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ISOMORPHISM INVARIANCE AND OVERGENERATION

OWENGRIFFITHS AND A.C. PASEAU

Abstract. The isomorphisminvariance criterionof logical nature hasmuch to commend it.
It can be philosophically motivated by the thought that logic is distinctively general or topic
neutral. It is capable of precise set-theoretic formulation. And it delivers an extension of
‘logical constant’ which respects the intuitively clear cases.Despite its attractions, the criterion
has recently come under attack. Critics such as Feferman,MacFarlane and Bonnay argue that
the criterion overgenerates by incorrectly judgingmathematical notions as logical.We consider
five possible precisifications of the overgeneration argument and find them all unconvincing.

The standard approach to logical consequence in the modern literature is
the post-Tarskianmodel-theoretic conception. On this conception, a sentence
φ is a logical consequence of some set of sentences Γ just if every model of
Γ is a model of φ. A model consists of a nonempty domain of objects and a
valuation function that assigns semantic values to the nonlogical expressions
of the language. As such, the standard approach relies on a distinction
between logical and nonlogical expressions. It is striking, then, that there is
little agreement over how this crucial distinction should be drawn.We defend
the most natural supplement to the model-theoretic definition: isomorphism
invariance.
The isomorphism invariance criterion of logical nature has much to
commend it. It can be philosophically motivated by the thoughts that logic
is distinctively general or topic-neutral. It is capable of precise set-theoretic
formulation. And it delivers an extension of ‘logical constant’ which respects
the intuitively clear cases, namely identity, the Boolean connectives and the
universal and existential quantifiers—the logical constants of first-order
logic with identity.
Despite its attractions, isomorphism invariance faces a major recurring
objection in the literature. Critics such as Christopher Peacocke [20],
Timothy McCarthy [15], Solomon Feferman ([8, 9, 11]), John MacFarlane
[13], Enrique Casanovas [5], Denis Bonnay ([1, 2]), and Catarina Dutilh
Novaes [6] all argue that the criterion overgenerates by incorrectly judging
some mathematical notions as logical. Though he does not discuss isomor-
phism invariance, the same criticism is implicit in Tharp [31].
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Our paper has three objectives. First, we defend isomorphism invariance
as an attractive account of logical nature. We believe that the isomorphism
invariance approach can survive this major objection. We consider several
possible precisifications of the objection and find them all unconvincing.
Second, much of our discussion is available to the defender of second-order
quantification as genuinely logical. Third, our discussion will help clarify
the demarcation of logic from mathematics.

§1. The isomorphism-invariance account.
1.1. Brief motivation. A popular slogan is that logic is formal. Quite what
the slogan amounts to is a controversial matter but even a minimal reading
is committed to valid arguments having purely valid forms: argument forms
all of whose instances are truth-preserving.1 For example, the propositional
argument (P ∨ Q) ∧ R ∴ P ∨ Q has a purely valid form expressed by
Φ1 ∧ Φ2 ∴ Φ1 (provided we replace the schematic variables Φ1 and Φ2
uniformly).
In his famous paper on logical consequence, Tarski accepts this much
but notes that the characterisation of formality is incomplete because
‘[u]nderlying the whole construction is the division of the language into
logical and extralogical’ ([28], p. 418). Such formal accounts of logical
consequence must be supplemented with a demarcation of the logical
constants.
Tarski thought that the logical constants are:

terms of a much more general character occurring in most statements
of arithmetic, terms which are met constantly both in considerations
of everyday life and in every field of science. ([29], p. 18)

The purpose of logic, he continues, is to ‘establish the precise meaning of
such terms’ and to ‘lay down the most general laws in which these terms are
involved’ ([29], p. 18).
Tarski’s thought is that the logical constants are those expressions, such
as ‘not’, ‘and’, and ‘every’, that are required to carry out inference in any
field whatsoever and which feature in the most general laws. They are not
expressions that have any particular subjectmatter themselves, but are rather
required in all disciplines if we are to reason correctly. In ([30]), he put
forward an invariance criterion as a precise test for demarcating the logical
constants, understood as themost general pieces of vocabulary. In this paper,
he defines logic as the ‘science which deals with the notions invariant under
the widest class of transformations’, which will be ‘very few notions, all of a
very general character’ ([30], p. 149).
This motivation for isomorphism invariance stems from the thought that
logic is distinctively general. We could instead motivate the account with the
thought that logic is distinctively topic-neutral.2 If logic is topic-neutral, then
the logical operations should be insensitive to the particular objects to which

1See Oliver [18] for a good discussion of the slogan.
2See ([1], pp. 33–35) for more on the distinction between the two sorts of motivation.
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they are being applied. In particular, they should be insensitive to arbitrary
switching of objects.3 If a notion is invariant under isomorphism, then
there is a clear sense in which it is insensitive to the arbitrary switchings of
objects. The topic-neutrality of logic, explicated in terms of sensitivity to the
switching of objects, therefore offers a distinct motivation for isomorphism
invariance.4 In this paper, we remain neutral between these two means of
motivating isomorphism invariance.

1.2. Brief statement. Invariance criteria for logical nature first define
isomorphism invariance for the worldly entities (objects, sets, ordered
n-tuples, etc) that are the extensions of linguistic expressions, and then
derivatively for those expressions. An expression is then invariant in the
appropriate respect just if its extension is invariant.
The expressions that we usually take to be candidate logical constants,
however, are connectives and quantifiers, which do not have extensions in
a straightforward sense. Along with the majority of writers in this area, we
followMcGee ([16], p. 569) in taking the extension of an n-ary quantifier or
connective C on domain D as a function from an n-tuple of sets of variable
assignments of values from D to a set of such assignments. Intuitively,
if the input of such a function is the n-tuple of sets of assignments that
satisfy φ1, . . . , φn, then the output is the set of assignments that satisfy
C (φ1, . . . , φn).5 McGee goes on to prove that the invariant expressions are
exactly those that are definable in the language L∞,∞. Although a more
formal account of all these ideas could be given, our arguments in this
paper do not require anything more than the informal characterisation just
presented.
The Tarski–Sher Thesis states that an expression of type level at most 2 is a
logical constant just if its semantic value is isomorphism invariant. This type
restriction is in place to limit attention to first-order languages but, if topic-
neutrality is the motivation, then we find no reason for such a restriction.
As such, the thesis we defend is simply that an expression is a logical constant
just if its semantic value is isomorphism invariant.

1.3. Objections. Before considering the overgeneration charge in detail,
we will briefly map out the objections that have been raised to isomorphism
invariance. Feferman ([9], p. 6) summarises the standard objections as
follows:

1. The thesis assimilates logic to mathematics, more specifically to set
theory.

2. The set-theoretical notions involved in explaining the semantics of
L∞,∞ are not robust.

3See ([13], Section 3.2) for more on this understanding of topic-neutrality.
4Sher ([26], pp. 192–194) motivates isomorphism invariance by its ability to explain the

formality, generality and topic-neutrality of logic. She also holds that it can explain logic’s
strong modal force, its normativity and its a priori character.
5In line with the literature we are concerned with, we take logical constants to be defined

over models. Though as Sher ([25], p. 56) points out, a natural invariance condition implies
that a logical term will have the same extension in any two models that share a domain.
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3. No natural explanation is given by it of what constitutes the same
logical operation over arbitrary basic domains.

Our central concern is the first objection. The second charge is that the
set-theoretical notions involved in the isomorphism invariance account are
not robust.6 Theworry seems to be that, although isomorphism of structures
is defined in a structural, language-independent, way (as opposed to e.g.,
elementary equivalence), the existence of an isomorphism between any two
structures depends on the ambient universe of sets. To put it in familiar
set-theoretic terms, the relation of isomorphism between models is not
absolute.7

Feferman writes that the absoluteness objection ‘is in a way subsidiary to
[the overgeneration objection]’ ([9], p. 9). An obvious interpretation is that
the absoluteness objection is ‘subsidiary’ in the sense of being of secondary
importance. He admits that the absoluteness objection is ‘vague’ ([9], p. 9)
but the overgeneration problem it gives rise to is capable of precise
expression. We choose to focus on the overgeneration argument in part
because it is clearer than the subsidiary absoluteness problem. A further
reason is that neither Feferman nor Bonnay motivates the thought that the
set-theoretic notions involved in isomorphism invariance should be robust.
Oneobviousmotivationwouldbe anti-realismabout set theory, since a realist
about sets would maintain that the question of whether two structures
are isomorphic has a definite answer.8 Another motivation could be an
independence requirement: the analysis of logicality should be independent
of mathematics, and set theory in particular. We reject anti-realism about
sets, and hold that the independence motivation sits poorly with isomor-
phism invariance, since it is designed to supplement the model-theoretic
definition of logical consequence, which is set-theoretic through-and-
through. Of course, these are not knock-down objections, but reasons to
focus on overgeneration.9

Another famous problem for the account, not listed here by Feferman,
is that the isomorphism-invariance account ignores the meanings of logical
constants.Anything co-extensivewith a logical constant is a logical constant,
such as McGee’s ([16], p. 569) famous example of unicorn-negation:

Uφ =Def (¬φ∧ there are no unicorns).
A related example of a connective that operates in the same way on domains
of the same size would be a connective that acts (i) as disjunction when the
domain is an even successor cardinal, (ii) like conjunction when the domain

6Bonnay ([1], p. 60) also raises this objection.
7To take a simple example, consider a structure A with domain α for α some countably

infinite ordinal (�= �), and a structureB with domain the least infinite ordinal �. In some
countable transitive modelM of ZFC, A andB may not be isomorphic, for example ifM
does not contain a bijection from α to � (so that α is uncountable inM ), although A may
be isomorphic toB in some generic extension ofM (that satisfies the axioms of ZFC).
8By set realism, we understand the thesis that there is a single definite universe of sets

and that ZFC, as usually interpreted, is true of this universe. Anti-realism is then any view
opposed to realism. Some set theorists (e.g., [12], p. 416) call set realism ‘the universe view’.
9See Sher ([27], pp. 307–311) for another response.
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is an odd successor cardinal, and (iii) like a biconditional at limit cardinals
([16], p. 577). This objection was first raised by McCarthy [15]. At the
sentence level, the worry is that, if unicorn-negation is a logical constant,
then a sentence such as

U (0 �= 0 ∨ U0 �= 0)
is a logical truth, which is implausible.
Again, however, the overgeneration argument is more basic. The
overgeneration argument—if successful—is devastating for proponents of
isomorphism invariance. They sought a demarcation of the logical constants
to supplement the standard definition of logical consequence; if they have
to call palpably nonlogical sentences logical truths, then they have failed at
their task. In contrast, faced with cases such as unicorn-negation, it is open
to the proponent of isomorphism invariance to emphasise the extensional
nature of their project; unicorn-negation, after all, is coextensional with
negation tout court. Gil Sagi [22] has recently taken this line: her strategy is
to bite the bullet and defend the logical truth of U . One reason to deny the
logical truth of U is its apparent contingency.10 But, she argues, if we hold
that meaning is determined by extension, and that we must hold meaning
fixed when evaluating the truth-value of a sentence at different worlds, then
U is true at every world. In a world with unicorns, we may be tempted to
say that U is false, but that is to change the meaning of ‘U ’: when meaning
is held fixed, the sentence is necessarily true. A different idea than Sagi’s that
has been discussed ([13]) and could be exploited in this connection is that
logical constants ought to be lexically primitive, a test presumably failed by
unicorn-negation.
Finally, isomorphism invariance could be criticised for undergenerating.
Criticisms of this sort are much harder to find in the literature. As far as we
are aware, the only writers who discuss the undergeneration of isomorphism
invariance areDutilhNovaes [6],11Woods [32] andMacFarlane [14].Wewill
focus on the far more developed overgeneration problem.
Our discussion therefore focusses on the major objection to arguably the
most plausible and best-developed account of logical constanthood. Our
second aim is to defend second-order quantification as logical from an
analogous objection. Our discussion’s third moral, which will emerge as we
go along, is that the boundary between mathematics and logic is firmer than
is often supposed.
Though isomorphism invariance is the best-known invariance account,
the problems outlined have motivated Bonnay and Feferman to offer
distinct invariantist accounts. Although we do not think that these are as
well-motivated as the isomorphism account, we content ourselves in this

10Sagi also considers the objection that U is not a logical truth because it is a posteriori.
11Dutilh Novaes charges isomorphism invariance with undergeneration by failing to find

the S4 logical operators to be logical. But if you accept—as Burgess [4] argues convincingly
that we should—that the correct modal logic for logical necessity is S5, then you will be
untroubled by Dutilh Novaes’ arguments, which do not threaten the logical status of the S5
operators, at least when interpreted on universal frames.

https://doi.org/10.1017/bsl.2016.37 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2016.37


ISOMORPHISM AND OVERGENERATION 487

article to defending isomorphism invariance and do not consider Bonnay
and Feferman’s respective positive proposals.12 Bonnay writes that

In the setting of generalized invariance, it does not make sense to
require full generality without qualification, because the most general
notions are as much useless as they are general.... Logical notions are
the most general notions which deal with certain kinds of features;
but in order to make sense of the generality of logic, one has to say
what matters to logic. ([1], pp. 48–49)

We agree: there is a limit to how general we can go here, since some
transformations will yield criteria that clash wildly with intuition and
practice. So to deliver an acceptable criterion we cannot blindly follow
generality to the very limit, but instead need to settle ‘what matters to
logic’. As it is beyond the scope of our paper to do that, all we’ll note here
is that one major motivation for generalising beyond Tarski–Sher is the
overgeneration problem, which is what we aim to defeat in this paper.
Other problems—such as intensional worries or undergeneration worries—
apply equally to all criteria. The robustness problem is directly targeted at
isomorphism invariance but, as we have noted, Feferman believes this to be
‘subsidiary’ to overgeneration. Sowe focus here on the accountwith themost
historical precedent—Bonnay ([2], p. 56) writes that it ‘might be considered
the received view’—and argue that we have not yet been given good reason
to go beyond it.

§2. Overgeneration. The overgeneration argument aims to show that the
isomorphism invariance test overgenerates by deeming as logical some
expressions that intuitively are not. To understand the overgeneration
charge, it will be helpful to consider some of the quantifiers that are
isomorphism invariant:13

(Q>ℵ0 ) Q>ℵ0xΦ(x) is true in a modelM iff uncountably many objects in
M’s domain have the property ΦM.

(Qℵn ) QℵnxΦ(x) is true in a model M iff exactly ℵn objects in M’s
domain have the property ΦM.

Why is it problematic to judge these quantifiers as logical? The following
quote from Bonnay is representative of the worries that these authors have:

this suggests thatTarski’s criterionovergenerates and counts toomany
operations as logical. First, since the aim is to distinguish the realm of
logic proper, a proposal which conflates logical notions and mathe-
matical notions does not seem to be on the right track. ([1], p. 37)

12Very briefly, Feferman [8] proposes replacing bijections with arbitrary surjective
functions. One important upshot is that cardinality quantifiers and identity are ruled out as
logical. Bonnay [1] endorses invariance under potential isomorphism,which are finite approx-
imations of isomorphisms. As a result, finite quantifiers are counted as logical but higher
cardinality quantifiers are not. On both accounts, second- and higher-order quantifiers fail
to count as logical, which is how the present overgeneration argument is avoided.
13These definitions are shorthand for strict definitions in terms of satisfaction.
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The thought is that quantifiers of these sorts are not logical because
to call them logical would be to conflate logic and mathematics. On the
next page, Bonnay claims that the situation is even worse for isomorphism
invariance, since it ‘yields a collapse of logic into mathematics’ ([1], p. 38).
Similarly, Feferman writes that isomorphism invariance ‘assimilates logic to
mathematics, more specifically to set theory’ ([9], p. 3).
The theme in these claims is that isomorphism invariance overgenerates
because it somehow involves a confusion of logical and mathematical
notions. In particular, it renders certain mathematical notions logical in
a way that is problematic.
When we look for cases of overgeneration in these authors’ works,
the same example always comes up. Feferman writes that, if we accept
isomorphism invariance as our criterion of logical nature, ‘we can express
the Continuum Hypothesis and many other substantial mathematical
propositions as logically determinate sentences’ ([9], p. 12). Similarly,
Bonnay writes that, on the criterion

the quantifier Qℵ1 , which tests whether there are exactly ℵ1 objects
satisfying the formula, is logical. Intuitively, something has gone
wrong. Being of size ℵ1 is a notion that belongs to set theory, not to
logic. ... it is possible to express in L∞,∞ the Continuum Hypothesis
and other substantial set-theoretic claims. ([1], p. 36)

As is well known, the Continuum Hypothesis is the interpreted first-order
sentence which we will abbreviate to:

CH: 2ℵ0 = ℵ1; in words: the cardinality of the power set of the first
infinite cardinal is the first uncountable cardinal.14

CH is a controversial, ZFC-undecidable claim.15 There are, nevertheless,
sentences of second-order logic which are logically true iff CH is true, and
others which are logically true iff CH is false.
Let N (X ) be a second-order formula that is satisfied just if X is
equinumerous with the natural numbers, and R(Y ) a second-order formula
that is satisfied just if Y is equinumerous with the real numbers. These
expressions can all be defined in purely second-order vocabulary.16 Let
X < Y and X ≤ Y abbreviate the usual second-order renderings of ‘X has
a smaller size than Y ’ and ‘X has a size smaller than or equal to Y ’, respec-
tively. Using these abbreviations to keep it manageable and interpreting
the quantifiers to range over everything, the interpreted sentence S is a
second-order logical truth just when CH is true:

S: ∀X∀Y∀Z((N (X ) ∧R(Y ) ∧ X < Z)→ Y ≤ Z)
14Strictly speaking, 2ℵ0 is the cardinal equinumerous with the set of functions from ℵ0 to

2 = {0,1}. Clearly, |P(ℵ0)| = 2ℵ0 .
15Thinking of ZFC as a formal theory, we could more strictly write that the first-order

sentence in the language of set theory of which CH is an interpretation is ZFC-undecidable.
This reading may be applied to all such claims below.
16Shapiro ([23], Section 5.1.2) has the details.
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Assuming that CH is true, the proponent of isomorphism invariance is,
therefore, committed to the logical truth of S. Of course, the truth of CH is
controversial, but an exactly analogous argument can be run on the assump-
tion that CH is false with another sentence S ′ that is logically true just if
CH is false.
Defenders of isomorphism invariance as a criterion for logical nature
must accept this much. But writers such as Feferman and Bonnay aim
to jump from this to a problematic conclusion about CH. Exactly what
this problematic conclusion is differs: Feferman claims that CH is rendered
‘logically determinate’ ([9], p. 12) by the isomorphism invariance approach
and Bonnay claims that it is ‘possible to express’ ([1], p. 37) CH using
isomorphism-invariant vocabulary.
We will consider five possible arguments that may be intended against
isomorphism invariance: that the criterion (i) renders logic sensitive to
mathematics in a problematic way; (ii) renders CH either logically true
or false; (iii) renders CH determinate; (iv) epistemically determines CH;
and (v) allows CH to be logically expressible. We will explain why all five
charges should be rejected. Of course, it is open to the critics of isomorphism
invariance to put forward another reading, but we have more than covered
anything that might be teased out of the existing literature and it is not at
all obvious what a plausible alternative reading would look like.
In all of these arguments, it is the status of CH, rather than the
isomorphism-invariance test, that is crucial: if you accept the second-order
quantifiers as logical for other reasons than isomorphism invariance, then
you should still be concerned by the conclusions of these arguments. For
this reason, many of our responses have a wider target: they should move
not only the opponent of isomorphism invariance but also anyone who
believes that the logical status of second-order quantification is problematic.
When our arguments in the remainder of this section are directly aimed
at the opponent of isomorphism invariance we will be explicit; otherwise,
they are aimed at this broader group. The moral about how to distinguish
a set-theoretic from a logical claim will emerge later, but can already be
exemplified by a brief comparison between CH and S.
CH is a mathematical sentence, which is not topic-neutral, since it is
about sets. Its truth is existentially committing: it requires the existence of
the set of functions from ℵ0 to 2, the cardinal ℵ1, and of a bijection between
them. CH is therefore not logical, since it is existentially committing and has
mathematical content.
S, on the other hand, is not a mathematical sentence. It is topic-neutral,
since it can be expressed using only logical vocabulary and has no special
subject matter. It is not existentially committing: it has the form of a con-
ditional prefaced by three leading universal quantifiers. Finally, S contains
only logical expressions. For all of these reasons, S is a logical sentence.
CH and S are, then, very different sentences and respecting these
differences will be crucial in what follows.

2.1. Logic is sensitive to mathematics. The critic of isomorphism invari-
ance believes that the CH example reveals a certain intimacy between
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mathematics and logic when isomorphism invariance is taken as our
criterion of the logical. The thought is that isomorphism invariance renders
logical truth sensitive to set theory.
The critic of isomorphism invariance must do more to spell out what
‘sensitivity’ amounts to in this context. For this reason, we will do much
work on our opponents’ behalf by providing the four most plausible precisi-
fications of ‘sensitivity’. In this section, we work with the intuitive notion of
‘sensitivity’ that is often appealed to by critics of isomorphism invariance.
The discussion in the subsections to follow attempts to give a gloss on this
criticism, beginning with a constitutive one in Section 2.2.
Sticking to the rather vaguenotion of sensitivity, at least aminimal reading
must imply that the extension of ‘logical truth’ varies with the truth value of
mathematical sentences: if CH is true, then S is a logical truth; if CH is false,
then S ′ is a logical truth. This sensitivity to the truth-value of controversial
set-theoretic claims, the critic may argue, is reason enough to be suspicious
of isomorphism invariance.
To see the mistake here, consider an analogy with an arithmetical case:
A: 2+5=7
A′: (∃2xFx ∧ ∃5xGx ∧ ∀x¬(Fx ∧ Gx))→ ∃7x(Fx ∨Gx)
Here,A′ is interpreted (as isA of course),17 ∃2xFx abbreviates ∃x∃y(Fx∧
Fy ∧ x �= y ∧ ∀z(Fz → (z = x ∨ z = y))), and likewise for ∃5x and ∃7x.
A is a truth of arithmetic which is about numbers, hence not topic-neutral
nor, by our lights, logical; those who take first-order logic to be logic would
agree since A’s first-order formalisation is f(a, b) = c. A′ is, however,
a first-order logical truth. The situation is analogous with the case of CH:
just as S is logically true iff CH is true, A′ is logically true iff A is true. The
only disanalogy is that the mathematical claim CH is controversial, whereas
everyone accepts the truth of A.
The logical truth of A′ is sensitive to the truth of A in just the same way
as the logical truth of S is sensitive to the truth of CH: again, the extension
of ‘logical truth’ will differ depending on the truth-value of a mathematical
claim. The logical truth of both sentences S andA′ is equivalent to the truth
of their corresponding mathematical sentences. And yet this is not thought
to be problematic in the first-order case. Now if the sort of sensitivity under
discussion is sufficient for overgeneration, then there is overgeneration at
the first-order level, which critics of isomorphism invariance typically deny.
Therefore, isomorphism invariance does not render the extension of ‘logical
truth’ hostage to mathematics any more than is standard for first-order
logic.
One could respond by denying the logical nature of identity, but we will
delay discussion of this response until Section 2.6. It should be equally
clear from our discussion that isomorphism invariance does not ‘[require]
the existence of set-theoretical entities of a special kind, or at least of their
determinate properties’ ([9], p. 9). CH (i.e., 2ℵ0 = ℵ1) requires the existence
17In interpreting A′, we interpret F and G as distinct properties—which ones exactly does

not matter.
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of sets, namely the set of functions from ℵ0 to 2, ℵ1 and the existence of a
bijection between them; similarly for ¬CH (2ℵ0 �= ℵ1), minus the existence
of the bijection. In contrast, neither S nor S ′ is committed to the existence
of a single set, nor a fortiori to any sets having determinate properties.
Another response could be to argue that the arithmeticA and set-theoretic
CH are very different. A, the response would go, is much simpler and more
familiar than CH, so logic’s sensitivity to A is less problematic than to
CH. This response is not a straw man: Bonnay ([1], p. 56) distinguishes
problematic from unproblematic mathematical content. We believe that this
is an unstable distinction. There are two main ways to understand it: that
set-theoretic entities are ontologically more problematic than arithmetic
ones, or that the former are epistemologically more problematic than
the latter. Ontologically, there is no good reason to believe that sets
are more problematic than numbers, at least in the present context. On
the epistemological side, numbers and sets raise similar access problems.
Furthermore, although the truth ofA is obvious, there are first-order logical
truths whose truth is far from obvious and recognised only on the basis
of sophisticated mathematics (Section 2.4 develops an example involving
primeness).
Our diagnosis for why someone might think S but not A′ problematically
mathematical is that we tend to be muchmore familiar with first-order logic.
Both A′ and S are logical truths that have mathematical counterparts, one
of which is obviously true and the other far from it, just like A′ and S
respectively.18 This verdict will be borne out when we examine more precise
versions of the sensitivity argument.

2.2. CH is logically true. Wewill now consider someprecisifications of the
thought that logic is sensitive to mathematics on the isomorphism invariance
account. In this section, we consider a constitutive reading: CH is rendered
logically true, if true; and logically false, if false. This would be a problematic
conclusion for isomorphism invariance, since we motivated it with the
thought that logic is topic-neutral and CH should therefore not count as
logical.
There is an interesting parallel here with Etchemendy’s arguments against
the model-theoretic definition of logical consequence ([7], pp. 123–124).
Etchemendy in this passage maintains that the model-theoretic definition is
either committed to the claim that CH is logically true, or the claim that
CH is logically false. As Paseau [19] points out, it is not at all clear how
Etchemendy’s argument is meant to work here. Paseau shows, further, that
no reasonable precisification of Etchemendy’s argument is sound. For our
purposes, it will be helpful to adapt one of Paseau’s precisifications.
CH is a claim made in (a technical fragment of) natural language, which
if fully formalised in first-order terms would be a very long expression in
the first-order language of set theory containing a single dyadic predicate ∈.
As noted, it is also existentially committing since for example 2ℵ0 = ℵ1
entails the existence of the cardinals 2, ℵ0 and ℵ1. The sentence that is
18On the assumption that CH is true.
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logically true if CH is true is rather the interpreted second-order sentence S,
which, recall, is:

S: ∀X∀Y∀Z((N (X ) ∧R(Y ) ∧ X < Z)→ (Y ≤ Z)).
But the logical truth of S is not problematic, assuming CH is true. Consider
again an analogy with an arithmetical case:

A: 2+5=7
A′′: ∀F ∀G((∃2xFx ∧ ∃5xGx ∧ ∀x¬(Fx ∧Gx))→ ∃7x(Fx ∨Gx))
As with A′, A′′ is an interpreted sentence. A is a truth of arithmetic about
numbers which is neither topic-neutral nor logical.A′′ is, however, a second-
order logical truth. The situation is as discussed in the previous section: just
asS is logically true iff CH is true,A′′ is logically true iffA is true. IfA is true,
then the second-order sentence A′′ is logically true. But the logical truth of
A′′ is not problematic, since it is topic-neutral. For example, a natural way
to express A′′ in English would begin ‘for any properties F and G , if there
are exactly two F s and exactly three Gs,...’. A′′ is therefore a topic-neutral
sentence and its logical truth is unproblematic. And similarly for S. In each
case, the logical sentence (respectively S and A′′) can be derived from the
mathematical one (respectively CH andA) in roughly the following manner:
turn the names for cardinals (e.g., the name for 2ℵ0 in CH and the name for
2 inA) into predicate variables whose instances are then specified to have the
appropriate numerosity; turn the equal sign into a conditional; universally
quantify over the new predicate variables; and, modulo a couple further
transformations, one obtains the logical sentence (S and A′′ respectively).19

The crucial point is that neither of the mathematical sentences CH or A is
declared logically true. The fact that they are materially or metaphysically
equivalent to logical truths is not enough for them to be logical truths
themselves.
To be clear, we are not here assuming that second-order quantifiers
are logical expressions. There is a well-known debate about the second-
order quantifiers that is quite independent of isomorphism invariance. For
example, if you worry about the logical status of monadic second-order
quantification, or its topic-neutrality, you may offer a plural interpreta-
tion ([3]). We are not assuming any such justification of the second-order
quantifiers. Our argument runs in precisely the opposite direction:
isomorphism invariance is motivated by the thoughts that logic is
topic-neutral and general. The isomorphism invariance of second-order
quantifiers shows that they are topic-neutral and general in the same way
as first-order quantifiers. In this way, isomorphism invariance can be used
to defend second-order logic as logic (the first of our paper’s two subsidiary
aims), in a way that dovetails with pluralist justifications of second-order
quantification as logical but does not presuppose them. What would be
problematic is if an obviously non-topic-neutral sentence like CH were
deemed logically true, if true. And we have shown that it is not.

19The differences between the two procedures have mainly to do with the fact that the
left-hand side of CH is an exponentiation whereas the left-hand side of A is a sum.
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Another way to argue that CH is rendered logically true on the isomor-
phism invariance account is to consider the behaviour of the ‘it is a logical
truth that’ operator.20 If, as we mentioned in Section 1.3, S5 is the correct
logic of logical necessity then, if CH is true, the following is true:
(1) It is a logical truth that S.

This, coupled with

(2) S ↔ CH
is not yet sufficient to entail:

(3) It is a logical truth that CH
since the entailment would involve a modal fallacy. However, we can amend
(2) in the following way:

(2′) It is a logical truth that: S ↔ CH.
(1) and (2′) do entail (3).
The problem for our opponents is now twofold. First, they must argue
for (2′), which we see no reason to believe. Second, such an argument is
not available to our opponents because it proves too much. To return to the
arithmetic analogy, A′′ is a logical truth so the analogous conclusion here
would be that the arithmetical sentence A is a logical truth. But A is not a
logical truth, since it is not topic-neutral. Indeed, to accept A as a logical
truth would be to endorse a form of logicism. But logicism is explicitly
rejected by at least one of our main opponents (see [8]), and faces numerous
well-known objections.

2.3. The indeterminacy ofCH. The opponents of isomorphism invariance
could put a different spin on the sensitivity objection. They could argue
that, on the isomorphism-invariance account, logical determinacy entails
a problematic mathematical determinacy. Let �M , ♦M , �L and ♦L express
mathematical necessity,mathematical possiblity, logical necessity and logical
possibility respectively, each pair related in the standard way (�M ≡ ¬♦M¬
and �L ≡ ¬♦L¬).
Our opponents, and Feferman in particular, could argue that logical
determinacy leads to a problematic mathematical determinacy as follows.
Actually, we present a contraposed version of this reasoning, from math-
ematical indeterminacy to logical indeterminacy, since we believe it more
accurately reflects Feferman’s line of thought. First, Feferman [10] holds
that CH is mathematically indeterminate:
(1) ♦MCH ∧ ♦M¬CH .
Second, logical truths form a narrower class than mathematical truths. This
seems plausible on the isomorphism-invariance view, where logical truths
are taken to be completely topic-neutral, whereas mathematical truths may
rely on the existence of particular objects.21

20Paseau ([19], p. 46) considers this sort of argument in his response to Etchemendy.
21The proponent of isomorphism invariance should reject the converse, since it is once

again logicist in flavour and so fits poorly with invariance criteria. We require only the
relevant instance of (2) for this argument.
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(2) �Lφ → �Mφ.
Third, it is plausible that ‘CH↔ S’ ismathematically necessary. It is certainly
not logically necessary, as we saw in Section 2.2, since the truth of CH
requires the existence of sets that do not exist of logical necessity, but let’s
allow that it’s mathematically necessary.22 Hence:

(3) �M (CH↔ S)
(1)–(3) entail:23

(4) ♦LS ∧ ♦L¬S
To summarise the objection: if the mathematical truth of CH is indetermi-
nate, and we accept (2) and (3), which seem plausible, then the logical truth
of S is indeterminate. And this may be a commitment that the proponent of
isomorphism invariance should not accept.
Our response is, first, that this argument relies on the indeterminacy of CH
as a mathematical truth. If, like us, you believe that the truth of CH is deter-
minate, then you will reject (1) and will not be troubled by this argument. It
should be emphasised that this is the orthodox view. If you subscribe to the
orthodox view, then there is nothing here to trouble isomorphism invariance.
But if, like Feferman, you believe that the truth of CH is indeterminate, then
we must say more to convince you.
If you hold this view, then you must say more to cash out the notion
of mathematical necessity on which the argument crucially depends. One
explication of this idea that immediately suggests itself is the set-theoretic
multiverse view of e.g., [12]. This view, very roughly, is that there are many
different conceptions of set, each of which is instantiated in a corresponding
set-theoretic universe. This view provides us with a nice explication of the
notion of mathematical necessity, since we can interpret �Mφ as ‘φ is true
in all set-theoretic universes in the multiverse’.
Such multiverse views are, of course, controversial, and we do not accept
such a view. But, even if you have some sympathy with the position—or
have in mind some other interpretation of �M—we do not believe that this
argument should trouble the proponent of isomorphism invariance. This is
because, if you accept that the truth of CH is indeterminate, as you must
to think that there’s any problem here, and you accept the isomorphism
invariance account, then it is very natural to think that the logical truth of
S is likewise indeterminate. This is because isomorphism invariance seeks to
complement themodel-theoretic definitionof logical consequence,which is a
set-theoretic definition. If you accept isomorphism invariance, therefore, you
should accept a model-theoretic definition of logical truth, i.e., a sentence
is a logical truth just if it is true in all domains under all reinterpretations
of the invariant vocabulary. But if you believe that there are indeterminate
sentences about the background universe of sets, then it is unsurprising that

22If you doubt that ‘CH ↔ S’ is mathematically necessary, then this version of the
overgeneration argument doesn’t get off the ground.
23Via propositional logic, the relation between possibility and necessity, and Distribution

for�M .
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some of this indeterminacy carries over to logical truth. This is not to say
that any mathematical sentence is logically true, for reasons given earlier in
this section. The point, rather, is that if you hold that CH is indeterminate,
then you should not be troubled, or even surprised, that there are some
sentences whose logical status is indeterminate. The hybrid position that
sees the mathematical sentence CH as indeterminate and the logical truth
of the second-order sentence S as determinate seems ill-motivated.
In sum, the thought that the truthofCH ismathematically indeterminate is
highly controversial. If you reject it, then you will not think there is anything
here to threaten isomorphism invariance. If you do have sympathy with
that controversial view, however, then we have argued that your view is fully
compatible with isomorphism invariance. The link from logical determinacy
to mathematical determinacy has not been shown to be problematic.

2.4. CH is epistemically determined. We now turn to our next reading
of sensitivity: CH is epistemically determined by isomorphism invariance.
The thought here is that logic alone should not force us to accept or deny
controversial claims of set theory, so isomorphism invariance is not the
correct criterion for logical nature.
First, it will be instructive to rehearse the argument of Section 2.2, but
with the operator ‘it is an a priori truth that’ in place of ‘It is a logical truth
that’:

(1) It is an a priori truth that S.

This, coupled with

(2) It is an a priori truth that: S ↔ CH.
entails

(3) It is an a priori truth that CH.

This argument, unlike its analogue for logical truth, is sound (assuming
Distribution for ‘it is an priori truth that’). But this sort of conclusion
should not worry us, or at least it should not worry anyone inclined to think
that S is knowable a priori: if CH is true then presumably it is knowable a
priori. What should worry us is the logical truth of CH and we have not seen
any sound argument for that conclusion.
Returning to the criticism that CH is epistemically determined by isomor-
phism invariance, we accept, of course, that CH is an unsettled claim of set
theory.What we deny is the conditional claim that if isomorphism invariance
is the correct criterion for logical nature, then some new and problematic
epistemic route to knowledge of CH or of¬CH, as the case may be, becomes
available.
To begin with, let us be clear about the expected order of discovery. The
criticism seems to imply that we might first discover that S is a logical truth
and thereby infer the truth of CH. But there is another sentence S ′, which is
logically true just if CH is false,24 and S ′ also contains only isomorphism-
invariant vocabulary. So isomorphism invariance as a criterion for logical

24See once more Shapiro ([23], Section 5.1.2) for details of how to construct S ′.
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nature is consistent with both the truth of CH (in which case S is logically
true and S ′ is false) and the falsity of CH (in which case S ′ is logically true
and S is false). In short, it is not isomorphism invariance alone that delivers
the logical truth of S: it is isomorphism invariance and the truth-value
of CH.
If we ever settle CH’s truth-value, the expected order of discovery is rather
that we shall first determine the truth of CH via set-theoretic techniques—
from mathematically well-motivated extensions of ZFC—and then infer
the logical truth of S (and similarly for S ′). The proponent of isomorphism
invariance is in no way committed to, indeed rejects, the idea that ‘a compe-
tent speaker should be able, on the basis of his or her semantic competence,
to accept or reject the Continuum Hypothesis’.25 Even in the first-order
case, in which there is a sound and complete proof procedure, the order of
discoverymay very well run frommathematics to logic. For example, there is
a statement φN of first-order logic materially equivalent to the arithmetical
statement ‘N is prime’.26 Advances in say analytic number theory may deter-
mine that a particular number N is prime, thereby yielding knowledge of
the logical truth φN .27

Second, exploiting logical knowledge to yield mathematical knowledge
shouldnot be regardedas problematic.Again, this shouldbe familiar enough
from the first-order case, e.g., our ‘N is prime’ example. From knowledge of
the material biconditional ‘N is prime iff φN is true’ and logical knowledge
of the fact that φN is true (say via a premiss-free first-order proof), one may
come to know thatN is prime. Coming to know that CH is true analogously,
via knowledge of S and the biconditional S ↔ CH, is no more problematic
than coming to know thatN is prime by exploiting knowledge of the logical
truth φN . As mentioned in the previous paragraph, the converse is also true:
we can and do exploit mathematical knowledge to yield knowledge of logical
truth.
Third, and related to the second point: that some logical knowledge has
been exploited to yield mathematical knowledge does not mean that only
logical knowledge has been exploited. In our arithmetical example, logical
knowledge of the primality of N only follows from logical knowledge of φN
and logical knowledge of the material biconditional ‘N is prime iff φN is
true’. Suppose, as we believe, that the biconditional is not logically known.
Then this route to knowledge of the primality of N is not purely logical, as
it rests on extra-logical knowledge of the biconditional. Similarly, coming

25Bonnay ([1], p. 65), with the original ‘its’ replaced by ‘his or her’.
26The statement φN is the negation of

∨
1<b<N
1<a<N

Mult(a, b,N ), a disjunction which consists

of (N−2)2 disjuncts.Mult(a, b,N ) is the first-order formalisation of the following statement:
If there are exactly a F s, and each F is R-related to exactly b Gs, and no two distinct F s
are ever R-related to the same G , and any G is the R-relatum of some F , then there are
exactly N Gs.
27Analytic number theory considers the natural numbers as embedded in the complex

plane and uses techniques from complex analysis to derive facts about them, in particular
facts about primes. The canonical proof of the Prime Number Theorem is a famous case in
point.
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to know CH via logical knowledge of S and knowledge of the biconditional
‘CH iff S’ yields logical knowledge of CH only on the assumption that the
biconditional is logically known. Yet we see no reason on the isomorphism
invariance account to suppose that this biconditional is logically knowable.
In sum, knowledge of S may in principle lead to knowledge of CH,
although the order of discovery is almost bound to run in the other direction.
As for logical knowledge of S supposedly leading to logical knowledge of
CH, not only has the case for this supposition not been made, it also seems
highly problematic.

2.5. CH is logically expressible. The last three subsections can be seen as
making more precise in different ways the criticism that isomorphism invari-
ance renders logic sensitive to mathematics. We turn finally and more briefly
to Bonnay’s claim that it is possible to express CH and other complex set-
theoretic claims using only isomorphism-invariant expressions ([1], p. 38).
We can now see that this objection is misguided: what is expressible in purely
logical vocabulary is not CH but S. And if, as we have argued, the logical
truthofS is unproblematic, thenof course its expressibility is unproblematic,
since a sentence’s logical truth (in a particular logic) implies its expressibility
(in that logic). If a sentence is a logical truth of second-order logic, then of
course it can be expressed in the language of second-order logic. And if the
former should not trouble us, nor should the latter.
Now mathematicians typically do not make fine distinctions between
statements expressing what they might regard as the same ‘mathematical
content’. Thus they might well uncritically say that A and A′ or A′′

express the same thought, and that the same goes for the sentences S,
Q2ℵ0x(x = x) ↔ Qℵ1x(x = x) and CH. But when our interest is in the
precise demarcation between mathematics and logic, it is important to tread
carefully. The sentence A is an arithmetical truth, because its formalisation
f(a, b) = c is not valid on all models. The sentence A′′ in contrast, or for
that matter its first-order version A′ obtained by dropping the two leading
second-order quantifiers, is logically true. Similarly, CH is not a logical truth,
since it is existentially committing; indeed, it turns out to not be provable in
first-order ZFC, never mind first-order logic without nonlogical axioms. In
contrast, S is a logical truth. Responding to this or closely related objections,
philosophers have been wont to concede that there is no boundary between
logic and mathematics (e.g., [24], p. 146). But—and this is our third moral –
that concession would be premature. According to isomorphism invariance,
there is a principled boundary between logic and mathematics: sentences
such as S lie on one side of it, whereas sentences such as CH lie on the other.

2.6. Identity. At this point, there is a possible objection that we must
address. Our responses to the critics of isomorphism invariance have all
involved relations between simple arithmetic claims and first-order logical
truths. But these logical truths all involve numerically definite quantification
and so rely crucially on the logical nature of identity.
Our reply is twofold. First, the logical status of identity is widely
accepted and largely uncontentious; several theoretical accounts of logical
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constanthood endorse it as logical, including not just isomorphism
invariance but also inferentialist accounts such as [21] and [17]; and the
arguments against identity being logical are thin on the ground and unper-
suasive. Nevertheless, we recognise that in this context our first reply is
dialectically controversial. In particular, Feferman—one of the main propo-
nents of the overgeneration objection—denies the logical nature of identity
and puts forward a homomorphism invariance criterion which rules identity
out as logical.28

Our second reply is therefore that although our simple arithmetical
examples have so far involved the logical nature of identity, other examples
are available that do not rely on this assumption. Consider the following
pair of sentences:

G: 3 ≥ 2
G ′: ∃x∃y∃z(Fx ∧ ¬Fy ∧Gy ∧ ¬Gz ∧Hx ∧ ¬Hz)→ ∃x∃y(Fx ∧ ¬Fy).
If the mathematical sentence G is true, then the interpreted sentence G ′ is
logically true. The situation is analogous to CH and S but, crucially, G ′

does not rely on the logical nature of identity: G ′ only includes vocabulary
that Feferman would accept as logical. So, if you are at all unsure about
the logical nature of identity, then you can recast the arguments of Sections
2.1–2.2 in terms of G and G ′, rather than A and A′ or A′′.

2.7. Logical notions. We have argued that no version of the overgen-
eration argument against isomorphism invariance is convincing. We end
our discussion of the overgeneration argument by considering a final,
related worry voiced by a critic of isomorphism invariance. As Bonnay
([1], pp. 36–37) sees it, the overgeneration argument is not limited to state-
ments. The charge is that isomorphism invariance classifies certain notions
that are in fact mathematical as logical.We have focussed on the logical truth
of various statements but, this objection goes, that is of secondary concern:
the real worry is that a notion such as ‘there exists uncountably many’ has
been deemed logical, when intuitively it shouldn’t.
We respond to the general version of this objection first, before consider-
ing a particular topological example offered by Bonnay. An important theme
of this paper has been the need to keep various closely related statements
separate. It it tempting to say, for example, that S and CH express the same
content, or similar. We have argued that this way of speaking is, strictly
speaking, incorrect and that, when we avoid it, overgeneration worries
dissolve. Our reply to this objection is similar: just as it is important not to
conflate various statements, it is important not to conflate various notions.
The objection that some notion ought or ought not to be classified as
logical is we believe much harder to assess than the objection that some
statement (such as CH) ought or ought not to be classified as logical. This
is natural, since we have clearer (though still messy) intuitions about the
extension of ‘logical truth’ than ‘logical constant’. It would be very difficult,

28By Feferman’s criterion, the first-order quantifiers are logical but not identity, cardinality
quantifiers or second-order quantifiers.
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for example, to introduce a novice to the concept of logical constants before
explaining the concept of logical truth and consequence. Although there is
no space to develop this line of thought here, we believe that any plausible
attempt to draw a principled line between logical and mathematical notions
will have to rely at least in part on judgments about various statements’
logicality. In as much as we do have a pretheoretic grip on whether a
notion, as opposed to a statement, is logical or not, it is not at all clear that
we—meaning mathematicians and the mathematically well-educated—tend
to think of general mathematical notions as nonlogical. The notion of a
topological space, or of a continuous function between two topological
spaces, or of a group, or of a homomorphism between two groups, and so
on, are taken to be maximally general notions whose instances are anything
whatsoever that satisfies the defining conditions. Naturally, the study of such
notions belongs to mathematics. But the notions themselves—as opposed
to claims that something instantiates them—are entirely general and apply
to anything that satisfies some structuring conditions, as David Hilbert was
one of the first to note.
What is true is that one can perfectly well express CH, to within a
reasonable informal standard of mathematical equivalence, by using various
generalised quantifiers. We have suggested that this does not commit one
to set-theoretic objects (e.g., infinite cardinals) because these quantifiers are
isomorphism-invariant primitives. But are not ontological commitments
concealed by such a move? What does it mean to say that the quantifier
‘there are continuum many’ does not carry set-theoretic commitments if we
can justify or even understand assertions involving it only by relating the
subject matter by a set-theoretic isomorphism to a canonical example of
continuum size?
Our retort to such an objection is threefold. First, as noted in Section 2.4,
it is a fact that mathematics can be used to yield knowledge of logical
truths; as mentioned, this applies to first- as well as second-order logical
truths. And as noted in Section 2.1, there is no relevant disanalogy between
cardinality quantifiers expressible in first-order terms such as ∃512 on the
one hand and higher-order ones such as Q>ℵ0 on the other. Arithmetic is
no less part of mathematics than set theory, the familiarity of first-order
logic notwithstanding. Our contention is that both these quantifiers are
logical, andwe see no principled reason to regard the latter as ‘mathematical’
or ‘problematically mathematical’ but the former not. Second, we deny
that understanding an assertion implies an ontological commitment to the
entities over which it quantifies. For example, we can perfectly well
understand discourse about fictional objects (e.g., dragons or fairies),
or metaphorical language, without thereby incurring commitment to the
objects described.
Finally, the use of set theory to grasp a sentence such as S is only a
crutch, though admittedly a very helpful one. The sentence S can in principle
be understood literally, using only the conceptual resources expressed by a
second-order language free of nonlogical terms andwithout deployingmath-
ematical concepts. In much the same way, the statement A′ in Section 2.1
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can be understood by deploying the conceptual resources of first-order logic,
without ever entertaining the thought that 2 + 5 = 7. We realise, of course,
that it is very hard for limited human cognisers to understand S without
using set theory as a crutch. It would be just as hard for us to understand
the 1010

10
-termed Boolean connective ∗Fermat, which outputs the truth-value

True iff the number of True inputs equalsN forN the index in a true Fermat
equation,29 without recourse to number theory. But we take it that the philo-
sophically interesting notion of conceptual dependence at stake here is an
in-principle one that abstracts from contingencies of human implementation
rather than an in-practice notion that depends on the specific mechanisms
of human cognition.
We turn finally to Bonnay’s example of a continuous function between
topological spaces, intended to make his objection sharper. Briefly stated,
the notion

(X, �X ) and (Y, �Y ) are topological spaces and f : (X, �X ) → (Y, �Y )
is continuous

may be seen to be isomorphism-invariant when one unpacks the definitions
(here �X and �Y are the topologies on X and Y respectively). The reason
is that for f : (X, �X ) → (Y, �Y ) to be continuous, it matters not what the
elements of X or Y are, but only that the preimage under f of any element
of �Y is an element of �X , a fact that is preserved under isomorphism.30

More generally, any class of structures closed under isomorphism gives rise
to a logical notion that applies to all and only elements of that class.
Two replies may be made to this challenge. First, it seems to be an inherent
feature of the invariantist account. The invariantist carves up the space
of models into equivalence classes, identifying logical notions as (all and
only) those that respect the equivalence class structure (i.e., they apply
in some way to a particular model iff they apply in the same way to all
its equivalents, for the given notion of equivalence). To illustrate the point
briefly, consider Bonnay’s own proposal that the correct equivalence relation
is not isomorphism but potential isomorphism.31 This account makes the
notion ‘structure potentially isomorphic to 〈R, <〉’ logical; in this case, the
class includes not just structures isomorphic to 〈R, <〉 but also structures
such as 〈Q, <〉.
29N is an index in such an equation iff there are positive integers x, y, z such that

xN + yN = zN . Andrew Wiles’ proof shows that ∗Fermat outputs True iff exactly 0, 1 or 2
of the inputs are True.
30Meaning that if the topological spaces (X, �X ) and (X ′, �X ′ ) are isomorphic—i.e.,

homeomorphic—via the bijection iXX ′ : X → X ′, and (Y, �Y ) and (Y ′, �Y ′) are homeo-
morphic via the bijection iYY ′ : Y → Y ′, then f : (X, �X ) → (Y, �Y ) is continuous iff
f′ : (X ′, �X ′ )→ (Y ′, �Y ′ ) is continuous, where f′ = iYY ′ ◦ f ◦ i−1XX ′ .
31A potential isomorphism I between two structuresM and M′ is a nonempty set of

partial isomorphisms such that for all f ∈ I and a in the domain ofM (respectively b in
the domain ofM′) there is a g ∈ I with f ⊆ g and a ∈ dom(g) (respectively b ∈ ran(g)).
A partial isomorphism f ∈ I betweenM andM′ is an isomorphism between a substructure
ofM and a substructure ofM′.
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Second and relatedly, determining whether or not some function between
topological spaces is continuous or not seems to be a matter of applying
definitions. In this intuitive sense at least, it is a logical notion. Take for
example the topological spaces X and Y and function f between them
given by:

X = {a, b} and �X = {∅, X, {a}, {b}};
Y = {c, d} and �Y = {∅, Y, {c}};
f(a) = c;f(b) = d.

As a matter of first-order logic, the conclusion that f is continuous
follows from these conditions. More precisely, consider the conditional
whose antecedent is the conjunction of the above facts about (X, �X ), (Y, �Y )
and f in appropriately unpacked set-theoretic notation (so that for example
X = {a, b} becomes ∀z(z ∈ X ↔ z = a ∨ z = b)), and whose conse-
quent states that f is continuous, i.e., that the preimage under f of every
element of �Y is an element of �X . Availing ourselves of the usual quantifier
restriction conventions, the conditional’s consequent is the statement

∀OY ∈ �y∃OX ∈ �X (∀x ∈ OX (f(x) ∈ OY ) ∧ ∀y ∈ OY∃x ∈
OX (y = f(x)))

The resulting conditional is a first-order validity. We may also formalise
the statement off’s continuity in a higher-order logic.32 Eitherway, no extra-
logical, somehow purely mathematical, premiss is needed to determine f’s
continuity.
In sum, if the type of facts required to classify any given function from one
topological space to another as continuous are what determine whether the
notion of a continuous function is logical or not, then this notion is indeed
logical since nothing but logic is required for the classification. Of course, in
contrast to the simple examples (X, �X ) and (Y, �Y ) above, some topological
spaces are not first-order definable, so the notion of a continuous function
between such spaces will not admit first-order characterisation. But what
is not first-order expressible in these cases is the description of the spaces
themselves or the description of the function in question, not the fact that
the function is continuous, which remains the (first-order) consequent of
the conditional, as specified above. Contrast this with an empirical notion,
say that of a car: to determine whether some specified object is a car one
needs empirical information about that object. The same point generalises
to othermathematical structures andmaps between them (groups and group
homomorphisms and so on).

§3. Conclusion. A demarcation of the logical constants is crucial in order
to supplement the orthodox account of logical consequence. We have
defended an isomorphism-invariance approach to this demarcation. We
began with the vague worry that logic may have been rendered sensitive
to mathematics if we accept this demarcation. The worry has been shown

32So that �X and �Y become second-order predicate constants. The consequent becomes
∀F (�YF → ∃G(�XG ∧ ∀x(Gx → Ff(x)) ∧ ∀y(Fy → ∃x(y = f(x) ∧ Gx)))).
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to be illusory, however: there is no good sense of ‘sensitive’ relating logic
to mathematics in a problematic way. We have worked on our opponents’
behalf to spell out the notion of ‘sensitivity’ in play. Many of the arguments
we have put forward can also be used to defend second-order quantification
as logic. And we have also noted that the boundary between mathematics
and logic is firmer than is often thought. We have not established the
correctness of isomorphism invariance: the issues of undergeneration and of
the account’s purely extensional nature remain. But the former has not been
developed in any great detail and a purely extensional account is sufficient
for many purposes. Isomorphism invariancemay yet turn out to be false, but
it is not false for the reason usually given. It remains an attractive account
of logical nature.
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