novel study by Vaziry, Kolokolnikov, and Kevrekidis [10], it was proposed that individuals
are susceptible to contracting infections when they depart from their residences and temporarily move
to adjacent locations. The infection process here is characterised by an absence of latency between
exposure and the appearance of symptoms. The likelihood of susceptible individuals becoming infected
depends on the presence of both susceptible individuals and existing infections within a specific area.
It is noteworthy that individuals do not undergo random or diffusive movements upon leaving their
dwellings. Rather, their mobility patterns involve a return to their original (home) location, as exempli-
fied by routines such as shopping or work-related activities. The authors derived an SIR model within a
one-dimensional spatial domain, given by

St = −DβSIxx − βSI,

It = DβSIxx + βSI − γ I,

Rt = γ I,

(1.1)

where D is the diffusion coefficient. The equations (1.1) were shown to exhibit interesting behaviour
including the existence of buffer zones protected from the infection. In the context of spatially homo-
geneous SIR models, multiple forms of S-, I-, R-dependent forcing terms that can approximate various
effects have been considered in the literature. In particular, vital dynamics is modelled variable or con-
stant birth and mortality rates (e.g., Refs. [11–15] and references therein). The integration of logistic
growth offers an important avenue of exploration. For example, in [12], an SIR model was presented
where logistic growth rates were incorporated into the susceptible population, accompanied by the
introduction of non-monotonic incidence and saturated treatment rates.
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In this work, we begin from the derivation of a general two-dimensional PDE model

St = −DβS�I − βSI + rS − μS − r

K
S2,

It = DβS�I + βSI − mI,

Rt = γ I − μR.

(1.2)

(Section 2). Here � = ∇2 is the Laplace operator, β is the infection transition coefficient, r and K are the
logistic growth coefficient and carrying capacity, m is the total mortality rate of the infected population
and μ is the natural mortality rate. The cross-diffusion term ∼ S�I corresponds to orderly commute
of susceptible and infected individuals. In particular, the cross-diffusion terms in the PDE model (1.2)
arise exactly from a limit of the discrete process.

We note that the diffusion term in the PDE system (1.1) that incorporates only the I-diffusion in both
S and I evolution equations is reminiscent of that in the famous Keller–Siegel model of chemotaxis [16],
given by, for example,

ρt = Db�ρ − ∇ · (kρ∇c) + aρ − βρ2,

ct = Dc�c + αρ − γ c.
(1.3)

In (1.3), ρ and c are the bacterial density and the attractant concentration depending on t and x ∈R
n, Db

and Dc are diffusion coefficients, a is the rate of bacterial division, α is the rate of attractant production,
k denotes the chemotactic sensitivity, β is a logistic term coefficient and γ is the rate of attractant decay.
Indeed, in the limit of small Db and with k ∼ Dc, the remaining diffusion terms agree with those in
(1.2). The model (1.3) has been extensively studied; various phenomena and solution behaviour types
including, for example, shock waves, have been observed (see, e.g. [17] and references therein).

In Section 3, we observe the essentially non-hyperbolic, diffusive PDE model (1.1) admits solutions
in the form of travelling waves of variable amplitudes, moving at different speeds and accelerating or
decelerating depending on system parameters. In Section (3.2), Lie point symmetries of the PDE system
(1.1) are systematically sought. In its most general form, the PDEs admit space and time translations,
and additionally, two unusual point symmetries that allow to map any solution of (1.1) to a solution
where the infected compartment is modified by an addition of a term proportional to an exponentially
time-decaying spatially harmonic wave, of the form of Fourier separated solutions for the usual linear
heat equations, but of lesser generality. This transformation is admitted despite the fact that the PDEs
(1.1) are neither linear nor separable. Further, for a special case of the cross-diffusion SIR model that
admits additional scaling symmetries, the PDE system is reduced to a single ordinary differential equa-
tion (ODE) that yields scaling-invariant self-similar solutions. The latter correspond to infection waves
propagating on a half-line when an infection source is located at the origin.

Section 3.3 illustrates the existence of ’buffer zones’ protected from infection by low population
density in the original one-dimensional model without vital dynamics. These zones postpone infection
progression, effectively acting as firebreaks.

Section 4 studies an important property of the model (1.2) which, in addition to cross-diffusion,
involves death and logistic growth terms: the spontaneous generation of quasi-periodic infection waves
that originate from a single spike of infected population in a specified location. It is shown that the initial
amount of susceptible individuals controls emergence times of the infection waves. Buffer zones also
arise in the model with vital dynamics; beyond such zones, infection waves propagate after a signifi-
cant delay. In case of homogeneous initial and homogeneous Neumann boundary conditions, the model
reduces to time-dependent ODEs that support spiral sink-type equilibria dependent parameters of the
logistic term. For large carrying capacity, the dynamics remains close to the isoline of the approximately
conserved Hamiltonian-type integral for prolonged times.

When initialised by a non-homogeneous initial condition, the cross-diffusion model with vital dynam-
ics can exhibit striking behaviour, where the dynamics is initially unstable, leading to the appearance
of ’dark spikes’ (self-produced transient buffer zones) in the susceptible compartment. It is shown that
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Figure 1. Mobility patterns in a lattice-based SIR model. The chart visualises the mobility dynamics
within a lattice-based SIR model, showing the flow of individuals between neighbouring compartments.

the emergence of such spikes can be attributed to linear instability of high wave number perturbations
of the non-trivial steady state.

In Section 4, we also numerically study solutions of an ODE describing time-independent states of
the PDE model with cross-diffusion and vital dynamics. It is shown that there exist spatially periodic,
non-harmonic positive definite equilibrium solutions.

In Section 5, it is demonstrated that buffer zones and quasi-periodic, essentially two-dimensional
infection wave generation are also features of the full PDE model (1.2) in two spatial dimensions.

The paper is concluded with a discussion in Section 6.

2. Derivation

In this section, we derive the two-dimensional PDE model (1.2) featuring the cross-diffusion terms.
To characterise movements of individuals in two dimensions, consider a discrete spatial domain with
bins indexed by i and j ranging from 1 to N (Figure 1). These bins are utilised to represent the pop-
ulations of susceptible, infected and recovered individuals, denoted as S(t, i, j), I(t, i, j) and R(t, i, j),
respectively. Consistently with the conventional SIR model, it is assumed that infection can occur with
a probability β when a susceptible individual encounters an infected individual. Furthermore, α is
employed to denote the travel rate, with the assumption of identical travel rates for both vertical and
horizontal motions to simplify the model. Lastly, δI(t, i, j) denotes the new infections within bin (i, j) at
[t, t + 1].

According to Figure 1, the change δI at the cell with indices (i, j) is given by

δI(t, i, j) = β[ S(t, i, j) − 4αS(t, i, j)︸ ︷︷ ︸
available S at (i,j)

]×

[ I(t, i, j) − 4αI(t, i, j) + α(I(t, i + 1, j) + I(t, i − 1, j) + I(t, i, j − 1) + I(t, i, j + 1))︸ ︷︷ ︸
available I at (i,j)

]

+β(α S(t, i, j)︸ ︷︷ ︸
commuter to (i+1,j)

)×

[ I(t, i + 1, j) − 4αI(t, i + 1, j) + α(I(t, i + 2, j) + I(t, i, j) + I(t, i + 1, j − 1) + I(t, i + 1, j + 1))︸ ︷︷ ︸
available I at (i+1,j)

]
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+β(α S(t, i, j)︸ ︷︷ ︸
commuter to (i−1,j)

)×

[ I(t, i − 1, j) − 4αI(t, i − 1, j) + α(I(t, i − 2, j) + I(t, i, j) + I(t, i − 1, j − 1) + I(t, i − 1, j + 1))︸ ︷︷ ︸
available I at (i−1,j)

]

+β(α S(t, i, j)︸ ︷︷ ︸
commuter to (i,j+1)

)×

[ I(t, i, j + 1) − 4αI(t, i, j + 1) + α(I(t, i − 1, j + 1) + I(t, i + 1, j + 1) + I(t, i, j + 2) + I(t, i, j))︸ ︷︷ ︸
available I at (i,j+1)

]

+β(α S(t, i, j)︸ ︷︷ ︸
commuter to (i,j−1)

)×

[ I(t, i, j − 1) − 4αI(t, i, j − 1) + α(I(t, i − 1, j − 1) + I(t, i + 1, j − 1) + I(t, i, j) + I(t, i, j − 2))︸ ︷︷ ︸
available I at (i,j−1)

].

The corresponding discrete-time SIR model on a lattice is expressed as follows:

S(t + 1, i, j) = S(t, i, j) − δI(t, i, j),

I(t + 1, i, j) = I(t, i, j) + δI(t, i, j) − γ I(t, i, j),

R(t + 1, i, j) = R(t, i, j) + γ I(t, i, j),

where γ denotes the recovery rate. Considering the grid spacing in both the x and y directions as dx
and dy, and defining I(t, i, j) as I(t, x, y) with x = idx and y = jdy, we can employ a Taylor expansion to
obtain the following result:

δI(t, x, y) = βS(t, x, y)
(
2αdx2Ixx(t, x, y) + 2αdy2Iyy(t, x, y) + I(t, x, y)

)
+O(dx3) + O(dy3).

Under the assumption of dx = dy, this simplifies to

δI(t, x, y) = βDS(t, x, y)
(
Ixx(t, x, y) + Iyy(t, x, y)

) + βS(t, x, y)I(t, x, y)

+O(dx3),

where D = 2αdx2.
We now apply the two-point forward-difference formula to S, leading to S(t + 1, x, y) − S(t, x, y) =

St(t, x, y) (similarly for I and R). In the limit of large α and small dx such that D = 2αdx2 = const, the
resulting equations become

St = −DβS(Ixx + Iyy) − βSI,

It = DβS(Ixx + Iyy) + βSI − γ I,

Rt = γ I,

(2.1)

where t ≥ 0, (x, y) ∈A= [xa, xb] × [ya, yb] ⊆R
2.

The resulting model (2.1) expands upon the model (1.1) to a 2D spatial domain, incorporating the
movement of infected individuals in the second dimension (y) and their interaction with S. This addition
to the model enables the observation of its influence on new infection dynamics. We note that the system
(2.1) has a conserved quantity

S(x, y, t) + I(x, y, t) + R(x, y, t) = N(x, y),

where the total population, denoted by N(x, y), remains constant over time. The first equation in the
system enforces S(x, y, t) ≥ 0. This condition is met since S0 ≥ 0, and from the first equation in (2.1),
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the logarithmic rate of change dS(x, y, t)/S(x, y, t) = (−Dβ�I(x, y, t) − βI(x, y, t)) dt < 0, which yields,
for a known solution I = I(x, y, t),

S(x, y, t) = S0 exp

(∫ t

0

−(
Dβ�I(x, y, τ ) + βI(x, y, τ )

)
dτ

)
> 0.

In a similar manner, the second and the third PDEs in (2.1) ensure the positivity of I and R.
We now incorporate vital dynamics in the form of logistic growth for the susceptible population,

St ∼ rS (1 − S/K), where r denotes the intrinsic growth rate, and K represents the carrying capacity
arising from internal factors such as competition among susceptible individuals. We introduce a constant
natural mortality rate μ for all model compartments. Additionally, we consider γ to be the recovery rate,
and ω the extra death rate for infected individuals, signifying the fatality of the disease. As a whole,

m = μ + γ + ω (2.2)

corresponds to the removal rate for the infected population. In two spatial dimensions, this extension
yields the PDE system (1.2), which completes the derivation.

3. Waves in the SIR model with cross-diffusion

The spatio-temporal PDE model (1.1) supports various kinds of waves that behave in a stable manner.
In the current section, we discuss two instances of wave behaviour, the first involving the degeneration
of an initial infection spike and the second describing a self-similar exact solution corresponding to an
incoming infection wave.

3.1. Accelerating and decelerating waves

Consider an initial value problem for the non-standard diffusion PDE system (1.1) involving a one-
dimensional spatio-temporal domain x ∈ [ − L, L] ⊆R, t ≥ 0. Suppose that initially, I is given by a peak
located at the origin, with initial amplitude A and characteristic wavelength λ, R = 0, the total popula-
tion N and S = N − I. The corresponding wave degeneration leads to a travelling wave whose speed
of propagation depends on A, λ and the diffusion coefficient D and the parameters β and γ of the
model. From the dimensional considerations, noting the physical dimensions [D] = m2, [β] = [γ ] = s−1,
[A] = [λ] = m, the wave speed [v] = ms−1 and the time [t] = s, one can construct a system of invariants
and use the Buckingham π -theorem (see, e.g., Ref. [18]) to express the wave speed as a function of the
other characteristics,

v = D1/2β F(
βγ −1, Aλ−1, Dλ−2, βt

)
, (3.1)

where F is a certain unknown function. It can be shown numerically that depending on the parameters,
the PDE system (1.1) supports both accelerating and decelerating waves. As an example, we perform a
dimensionless computation fixing β = 1, γ = 0.4, A = 1, λ ∼ 1 by choosing the initial condition I(x, 0) =
exp(−100 x2), S(x, 0) = 2 − I(x, 0), R0 = 0 and varying D. For D = 10−3, the propagation of infection and
recovery waves is illustrated in Figure 2.

It can be shown that the speed of the propagation of the infection wave in this setup significantly
depends on the value of D. Figure 3 shows that, as it is intuitively expected, higher diffusion coefficients
correspond to higher wave speeds and higher wavelengths. A comparison of I−wave peak dynamics
in Figure 4 shows increasing and decreasing peak velocity values for a range of diffusion coefficients.
To quantify this behaviour, the peak trajectories obtained in Figure 4 can be fit into the power law
X(t; D) = A(D)tP(D) using least squares; the resulting values for A(D) and P(D) are given in Table 1. The
corresponding peak velocity estimates V(t; D) = A(D)P(D)tP(D)−1 follow therefrom.
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Figure 2. Dynamics of the SIR model (1.1): wave shapes of I, S and R at t = 0, 3, 6, 9, 12.

Figure 3. Influence of the diffusion coefficient on the infection wave dynamics: D = 10−3 (left), D = 10−5

(right).

3.2. Symmetries and self-similar infection waves

We now calculate point symmetries of the PDE system (1.1) in order to seek physically meaningful
symmetry-invariant solutions.1

In the general case, the PDE system (1.1) admits the following point symmetry generators:

X1 = ∂

∂x
, X2 = ∂

∂t
, X3 = cos

(√
βx√
a

)
e−γ t ∂

∂I
, X4 = sin

(√
βx√
a

)
e−γ t ∂

∂I
. (3.2)

1See, e.g., Ref. [19] and references therein for details.
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Table 1. Estimates A(D) and P(D) for the infection peak
trajectories fit into X(t; D) = A(D)tP(D) for different D

Diffusion coefficient D P(D) A(D)
0.01 1.9330 0.04060
10−3 1.2531 0.0501
10−4 0.8624 0.0635
10−5 0.6437 0.0843

Figure 4. The I-peak dynamics in the SIR model (1.1) and its variation with D.

Here X1 and X2 correspond to space and time translations, and X3 and X4 are interesting symmetries that
add a time-decaying, spatially oscillatory part to any solution of (1.1) (here a = Dβ). For example, the
global transformation corresponding to X3 is given by

x∗ = x, t∗ = t, S∗(x∗, t∗) = S(x, t), I∗(x∗, t∗) = I(x, t) + C

(
cos

(√
βx√
a

)
e−γ t

)
, (3.3)

where C is an arbitrary constant. In particular, if S(x, t) and I(x, t) are parts of any solution of the system
of PDEs (1.1), then S∗(x, t) and I∗(x, t) represent the corresponding components of a new solution.

The limited set of symmetries full PDE system (1.1) does not include scalings. However, it is easy to
see that a scaling-invariant version of (1.1) can be obtained in a certain limit. Indeed, consider a special
class of models where γ , β 
 1 while Dβ = a ∼ 1; it is given by a coupled PDE system2

St = −aS(x, t)Ixx(x, t),

It = aS(x, t)Ixx(x, t)
(3.4)

The dynamics of R still follows the third equation of (1.1) but is decoupled from the two PDEs (3.4)
and may be omitted. The system (3.4) may be naturally considered in the domain x, t > 0, with certain
initial and boundary conditions

I(x, t = 0) = I0(x), S(x, t = 0) = N − I0(x), I(x = 0, t) = A, I(x → ∞, t) = B, (3.5)

2A similar kind of re-scaling was used in Ref. [17], where shock waves for the chemotaxis model were obtained.
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Figure 5. A self-similar solution of (3.4) modelling an expanding infection wave in half-space.

where the total population N assumed constant for the moment. The PDE system (3.4) admits six-point
symmetries with generators

X1 = ∂

∂I
, X2 = ∂

∂x
, X3 = ∂

∂t
,

X4 = x
∂

∂I
, X5 = 2t

∂

∂t
+ x

∂

∂x
, X6 = I

∂

∂I
+ S

∂

∂S
− t

∂

∂t
.

(3.6)

One can obtain exact self-similar solutions upon reduction of the PDE system (3.4) with respect to the
scaling symmetry X5. Constructing and solving the characteristic equation, we get

I(x, t) = f (z), S(x, t) = g(z), (3.7)

where f and g are so far unknown functions of the invariant z = x/
√

t. It is easy to see that the initial
and boundary conditions (3.5) can be accommodated by the invariant ansatz (3.7):

f (0) = I(x = 0, t) = A, f (z → ∞) = I(x, t = 0) = I(x → ∞, t) = B, (3.8)

where A and B are arbitrary non-negative constants. The substitution of (3.7) into the PDEs (3.4)
naturally yields g(z) = const − f (z) = N − f (z) and a single second-order ODE for f (z) given by

2a(N − f )f ′′ + zf ′ = 0, (3.9)

with the boundary conditions f (0) = A, f (∞) = B, or alternatively, initial conditions f (0) = A, f ′(0) =
h(A, B), where h is chosen so that f satisfies f (∞) = B.

A sample numerical solution of the ODE (3.9) corresponding to N = 1, A = 0.5 and B = 0 has f ′(0) =
−1. The dynamics of the infected and susceptible populations I(x, t) = f (x/

√
t), S(x, t) = g(x/

√
t) is

shown in Figure 5, where the infected population expands across the spatial domain, monotonously
increasing at every spatial location. The boundary condition corresponds to the infection source at the
origin.

3.3. Buffer zones

An important feature of the SIR PDE model with non-standard diffusion (1.1) is the existence of situ-
ations that prevent the transmission of infections within a spatial buffer zone, a region that consistently
remains uninfected and exhibits a natural resistance to the disease.

For small values of the diffusion coefficient, the susceptible population follows St ∼ −βSI and there-
fore is a monotone decreasing function: for an initial condition S(x, 0) = S0(x), one has S(x, t) ≤ S0(x).
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Figure 6. I(x, t) in a buffer zone (between the red lines).

Figure 7. I(x, t), S(x, t) and R(x, t) in a buffer zone.

The dynamics of the infected population is approximately governed by the ODE
It

I
� βS − γ � βS0 − γ .

The function I(x, t) ∼ I0(x) exp ((βS0 − γ )t) therefore decreases approximately exponentially when
βS0 − γ < 0. Note that the parameter R0(x) = βS0/γ is the basic dimensionless reproduction number.
It is defined as the expected number of secondary cases produced by a single (typical) infection in a
completely susceptible population at any x in spatial domain. The condition R0(x) < 1 thus corresponds
to local exponential decay of I.

An example of a buffer zone is given in Figures 6, 7 where x ∈ [0, 1.5], D = 10−5, the initial infected
population is concentrated around the origin, I(x, 0) = exp (−100x2), the susceptible population is small
around x = 0.5, S(x, 0) = 1 − exp (−100(x − 0.5)2) and homogeneous Neumann boundary conditions
are imposed. With β = 1 and γ = 0.4, the initial reproduction number is negative in the neighbourhood
of x = 0.5. It is observed that the infection wave re-emerges on the other side of the buffer zone, starting to
grow substantially from the spatial points around x ∼ 0.7 where the susceptible population is sufficient.
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4. Spatio-temporal SIR model with vital dynamics

In the case of vital dynamics being present, in the form of logistic growth for the susceptible population,
constant natural mortality rate μ for all compartments, a non-zero recovery rate and an extra death rate
for infected individuals, the corresponding model is given by (1.2). In one spatial dimension, the PDE
system is given by

St = −DβSIxx − βSI + rS − μS − r

K
S2,

It = DβSIxx + βSI − mI,

Rt = γ I − μR.

(4.1)

This model has several important characteristic features related specifically to both the non-standard
diffusion operator structure and the presence of vital dynamics. Similar effects in two spatial dimensions
are discussed in Section 5.

4.1. Quasi-periodic infection waves, infection delays and buffer zones

For an interval x ∈ [−L, L] ⊆R, consider an initial population of infected individuals localised about
x = 0. As before, the system following (4.1) demonstrates disintegration of the peak in the form of
waves travelling to the left and to the right (Section 3.1), the key difference, however, is that for r > μ,
the S-group is not aged or exposed to a high-risk environment, the population of susceptible individuals
experiences initially exponential growth. The susceptible population can re-grow in the neighbourhood
of x = 0 and cause a subsequent infection wave. A numerical solution for a sample parameter set is
shown in Figures 8 and 9. Figure 8 depicts the dynamics of (4.1) within a 1-D spatial domain over an
extended time period. In this representation, infection originates from x = 0 and gradually propagates
both to the left and right sides over time. As infection spreads, susceptible individuals are converted into
infected ones. For instance, at x = 0.5, where the number of infected individuals was nearly zero at t = 0,
the susceptible population increases as long as infection has not reached that location. However, once the
infection reaches that point, the density of susceptible individuals decreases. This process repeats over
time as the population of susceptible individuals oscillates. Figure 9 provides a visual representation
of the spread of infected individuals across the interval −1 < x < 1 starting from x = 0. This graph
illustrates the recurring cycle of infection spreading outwards from its origin.

It is easy to observe that when the initial susceptible population is not large enough to sustain the
infection growth, there may be a waiting period for the infection to start propagating, and the duration
of the delay is dependent on the initial value of S0. An illustration is provided in Figure 10 where all
parameters are the same as in Figure 8 except for different S0 values of 1, 0.1, 0.01 and 0.001.

The PDE model with vital dynamics (4.1) can also exhibit the buffer zone behaviour similar to the
original model (1.1). Buffer zones occur in domains where, assuming small diffusion effects, the local
reproduction number R = βS/m satisfies R < 1 causing the decay of the infected population. A sample
situation of that kind is illustrated in Figure 11. The infection waves originating from x = 0 are initially
blocked by the buffer zone located at x = 0.5, but subsequently re-emerge beyond it. In this computation,
0 ≤ x ≤ 1.5, D = 10−5, β = 1, γ = 0.4, μ = 0.04, ω = 0.1, K = 4, r = 0.3, I0 = exp (−1000·x2), S0 = 1 −
exp(−100·(x − 0.5)2), R0 = 0.

4.2. Quasiperiodicity in the SIR model with vital dynamics

We are now interested in investigating close-to-equilibrium states within the framework of the model
(4.1). We consider the first two equations of the system, since the class R is decoupled and does not
influence the dynamics of the epidemic. In the limit D → 0, the model (4.1) with m = μ + γ + ω (2.2)
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Figure 8. Dynamics of the three compartments in model (4.1) with D = 10−5, β = 1, γ = 0.4, μ = 0.1,
m = 0.9, K = 4, r = 0.3, I0 = exp (−1000 · x2), S0 = 1, R0 = 0.

Figure 9. Left: the dynamics of the infected population waves. Right: I, S and R compartments at
x = 1/9.

becomes an ODE system

St = −βSI + rS − μS − r

K
S2,

It = βSI − mI,
(4.2)

and the pairs (Itriv, Striv) = (0, 0), (I1, S1) = (0, K(r − μ)/r), and

Ie = 1

β

(
r − μ − rm

Kβ

)
, Se = m

β
(4.3)

represent equilibrium states of the system. The Jacobian matrix of the equilibrium (4.3) is given by

J(I = Ie, S = Se) =
⎡
⎢⎣

− rm

Kβ
−m

r − μ − rm

βK
0

⎤
⎥⎦.
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Figure 10. Waiting period for infection propagation: the effect of the initial susceptible population
size S0.

Figure 11. Dynamics of the three compartments in model (4.1) with vital dynamics: the case of a buffer
zone.

The trace of J is negative and the determinant is positive, which indicates the linear stability∗∗∗???∗∗∗
of the equilibrium point (Ie, Se). Moreover, when rm/(Kβ) = 0, it corresponds to a centre-type steady
state. Considering a scenario where K � 1, and rm/(Kβ) 
 1 becomes negligible and examining the
eigenvalues of the matrix

J

(
Ie = 1

β
(r − μ) ≥ 0, Se = m

β

)
=

[
0 −m

r − μ 0

]
,

one has λ1,2 = ±i
√

m(r − μ). These imaginary eigenvalues do not represent hyperbolic equilibrium
points since their real parts are zero, and hence the Hartman–Grobman theorem does not apply to this
non-trivial steady state.
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Figure 12. Left: solution of the PDE (4.1) with (4.4), (4.5) and K = 5. Right: the phase plane trajec-
tory of the corresponding system (4.2) for K = (1, 5, 104), parameters (4.6), and initial conditions (4.5)
corresponding to K = 104. Asterisks denote the level curve of the approximately conserved integral (4.6).

We now numerically investigate the behaviour of the non-linear PDE system (4.1) in a one-
dimensional spatial domain, focusing on the conditions of large K, near the non-trivial steady state.
For the initial condition, it is imperative that the system is initialised in close proximity to its spatially
constant non-trivial steady state S = Se, I = Ie (4.3); it follows that for homogeneous Neumann boundary
conditions, the dynamics is determined by the ODE (4.2). As a particular example, consider the model
(4.1) in a 1D spatial domain [0, 1.5] with the parameter values

γ = 0.4, β = 1, μ = ω = 0, r = 0.4, (4.4)

and the initial conditions

I0 = Ie + 0.3, S0 = Se + 0.3, R0 = 0. (4.5)

Figure 12 (left) corresponds to K = 5 and illustrates spatially homogeneous population distribution
decaying in time due to the logistic term. Figure 12 (right) shows the (I, S) phase plane of the system for
the three values of the logistic coefficient K = (1, 5, 104). For large K, the system dynamics approaches
the Hamiltonian ODE given by (4.2) with K → ∞ that has closed phase trajectory that conserves the
Hamiltonian

H(S, I) = βI − (r − μ) ln I + βS − m ln S = const (4.6)

(a well-known exact integral for the Lotka–Volterra-type systems). Indeed, for S = ln S and I = ln I, the
corresponding ODE system

St = −βeI + r − μ,

It = βeS − m
(4.7)

satisfies the Hamiltonian equations

dS

dt
= −HI ,

dI

dt
= HS,

for

H(S, I) = βeI − (r − μ)I + βeS − mS = const,

the latter being equivalent to (4.6).
As illustrated in Figure 12 (right), for K ∼ 1, the logistic term leads to the system with a spiral sink

at the equilibrium Ie(K), Se(K) (4.3), whereas for K � 1, the trajectory approaches the curve (4.6).
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Figure 13. ‘Dark spike’ formation in the PDE system (4.1) with (4.8).

4.3. Dark spike formation and quasi-equilibria

An interesting feature of quasi-equilibria that emerge for smaller values of the carrying capacity K and
larger diffusion coefficients D is the formation of ‘dark spikes’ that effectively correspond to buffer
zones, or low-value ‘valleys’ in the susceptible population. As a specific example, let (Figure’s 13, 14)

D = 0.01, β = 1, γ = 0.4, μ = 0.1, K = 4, r = 0.4, ω = 0.2, (4.8a)

with periodic initial conditions related to equilibrium values (4.3) as follows:

I0 = Ie, S0 = Se(1 + A cos(πnx/L)), R0 = 0, (4.8b)

where x ∈ [0, L], L = 1.5, A = 0.5 is the harmonic perturbation amplitude, and n = 6 is the mode number.
Figure 15 illustrates the behaviour of the full PDE system (4.1) for all points x in the spatial domain.

In particular, the formation of buffer zones in the form of ’dark spikes’ is observed in S. It has been
shown that this effect is not related to numerical error as the same qualitative and quantitative behaviour
is observed on different spatial and temporal meshes. A spatial cross-section at t = 55 is shown in
Figure 14. Interestingly, lower values of recovery rate γ cause further local instability. For example,
choosing γ = 0.1 and other parameters as in (4.8a), one gets a set of forming, and then eventually
vanishing, double-peak dark spikes (Figure).

The formation of quasi-equilibrium states, in particular, dark spike formation, is related to solution
forms of the time-independent version of the system (4.1) given by

DβS̃Ĩ ′ ′ = −βS̃Ĩ + (r − μ)S̃ − r

K
S̃2,

−DβS̃Ĩ ′ ′ = βS̃Ĩ − mĨ,

γ Ĩ = μR̃.

(4.9)

where the x-dependent equilibrium states are denoted by S̃ = S̃(x), Ĩ = Ĩ(x) and Ĩ = Ĩ(x), and primes
denote x-derivatives. Adding the first two equations, one has mĨ = (r − μ)S − (r/K)S2, and thus the
equilibrium states I(x) and R(x) are expressed through S(x):

Ĩ = 1

m

(
(r − μ)S̃ − r

K
S̃2

)
, R̃ = γ

μ
Ĩ, (4.10)
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Figure 14. Cross-section of Figure 15 at t = 55.

Figure 15. Double ’dark spikes’ in case of a lower recovery rate γ = 0.1.

As a result, S̃ satisfies the ODE obtained by substituting (4.10) into the first equation of (4.9):

Dβ(K(μ − r) + 2rS̃)S̃′ ′ + 2Dβr(S̃′)2 + βrS̃2 + (βK(μ − r) − mr)S̃ − Km(μ − r) = 0. (4.11)

Solutions S̃(x) of the differential equation (4.11) are in general not expressed in terms of elementary
functions. It can be shown numerically that the ODE (4.11) admits non-harmonic periodic solutions
that can satisfy homogeneous Neumann or periodic boundary conditions (Figure 16). Some of such
solutions yield positive values of I(x), while others may yield negative values.

The emergence of ‘dark spikes’ is related to the linear instability of the non-trivial steady state (4.3)
of the PDE system (4.1). Indeed, consider its linear harmonic perturbation

I = Ie + εI1e
i(kx−ωt), S = Se + εS1ei(kx−ωt), (4.12)
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Figure 16. Physical (non-negative Ĩ, S̃) and non-physical (negative Ĩ) solutions of the time-independent
ODEs (4.9).

ε 
 1. The substitution of (4.12) into (4.1) and retention of O(ε) terms only yield the amplitude
relationship

I1 = −
(

μ − r

Dmk2
+ r

KβDk2

)
S1

and the dispersion relation

ω = − i

KβDk2
Q, Q = (Kβ(μ − r) + 2mr)Dk2 − (Kβ(mu − r) + mr). (4.13)

In particular, ω is the imaginary for all k, which yields decay of the corresponding perturbation mode
(4.12) when Q > 0 and exponential growth when Q < 0. For example, when the general mortality
exceeds the recovery rate, μ > r, the two cases correspond to k2 > k2

0 and k2 < k2
0, respectively, with

k2
0 = Kβ(μ − r) + mr

Kβ(μ − r) + 2mr
.

Consequently, modes of larger wavelengths λ > λ0 = 2π/k0 are unstable. By contrast, in the example
(4.8a) where dark spikes arise, one has μ < r, and the quantity Q in (4.13) has the form Q = −0.0064k2 +
0.92, which is negative, and corresponding modes are unstable, for k2 > 143.75. The formation of dark
spikes can thus be attributed to an attempted linear blowup of small-wavelength modes, compensated
by non-linear effects.

5. The SIR model with cross-diffusion in two dimensions

The two-dimensional PDE model with cross-diffusion (1.2) is capable of producing types of behaviour
similar to those for the one-dimensional model. We first illustrate the existence of buffer zones. As an
example, consider a spatial domain [0, 1.5] × [0, 1.5], and the PDE model (2.1) with Neumann boundary
conditions and the following parameter values and initial conditions:

D = 10−5, γ = 0.4, β = 1,

I(x, y, 0) = exp
(−10

(
x2 + y2

))
,

S(x, y, 0) = 1 − exp
(−10

(
(x − 0.5)2 + (y − 0.5)2

))
,

R(x, y, 0) = 0, (5.1)
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Figure 17. A buffer zone for the two-dimensional PDE model (2.1) with cross-diffusion and no vital
dynamics.

such that the low susceptible density region is centred at M = (0.5, 0.5). In this case, a circular region
around M is avoided by the infection for all times (Figure 17).

For the two-dimensional model (1.2) with vital dynamics, similarly to the 1D case (Section 4.1),
quasi-periodic infection waves arise. For an axially symmetric case, due to the autonomous nature of the
PDEs (1.2), independence of the polar angle can be imposed, and the system can be reduced to a 1 + 1-
dimensional model where S, I and R are functions of (r, t), and r is the cylindrical radius. In this case, the
Laplacian in (1.2) is given by � = (1/r)∂/∂r(r∂/∂r(·)). The same phenomenon of quasi-periodic wave
production, however, also arises in the purely two-dimensional system. As an illustration, consider a
spatial domain V = [0, L] × [0, L], parameters L = 3, D = 0.10−5, γ = 0.4, β = 1, μ = 0.1, m = 0.9, K =
4 and r = 0.3. For the initial condition S0 = 1, I0 = exp (−100(x − L/2)2 − 200(y − L/2)2) and R0 = 0.
The system dynamics is shown in Figure 18 where the formation of elliptic rings of decreasing amplitude
originating from the initial infected population spike at the centre of the domain is shown. The behaviour
is parallel to that shown in Figure 8.

6. Discussion

In this work, our primary focus was the study of the spatio-temporal SIR model (1.1) with spatial cross-
diffusion terms, derived in one dimension in Ref. [10]. The non-standard diffusion term is similar to
that of the Keller–Siegel chemotaxis model (1.3); in the context of infectious disease modeling, it cor-
responds to infection propagation in the case of orderly commute of individuals moving to specified
locations (“work”) and returning to the original location (“home”). Extensions of this model proposed
in this work include the derivation of the PDE system in two spatial dimensions and the study of effects
of vital dynamics involving non-zero removal rates and logistic growth of the susceptible population
(Section 2). In particular, the two-dimensional extension offers a natural setup to model a realistic pop-
ulation, whereas the logistic term is common in biological modelling where it is used, for example, to
mimic internal competition for finite resources.

In Section 3, it is demonstrated that the PDE model (1.1), while being essentially non-hyperbolic,
supports travelling waves of variable shape. Depending on system parameters, in particular, the diffusion
coefficient D, these waves can accelerate or decelerate (Section 3).

https://doi.org/10.1017/S095679252400086X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400086X


European Journal of Applied Mathematics 19

Figure 18. Generation of quasi-periodic waves in the two-dimensional SIR model (1.2) with cross-dif-
fusion and vital dynamics.

In Section 3.2, Lie point symmetry analysis of the PDE system (1.1) is performed; it reveals unusual
symmetries generated by X3 and X4 (3.2) that allow to add, to any solution of (1.1), a special Fourier
mode-type time-decaying term sin

(√
βx/

√
a
)

e−γ t or cos
(√

βx/
√

a
)

e−γ t. This mode does not corre-
spond to the separation of variables (the PDEs (1.1) are not separable) but is the only term of this kind,
depending on the system parameters. It allows to generate new solutions of the PDE system (1.1) from
known ones according to the transformation (3.3). Two additional symmetries X5 and X6 are shown to
arise for the special case when the model has a reduced form (3.4). In that situation, the use of these
scaling symmetries allows to construct self-similar solutions arising from a single ODE (3.9) and satis-
fying physical initial and boundary conditions on the half-line x ≥ 0. The resulting solutions correspond
to infection waves propagating in the domain x > 0 in the presence of an infection source located at the
origin.

Section 3.3 illustrates, for the original one-dimensional PDE model (1.1) without vital dynamics,
the existence of “buffer zones” protected from the infection by low population density. The existence
of the buffer zone postpones the infection progression in the domain behind it, effectively working as
firebreaks that are used to protect forests from fire propagation.

Special properties of the model that, in addition to cross-diffusion, involves vital dynamics (removal
and logistic growth) terms, given by (4.1), are considered in Section 4. It is demonstrated that a single ini-
tial infection spike in an otherwise homogeneous population can cause the appearance of quasi-periodic
infection waves that originate from the same location. The initial size of the susceptible compartment
controls the time of the emergence of the waves. Buffer zones can also be present, resulting in a substan-
tial delay in the propagation of infection waves beyond the buffer zone. Further, in case of homogeneous
initial conditions, it is observed that the model supports spiral sink equilibria dependent on logistic term
parameters. In the case of large carrying capacity, the equilibrium trajectory naturally approaches the
corresponding level curve of the Lotka–Volterra-type Hamiltonian conserved integral.

Section 4.3 is devoted to an unusual feature of the cross-diffusion model with vital dynamics, namely,
local instability of perturbations of a homogeneous equilibrium state and ;dark spike’ formation in the
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susceptible compartment (Figure 15). In particular, dark spikes form in the zones where the suscepti-
ble density is set to be initially lower; those areas quickly become narrower as time goes on. There are
similar but wider and more transient gaps in recovered and infected populations in the same locations;
this corresponds to overall low population density there. Eventually, as the births in the S-compartment
build up the susceptible population, the system tends to the infection-free equilibrium. The dark spikes
are essentially self-formed buffer zones. Mathematically, their emergence is related to linear instabil-
ity of high-wavelength perturbations of the non-trivial steady state (4.3) of the PDE system (4.1). We
also note that for the ODE (4.11) describing time-independent states (4.9) of the system (4.1), numer-
ical calculations indicate the existence of physically relevant, positive definite non-harmonic periodic
solutions.

In Section 5, it is demonstrated that, in a manner parallel to the one-dimensional case, the two-
dimensional PDE model (2.1) with cross-diffusion also features buffer zones protected from infection,
and that the full system (1.2) with vital dynamics features the generation of self-induced quasiperiodic
infection waves propagating across the population (Figure 18; cf. Figure 8).

In future work dedicated to cross-diffusion models considered in this work, it is essential to further
explore essential features of the models, in particular, wave-type phenomena that arise for this set of non-
hyperbolic diffusion-type non-linear autonomous PDEs. It is of interest to analyse the wave propagation
speeds and wave shapes in one-dimensional dynamics; derive, perhaps in a certain asymptotic limit,
the time period of wave generation in models with vital dynamics; analyse types of solutions admitted
by the time-independent non-linear ODEs (4.9), (4.11); provide a better biological interpretation of
the formation of transient dark spikes; and further improve the PDE system from the point of view of
biological modelling.
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