ON BANACH SPACES WITH MAZUR’S PROPERTY
by DENNY H. LEUNG

(Received 10 July, 1989)

1. Introduction. A Banach space E is said to have Mazur’s property if every weak*
sequentially continuous functional in E” is weak* continuous, i.e. belongs to E. Such
spaces were investigated in [5] and [9] where they were called d-complete and uB-spaces
respectively. The class of Banach spaces with Mazur’s property includes the WCG spaces
and, more generally, the Banach spaces with weak™* angelic dual balls [4, p. 564]. Also, it
is easy to see that Mazur’s property is inherited by closed subspaces. The main goal of this
paper is to present generalizations of some resuits of [S] concerning the stability of
Mazur’s property with respect to forming some tensor products of Banach spaces. In
particular, we show in Sections 2 and 3 that the spaces E ®, F and L”(u, E) inherit
Mazur’s property from E and F under some conditions. In Section 4, we will also show
the stability of Mazur’s property under the formation of Schauder decompositions and
some unconditional sums of Banach spaces.

We use standard Banach space terminology as found, e.g., in [6]. Throughout, we
consider real Banach spaces E, F, ..., with duals E’, F',. ... The closed unit ball of E is
denoted by Ug. The weak* topology on E' is the topology o(E’, E). The e-tensor
product of the spaces E and F is denoted by E &, F. For a measure space (Q, 2, u) and
l=sp=ow, LP(Q,3, u; E) denotes the space of Bochner p-integrable (strongly measur-
able and essentially bounded if p = ©) E-valued functions. We will also write L”(u, E) for
short, and simply L?(u) if E = R. Finally, the cardinality of a set I is denoted by card(I).

2. Mazur’s property and the e-tensor product. In [5, Proposition 5.1], it is shown
that E ®, F inherits Mazur’s property from E and F if we assume (among other
conditions) that Ug. or Ug. is weak™ sequentially compact. We generalize this result by
considering the following weakening of the condition of having a weak™ sequentially
compact dual ball. Recall that a subset A of a Banach space E is limited in E if every
weak* null sequence in £’ converges uniformly to 0 on A.

DEerINITION 2.1. A Banach space E has the Gelfand—Phillips property (E € (GP)) if
every limited set in E is relatively compact.

It is known that E € (GP) if Ug. contains a weak™ sequentially precompact norming
subset, but the converse is false; see, e.g., [8]. For more on the Gelfand—Phillips
property, we refer to [3] and [8]. In the following theorem, we consider the space
K,.(E', F) of compact weak*-weakly continuous operators from E’ into F. Of course
E ®, F embeds into K,,.(E’, F) via the canonical injection x ® y — (x'+— (x,x')y). The
two spaces coincide if either E or F has the approximation property.

THEOREM 2.2. Let E and F have Mazur’s property. Then K,,-(E', F) have Mazur’s
property provided the following conditions hold:

(a) either E € (GP) or F € (GP); and

(b) the algebraic tensor product E' ® F' is weak* sequentially dense in (K,,-(E', F))'.

Proof. Without loss of generality, assume that F € (GP). (Note that K,,.(E', F) is
isometric to K,,-(F', E) by the map T—T'.) Let ® e(K,.(E’, F))" be weak* sequen-
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tially continuous. Define T:E'—F" by (Tx',y’) ={(x'®y’, ®) for all x' e E’ and
y' € F'. Since @ is weak* sequentially continuous and E and F both have Mazur’s
property, it is easy to show that T is F-valued and weak*-weakly continuous. We claim
that TUg. is limited in F. Let (y,) be a weak* null sequence in F' and let (x,) < Ug., it
suffices to show that (Tx,,y,)—0. But this is true since (x,®y,) is a weak* null
sequence in (K,-(E’,F))', ® is weak* sequentially continuous, and by definition
(Tx,, y,) = (x,®y,, ®). Thus TU, is limited in F and hence relatively compact since
F € (GP). Therefore T € K,,.(E’, F). Obviously, T and ¢ agree on E' ® F’ and both are
weak™ sequentially continuous. We can thus conclude from part (b) of the hypothesis that
T=0.

3. Mazur’s property in Bochner L” spaces. Throughout this section, let (Q,Z, u)
be a probability space. We will investigate the inheritance of Mazur’s property from E to
LP(u,E). It is well known for g=p/(p—1), L u,E’) embeds canonically into
L?(u, E)'. The following result generalizes Theorem 6.1 in [5].

THEOREM 3.1. Let E be a Banach space with Mazur’s property and let 1 <p <o, If
Li(u, E') is weak* sequentially dense in LF(u,E)', in particular, if (Q,Z,u) is a
separable measure space, then LP(u, E) has Mazur’s property.

Proof. Let ® € LP(u, E)" be weak* sequentially continuous. For x' e E’ and A€ £,
define v(A) by (x', v(A)) = (x'xa, ®). Since ® is weak* sequentially continuous and E
has Mazur’s property, it is readily verified that v is a finitely additive measure with values
in E. By the Orlicz—Pettis theorem one shows that v is o-additive. Clearly v is absolutely
u-continuous. The main step in the proof is the production of a Radon-Nikodym
derivative of v with respect to u. By Proposition 2.4 in [1], it suffices to show that for
every increasing sequence (7,) of finite Z-partitions of Q and, for every T:L'(u, E)— ¢,
the set

- YA
K=fhoi= 3 LG ninen]

has a relatively weakly compact image T(K) in c,.

Fix (,) and T as above. By restriction, we may consider T as a map from L?(u, E)
to ¢o. There exists a weak* null sequence (F,) in L?(u, E)' such that T(h) = ((h, E,))m
for all helLf(u,E). Recall that we may identify each F, with a vector measure
F,:Z—FE' [2,p.115]). Let E,:L?(u, E)— L?(u, E) denote the conditional expectation
operator with respect to &, [2, p. 123]. Let (n,,) be an increasing sequence. Since (E,) is
strongly convergent on L?(u, E), it is clear that E, F, — 0 weak*. Hence

. . v(A)
lim<{h, , F, =llm< ,F,,,>
I (M E) n Agn,,, u(A) Xa

=lim 3 (v(A), F(A))/u(A)

A €xp,,

= lim > (E.(A)xa, ®)/u(A)  (by definition of v)

A €Ty,

=lim (E;, E,,, ®) =0,
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since ¢ is weak* sequentially continuous. From this it follows that (F,) converges
uniformly on K; hence T(K) is even relatively compact. Therefore, v has a Radon—
Nikodym derivative h with respect to u. It is clear that h € L”(u, E) and (h, f) = (f, ®)
for all f € L(u, E'). Now the last assumption in the theorem assures us that & = ®.

4. Schauder decompositions and sums of Banach spaces.

THEOREM 4.1. If a Banach space E has a Schauder decomposition E = i E,, where
each summand E, has Mazur’s property, then E has Mazur’s property. =l

Proof. Let x" € E" be weak* sequentially continuous. For all n,x]s, is a weak*
sequentially continuous functional in Ej, and hence is equal to some x(n) € E,,. It follows

n

easily from the weak* sequential continuity of x” that ¥, x(n)—x", o(E", E'), as m— o,
n=1

It remains to show that ¥ x(n) converges in E. Assume otherwise, then there are £ >0

% x(n)

n=p;

and sequences (p,), (g;) with p,=gq; <p;., for all i, such that > ¢ for all i.

qi qi
Hence there is a normalized sequence (x;) with x; € ¥ E, such that < b x(n),x,f>> €

for every i. On the other hand, P b
qi
(3 xm),xi) = ¢t ) =0
n=p;i
since (x;) is weak™ null and x" is weak* sequentially continuous. This contradiction proves
the claim.

The result above may be extended to some unconditional sums. A cardinal number
m is a real-valued measurable cardinal if there is a real-valued measure defined on all
subsets of a set of cardinality m for which points have measure 0 [4, p. 560]. The following
is a generalization of Theorem 3.1 in [5].

THEOREM 4.2. If E admits an unconditional Schauder decomposition E= Y, E,,
vel

where each E, has Mazur’s property and card(T) is not real-valued measurable, then E has
Mazur’s property.

Proof. Let x"e E" be weak* sequentially continuous. As in the proof of Theorem
4.1, one verifies that x|g; € E, for all y. Let x(y) = x{g, for all y e T. We need to show that
(a) I x(y) converges in E, and (b) x" = ¥ x(y).

(a) The proof of this part is similar to the proof of Theorem 4.1.

(b) Let x =¥ x(y) and consider y"=x"—x e E". Clearly y” is weak* sequentially
continuous. Fix x' € E’, we may write x' =w* — ¥ x'(y), where x'(y) € E,, for all y. For

AcT, let u(A)= <w* - X x'(y),y">. We claim that p is o-additive. Indeed, if (A4, is a
yeA

sequence of subsets of I' which decreases to ¢, then w*— ¥ x'(y)— 0 weak*. Thus
YEA,

u(A,)— 0 due to the weak™* sequential continuity of y”. Clearly, u vanishes on each point
of I. Therefore, we must have u =0 by assumption. In particular, {(x’,y") = u(I') =0.
Since x' is arbitrary, we must have y"=0.
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ReMARK. The measurability assumption on T cannot be dispensed with as ¢'(T') fails
Mazur’s property if card(T') is real-valued measurable [4, Theorem 5.10].

CoroLLARY 4.3. Let E be a Banach lattice with order continuous norm. If E contains
a maximal orthogonal system (x,),r, where card(I') is not real-valued measurable, then E
has Mazur’s property.

Proof. We refer to [7] for the standard terminology and facts concerning Banach
lattices. For each vy, let E, denote the (projection) band generated by x,. The space E, is
an order continuous Banach lattice with a weak order unit x,. Thus E, is WCG. (In fact,
the order interval [—|x, |, [x,|] is a weakly compact generating set.) Hence E, has Mazur’s
property. Using the order continuity of the norm, we see that E is the unconditional
direct sum of (E,),er. The conclusion now follows from Theorem 4.2.
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