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EXISTENCE THEORY FOR NONRESONANT SINGULAR
BOUNDARY VALUE PROBLEMS

by DONAL O'REGAN

(Received 22nd December 1993)

We present some existence results for the "nonresonant" singular boundary value problem j^(py')' + ny=f(t,y)
a.e. on [0,1] with lim,_0.p(t)y'(t) = y{\) = 0. Here \i is such that j^,pu')' + tiu = O a.e. on [0,1] with
lim,_0. p(/)u'(t) = u(l) = O has only the trivial solution.

1991 Mathematics subject classification: 34B15.

1. Introduction

This paper establishes existence results for the "nonresonant" singular boundary value
problem

[ (t)Y + w(t)=fit, y(t)) a.e. on [0,1]

)=0 (1.1)

b(i)=o

where n is such that

f^(p/) ' + wM = 0 a.e. on [0,1]
\ Hm^o + p(tM0 = 0 (1.2)

has only the trivial solution. Throughout the paper peC[0,1] n C^O, 1) together with
p>0 on (0,1); also q is measurable with q>0 a.e. on [0,1] and ^p(x)q(x)dx<co.

Remarks, (i). Throughout the condition y(l) = 0 could be replaced by the more
general condition ayOJ + ftlim,.,!- p(t)y'(t)=O,a>Q,b^O.

(ii). We do not assume J i ^

In addition / : [0,1] x R-»R will be a Caratheodory function. By this we mean:
(i). t-*f(t,y) is measurable for all yeR

(ii). y-*f{t,y) is a continuous for a.e. te [0,1].
For notional purposes let w be a weight function. By Lr

w[0, l ] , r^ 1 we mean the space
of functions u such that Jow(t)|u(t)|r<fc<oo. In particular Li[0,1] denotes the space of
functions u such that jlw(t)\u(t)\2dt<oo; also for u, yeL^[0,l] define <u,u> =
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432 DONAL O'REGAN

$ow{t)u(t)v(t)dt. Let AC[0,1] be the space of functions which are absolutely continuous
on [0,1].

This paper will be divided into three main sections. Section 2 discusses the linear
problem i.e. (1.1) with / = 0. In Section 3 fixed point methods (in particular a nonlinear
alternative of Leray-Schauder type) is used to obtain an existence principle. The final
section establishes some existence results for (1.1); these results extend and complement
the theory in [4, 6, 21].

Finally we remark here that problems of type (1.1) occur in many applications in the
physical sciences, for example in radially symmetric nonlinear diffusion [20, 22] in the
n-dimensional sphere we have p(t) = t"~l; these problems involve a homogeneous
Neumann condition at zero i.e. lim,_0+ t"'1y'(t) — O. Another important example is the
Poisson-Boltzmann equation

which occurs in the theory of thermal explosions [3] and in the theory of electrohydro-
dynamics [11]. The results related to (1.3) in the literature [4] usually consider the
situation when inf§£, sup§£ are bounded and satisfy a "nonresonant" condition; here the
infimum and supremum are taken over {(t,y):O^t^l, — oo<y<oo}. In this paper we
improve the above existence result; in fact in Our theory the existence of §£ is not
assumed.

2. Linear problem

Theorem 2.1. Suppose

and

are satisfied.
(i) Then

peC[0,1] n C^O, 1) with p>0 on (0,1)

qeLl
p[0,1] with q>0 a.e. on [0,1]

1 j /s \ l /a

f 1 f p(x)q(x) dx) ds<co for some constant a > 1
o P(s) \o J

= 0 a.e.on[0,l]

(2.1)

(2.2)

(2.3)

\ lim,.0 (2.4)

has a solution yleC[0,1] n C'(0,1) with py\eAC[0,1]. (By a solution to (2.4) we mean a
function yeC[0,1] n C^O, 1), py'eAC[0,1] which satisfies the differential equation a.e. on
[0,1] and the stated conditions.)
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(ii) Then

= 0 a.e. on [0,1]

(2.5)

has a solution y2 e L'pq[0,1] with y2 e C(0,1] n C^O, 1) and py'2 e AC[0,1].

Proof, (i). Let C[0,1] denote the Banach space of continuous functions on [0,1]
endowed with the norm

|u|K= sup |e-**(I)u(£)| where R{t) = $p(x)q{x)dx
le[O,1] 0

and

Remark. Here /? = 3P=T ie. P and a are conjugate exponents.

Solving (2.4) is equivalent to finding yeC[0,1] which satisfies

' 1 5

y(t) = a0 - ix J — j p(x)q(x) y(x) dx ds.
o P(s) o

Define the operator N: C[0,1]->C[0,1] by
' 1 s

My(t) = a o - / i | —- jp(x)q(x)y(x)dxds.
o Pis) o

Now N is a contraction since

- t f | K s u p e j J
ie[0,1] 0 P(S) 0

- » U sup e
I6[0,1] 0

-Hxsu p e -^">J-1- lp(x)q(x)dx)
16[0.1] 0 PIS) \ o / \

|u-,U sup e-K^(
«e[0.1] 0\0
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434 DONAL O'REGAN

using Holder's integral inequality. The Banach contraction principle now establishes the
result.

(ii). Let L"pq[0,1] denote the Banach space of functions u, with \opq\u\'dt<co,
endowed with the norm

||«|l* = (f p(t)q{t)e-Kaw\u{t)tdtY* where Q(t) = \p(x)q(x)dx

and

Remarks, (i). Notice for example that Jl/2^f)<°o since

f A - f (foP(*)g(*W* 1 i 1 (\ V*

} } dS = } [I1/2 Pis) //2 P(s)(& Pix)qix) dx)1'* - (ft2 p(x)q(x) dx)1* J2 p(s) \i'

(ii). Notice (2.3) implies

\p(t)q{t)[\-=f-\dt<a3. (2.6)
o \ i P(s)J

To see this let

&) = J 7 T
, p{s)

and fix e,0<e<l. Interchange the order of integration and use Holder's inequality to
obtain

]p(t)q(t)g(t)S ^ A = J "7^ ]pii)qit)git)dt

Consequently

J •— I ^ = ( Jp(09(0{ I — 1 ^ 1 J — I j pityqit) dt I ds.
i Pity/ \c V' Pis)) I i Pis) \e I

We will show that
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y(t) = — j n f I p(x)q(x)y(x) dx ds (2.7)
\ p(s) "'•*i Pi*) s

has a solution y2 e L*pq [0,1]. Also we will show y2 e C(0,1] n C^O, 1) and py'2 E /4C[0,1]
and consequently y2 will be a solution of (2.5).

Define the operator: L'pq[0,1]->L£,[0,1] by

1 J

Remark. M is well defined because of (2.6) and

1 /I 1 1

fM(J
0 \l P

dtd\pq\y\dx) \P1\\~A dt
\0 / 0 \ ( P(S)J

for any yeLJ,[0,1].

Now M is a contraction since

(\ -\- \p(x)q(x)\u(x)-v(x)\dxds\dt
0 \i P(S) s J

J pqe-KQ{t)(\ pqe-KQ{x)"eKQMI*\u(x)-v(x)\dx\ -^-Xdt
0 \i r P(s)/
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The Banach contraction principle now establishes that (2.7) has a solution y2eLpq[0,1].
Also

P(t)y'2(t) = 1+ \i \ p(x)q(x)y2(x) dx
t

so py'2eAC[0,1] since y2€Lpq[0,1] implies pqy2eLl[0,1]. Thus y2 is a solution of (2.5).

•
Consider now

1
— (py)'+ W = hit) a.e. on TO, 11 (2.8)
pq

where (2.1), (2.2), (2.3) and

ZieZiJO, l];here/? = —— (2.9)
a— 1

hold.

Theorem 2.2. Suppose (2.1), (2.2), (2.3) and (2.9) are satisfied. In addition \i is such that
(1.2) has only the trivial solution. Then

a.e. on [0,1]

(2.10)

Ui)=o

exactly one solution y (note yeL'pq[0,1] with yeC(0,1] n C^O, 1) and py'eAC[0,1])

i

$G(t,s)q(s)h(s)ds (2.11)
o

vv/iere G(t, s) is the Green's function i.e.

'yi(s)y2(t)
W(s)

G(t,s)=*

= cop(s)y2(s)y1(t),O^s<l.

Here yt and y2 are as described in Theorem 2.1 and W(s) is the Wronksian of yx and y2

at s and notice p(s)W(s)=(l/co)#0 for se[0,1].
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Proof. This follows the standard construction of the Green's function; see [22, 24]
for example. We will just justify that p(s) W(s)#0 for se[0 ,1] . To see this all one needs
to show is that >>,(l)#0. If yi(l) = 0 then yt satisfies (1.2) and consequently yi=O. This
contradicts the fact that y(0) = a o # 0 . •

Remark. Notice y in (2.11) is in Lp,[0,1] since

and so

JP(t)q(t) JP(s)q(s)\yi(s)y2(t)h(s)\ ds ) dt < oo.
0 \0

3. Existence principle

We use a nonlinear alternative of Leray-Schauder type [9] to establish our existence
principle. By a map being compact we mean it is continuous with relatively compact
range. A map is completely continuous if it is continuous and the image of every
bounded set in the domain is contained in a compact set in the range.

Theorem 3.1. Assume U is a relatively open subset of a convex set K in a Banach
space E. Let N:U-*K be a compact map with OeU. Then either

(i) N has a fixed point in U; or
(ii) there is a uedU and a le(0,1) such that u = XNu.

Next we gather some well known results [12] from the theory of nonlinear integral
equations.

Theorem 3.2. Let a > l be a constant and / : [ 0 , l ]xR->R be a Caratheodory
function. Define the operator

Fy(t)=f(t,y(t))

and suppose F:Lx
pq[0,1]->L£,[0,1]; here / J=^r j . Then F is continuous and bounded.

Theorem 3.3. Consider the linear integral operator

Ay(t) = \p(s)q(s)k(t,s)y(s)ds
o

with
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1 i

Jp{t)q(t)$p(s)q(s)\k(t,s)\*dsdt< oo for some a > 1. (3.1)
o o

Then A : Lp
pq[0,1]->L£,[O, 1],/3 = ;T?T is completely continuous.

We next prove an existence principle for (1.1).

Theorem 3.4. Let f: [0,1] x R->R be a Caretheodory function and suppose (2.1), (2.2)
and (2.3) are satisfied. Also suppose

f(t,y(t))eL%[_0,^ whenever j ,eL«,[0,1]; here P = ^ . (3.2)
a— l

In addition /< is such that (1.2) has only the trivial solution. Now suppose there is a
constant Mo, independent of k, with

/or any solution y (here yeL"M[0,1] with yeC(0,1] n Cx(0,1) and py'eAC[0,1]) to

) «.c on [0,1]

(3.3)A

/or eac/i Ae(0,1). T/ien (1.1) nas at least one solution.

Proof. Solving (3.3)A is equivalent to finding yeLa
pq[0,1] which satisfies

y(t) = k \ p(s)q(s)k(t, s)f(s, y(s)) ds (3.4)
o

where

kit s) =

and yi,y2,c0 are described in Theorem 2.2. Define the operator N:Lpq[0, l]->Lp9[0,1]
by
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Remark. N is well defined since

and so

1 P(t)q(t) (\ p(s)q(s)\yi(s)y2(t)f(s,y(s))\ds\ dt < oo.
o \o /

Next define F:L°,[0,1]->L£,[0,1] by

= $p(s)q(s)k(t,s)y(s)ds.
o

Notice (3.2) and Theorem 3.2 implies F is bounded and continuous. A is completely
continuous by Theorem 3.3.

Remark. Notice jhp{t)q(t) Jop(s)q(s)\k(t,s)\"dsdt<oo since

0 \

and so

J P(t)q(t)(l p(s)q(s)\y2(s)yi(t)\°dsdt<oo.
o \<

Consequently N = AF:L"pq[0, l]-+Lp,[0,1] is completely continuous. Set

Then Theorem 3.1 implies that N has a fixed point i.e. (1.1) has a solution yeL"pq\0,1].
The fact that yeC(0,1] n C^O, 1) with p/e/lC[0,1] follows from (3.4) with A= 1. D

4. Existence theory

Theorem 4.1. Let / : [0,1] x R-»R fee a Caratheodory function and suppose (2.1), (2.2)
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and (2.3) are satisfied. In addition /z is such that (1.2) has only the trivial solution. Let
P = ~y. Now assume

u\) a.e. on [0,1] where <^,</>2eL *,[(),1]
and \j/: [0, oo)->[0, oo) is a continuous function

C there exists 6 0 = 0 ana" a continuous function 6: [0, oo)->[0, oo) with

I iloP(s)q(s)(f>i(s)^(\y(s)\)ds^Qoe(\\y\\) for any yeLpq[0,1]; (4.2)

L

are as described m Theorem 2.2 ana a0 =

<l whereyi,y2,c0

2a2/3-)?2-a2+a/?

are satisfied. Then (1.1) has at least one solution.

Remarks, (i). Notice (3.2) is automatically satisfied since (4.2) holds and also since

(ii). If iA(|u|) = |u|?, 0^y<min{^ , l } and (/>%"<*-™eLl
pq[.0,1] then (4.2) and (4.3) are

satisfied since

1 /I \(a-/)y)/a

jp(s)q(s)(pi(s)\y(s)\^ds^\\y\\')y[ipq4>i^-^ds) for any 3>eL"M[0,1]
o \o /

and so with 0(x) = xfiy we have

lim sup * l ; ' = lim sup x*1? ~' > = 0.

Proof. Let y be a solution to (3.3)A for 0 < ^ < 1. Then

y(t) = Ac03;2(t) j p(s)q(s)y1(s)f(s, y(s)) ds + /coy,(t) j p(s)q(s)f(s, y(s)) ds
o <

where yx,y2,c0 are as described in Theorem 2.2. Recall
0,bo^0,ro^l so

\\y\\*^2*-lc%lp(t)q(t)\y2(t)\*(\p(s)q(s)\yi(s)\\f(s,y(s))\dsydt

+ 2'-lcl\p(t)q(t)\yl(t)\
x(\p(s)q(s)\y2(s)\\f(s,y(s))\ds) dt.

o
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This together with Holder's inequality implies

11|" ft p(s)q(s)\f(s, y(s))\' dsY'. (4.4)

In addition

jp(s)q(s)\f(s, (s))|"dsfS2"-» }pis)q(s)^(s) ds + 2""' } p(s)q(s)<p^s)^(\y(s)\) ds
o

I

This inequality together with (a0 + bo)
llro^2lr°-i)lro{allro + bl

0
lro),a0^0,bo^0,ro^\ or

bso0),so^l and (4.4) implies

)• (4.5)

Consequently

Thus there exists a constant Mo, independent of X, with ||_v||^M0 for any solution y
satisfying (3.3)A i.e. y = XNy where N is as described in Theorem 3.4. If this was not true
then there exists un = XnNun with ||un||->oo as M-KDO and since limsup(sn + t n )^
lim sup sn + lim sup tn for any sequences sn^0, tn^0 we have from (4.6) that \^A0, a
contradiction (see (4.3)). Thus there exists a constant Mo, independent of A, with
||_y||^M0 and the result now follows from Theorem 3.4. •

The next two existence results extend in a "particular direction" Theorem 4.1 if
certain criteria are fulfilled. To discuss the first result we begin by gathering together
some facts on the singular eigenvalue problem

f Lu = Xu a.e. on [0,1]
j ( ( ) = 0 (4.7)

where Lu= -j-q(pu')'. Assume (2.1), (2.2) and

l/2

d s < c o
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hold.

Remarks, (i). In this case a = 2 in (2.3).
(ii). Here 1 = 0 is a singular point in the limit circle case [18, 19, 24].

Let

= ja>eC[0,l]:w,pw'e/lC[0,l] with - {pW)'e L2
pq[0,1]

and lim

In [18,19] it was shown that L~l :L\ [0,1]-»£>(L) and L"1 is completely continuous
with (L~iu,v} = (u,L~iv} for u, veL.\q[§, 1]. Consequently the spectral theorem for
compact self adjoint operators [24] implies that L has a countably infinite number of
real eigenvalues Xt with corresponding eigenfunctions ^,e£)(L). The eigenfunctions tyt

may be chosen so that they form an orthonormal set and we may arrange the
eigenvalues so that

The following Rayleigh-Ritz minimization theorem [18, 19] also holds.

Theorem 4.2. Suppose (2.1), (2.2) and (4.8) hold. Then

^o jP(t)q(t)y2(t) dt = Jp(t)ly'(t)-}2 it
o o

for all functions y e D(L).

We can improve the result in Theorem 4.1 if (4.8) holds and if n<A.o; here Ao is the
first eigenvalue of (4.7). In particular consider

'j-q(py')' = f(t,y)a.e. on [0,1]

0 (4.9)

Theorem 4.3. Let / : [0,1] x R->R be a Caratheodory function and suppose (2.1), (2.2)
and (4.8) are satisfied. Also assume
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f(t,y(t))eL2
pq[0,1] whenever )>eL2,[0,1].

443

(4.10)

In addition suppose / ( t , u)=g(t, u) + /i(t, u) with g,h:[0,1] x R->R Caratheodory functions
and

(\uh(t, u)| =(f>dt)\u\ + <t>2(t)p(\u\) a.e. on [0,1] where p: [0, ooH[0, oo) (

[is a nondecreasing continuous function

(4.12)ug(t,u)^ —HQU1 for a.e. t e [0 ,1] am/ ueR; /iere

1 Hi\1/2

1-7^

and

(there exist constants Qj (independent ofa0 and b0) and Q2 such that for any
\a0^0,bo^0we have p{a0b0)^Q1 p(ao)p(bo) + Q2p{bo)

dt)limsup^A, = Q, (OP((1
(4.15)

wit/i f/0 = 1 if fiQ<0 whereas >lo=l — ^ i / 0 ^

are satisfied. Then (4.9) /ias at /east one solution.

Remark. If p(|u|) = | u | " + 1 , 0^y< 1 and jip(t)q(t)02(t)(J(
1^)("+1) /2<it<oo then (4.13),

(4.14) and (4.15) are satisfied since if 81 = 1,62 = 0 w e n a v e | | + 1

I«o|y+I| f to|y+1 and also

lim sup ^Y- = lim sup xy ~l = 0.

Proof. Let y be a solution to

(4.16),

for 0 < A < l . Multiply the differential equation by — y and integrate from 0 to 1 to
obtain
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!pqyg(t,y)dt + l
o o

where for notational purposes ||w||2 = JoP^|"|2^ and ||w||o=joP|"|2^f- Apply Theorem
4.2 if 0 ̂  Ho < Ao to obtain

»/o||y||oSjM^iHA + |M02/>(|y(t)|)A (4.17)
o o

where »70 is as described in (4.15). Also for te(0,1) we have from Holder's inequality
that

and this together with (4.17) and the fact that p is nondecreasing yields

I J_ \l/2

where Af^J iM^iCj , 1 ^) 1 ' 2 * . Using (4.14) we obtain

»/o||y||o^^1||y||o+Q1iv2p(||y

where JV2 = JJM^2p((Jl
1^!)

1/2)A. Consequently

^ 0 = ||. ,112 ' || ,||2
0

Thus (as in Theorem 4.1) exists a constant M,, independent of X, with | |y | | 0^ A î
any solution y to (4.16)A. This together with Theorem 4.2 yields

so the result follows from Theorem 3.4 (with ^ = 0 and a = 2). •

Finally we examine the boundary value problem (4.9) where in the case pqf'.[0,1] x
R->R is an L'-Caratheodory function. By this we mean:

(i) pqf.[0, l]xR-»R is a Caratheodory function, and

https://doi.org/10.1017/S0013091500019246 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019246


NONRESONANT PROBLEMS 445

(ii) for any r>0 there exists hreLl[0,1] with \p(t)q(t)f(t,u)\^hr(t) for a.e. re[0,1]
and for all |" |^r.

For the remainder of the paper assume (2.1), (2.2) and

\-^-]p(x)q(x)dxds<oD (4.19)

and
i j s

f. -— j p(x)q(x)hr(x) dx ds < oo for any r > 0; here hr is as described above (4.20)
o P(s) o

hold. In [8, 18] we proved the following existence principle.

Theorem 4.4. Let p? / : [0 , l ]xR- .R be a L1-Caratheodory function with (2.1), (2.2),
(4.19) and (4.20) holding. In addition suppose there is a constant Mo, independent of I,
with

[0.1]

for any solution y (here yeC[0,1] n Cl(0,1) with py'eAC[0,1]) to

r )a.e. on [0,1]

(4.21),

for each 0<X< 1. Then (4.9) /ias at least one solution.

Theorem 4.5. Let pqf: [0,1] x R-+R be a L1 -Caratheodory function with (2.1), (2.2)
and (4.19) holding. In addition suppose

u\) a.e. on [0,1] where Cl: [0, oo)^[0, oo)
is a nondecreasing continuous function

} 4 i = l , 2 (4.23)
o P(s) o

and

4 T J PW«W*2W ̂  ds) lim sup ^ < 1 (4.24)
P(S) 0 / x-oo x
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are satisfied. Then (4.9) has at least one solution.

Proof. Let y be a solution to (4.21)A for 0<A< 1. Then for re[0,1] we have

=~\ 4 ^ ]p(x)q{x)nx,y(x))dxds

and so

|y(x)|^J -L ]p(x)q(x)<Pl(x)dxds + \ - i - ] p(x)q(x)cp2(x)n(\y(x)\)dxds.
t P\s) 0 1 P(S) 0

Now ^(x)! ^sup[0. u |y(s)| = |y|0 and this together with the fact that Q is nondecreasing
yields

4 4
o P(s) o o PISJ o

Let Kt = ji^f0p(x)9(x)^,-(x)dxds,i = 1,2 so

and consequently

Thus (as in Theorem 4.1) there exists a constant Mo, independent of X, with |>>|0£Af0

for any solution y to (4.21)A The result follows from Theorem 4.4. •
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